– En del elever gör otroligt komplicerade och långa beräkningar när de ska multiplicera. Som att räkna ut 19 · 42 och skriva upp ”19” 42 gånger. Eller killen som adderade sig fram till 5 · 19 fast han samma vecka hade ett multiplikationstest där han utan vidare visste vad 5 · 9 var. Men i förhållande till 5 · 19 då fanns inte multiplikationstabellen i hans tankar trots att han delade upp 19 i 10 och 9.

Det säger Kerstin Larsson som under fem terminer följt 22 elever från att de gick i årskurs 5 till och med den första terminen i årskurs 7. Syftet var att undersöka hur de förstår multiplikation när räknesättet utvidgas från ensiffriga till flersiffriga tal och tal i decimalform. Ett viktigt resultat i studien visar hur djupt rotad den upprepade additionen var hos denna grupp elever. Detta trots att de gick i flera olika klasser under lågstadiet och därför inte introducerades till räknesättet multiplikation av samma lärare.

Svårt frigöra sig från upprepad addition

– Elevernas möjligheter att koppla ihop olika delar av sina kunskaper är inte tillräckligt bra. Även de elever som lyckades väl i matematik i det nationella provet i årskurs 6 hade problem att frigöra sig från upprepad addition. De tvekade att byta ordning på faktorerna och kunde inte förklara vad exempelvis multiplikationen 3,6 · 4,9 kan handla om.

Samtidigt visade det nationella provet att eleverna hade fullkomlig kontroll på hur de ska räkna ut area med multiplikation. Men de kopplar inte ihop detta med räkneuppgiften 3,6 · 4,9. Problemet, menar Kerstin Larsson, ligger delvis i läromedlen som har ett kapitel om area och ett annat om multiplikation, och med textuppgifter som inte ger stöd i att tänka area även när det inte handlar om det.

Sambanden är lösningen

– Undervisningen är inte uppbyggd så att eleverna ser sambanden mellan upprepad addition, multiplikationstabellen, area av rektanglar och kommutativa lagen (a · b = b · a), när de ska göra beräkningar.

Lösningen, menar hon, innebär att hjälpa eleverna att skapa sambanden och ha flera modeller för vad multiplikation är, inte bara lika stora grupper utan också rektangelformationer, som 12 ägg i en äggkartong, som påvisar kommutativa lagen, och rektangelarea, som underlättar att räkna ut tal i decimalform.

Kerstin Larsson disputerade den 12 december med avhandlingen ”Students' understandings of multiplication”.

Läs avhandlingen här.