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Abstract

After some background theory we provide a brief summary of what is known
about the tautological ring of the moduli space of curves. We then formulate
a few conjectures about the structure of the tautological ring of the universal
curve. These conjectures are analogous to the so-called “Faber conjectures”.
We verify these conjectures for genus 2 ≤ g ≤ 9. We also study some matrices
associated to the conjectures and find a relationship between these matrices
and the corresponding matrices on the moduli space of curves.
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Chapter 1
Introduction

In the article A Conjectural Description of the Moduli Space of Curves, [10],
Faber formulates a number of conjectures concerning the tautological ring
of the moduli space of curves. The aim of this project has been to formulate,
and for low genera prove, similar conjectures for the universal curve over the
moduli space of curves. However, before reaching this point we need quite a
bit of background.

Among the possible starting points I have chosen to begin with manifolds.
This might seem a bit unnatural given that this is a project in algebraic ge-
ometry. However, this approach has a few advantages. Firstly, it allows me
to define the genus of a curve topologically which is often regarded as sim-
pler than defining the geometric genus and, more so, the arithmetic genus.
Secondly, the definition of a manifold requires fewer definitions than the def-
inition of a scheme even though these objects are in many ways analogous.
It might therefore be beneficial to have seen manifolds before being intro-
duced to schemes. Thirdly, the triple equivalence between smooth projective
complex algebraic curves, complex algebraic function fields and compact Rie-
mann surfaces at least motivates a discussion of this topic at some point in
this context.

We continue by discussing affine and projective varieties. These are the
simplest algebraic counterparts of manifolds. In the following section we in-
troduce vector bundles, sheaves and schemes, which are more complicated
algebraic counterparts of manifolds. The discussion largely follows the one
found in [21].

In Section 2.4 we introduce the Chow ring. The tautological ring will later
be defined as a subring of this ring. Finally, in Section 2.5 we introduce the
moduli space of curves,Mg.

In Chapter 3 we first introduce a few objects related to the moduli space
of curves, most importantly the universal curve Cg and the tautological rings
R(Mg) and R(Cg). We then briefly discuss what is known about R(Mg).
Finally, we formulate and discuss the so-called Faber conjectures.
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2 1 Introduction

Chapter 4 is about what has been done in this project. We first state ana-
logues of the Faber-conjectures. Sections 4.1-4.3 concerns certain matrices
related to the conjectures. In Section 4.4 we discuss how to generate re-
lations in R(Cg). Using the relations and the matrices, the conjectures are
proven for low genera. Finally, in Section 4.5 we provide some concluding
remarks.

I would like to thank my advisor, Carel Faber, for his help and patience
during this project. I would also like to thank my girlfriend, Elin Hynning,
for her support.



Chapter 2
Background Theory

2.1 Manifolds and Riemann Surfaces

The concept of manifolds generalizes the concepts of curves and surfaces.
A continuous curve could be defined as a topological space which locally
looks like the real line. Similarly, a surface could be defined as a topological
space whch locally looks like Euclidean 2-space. Therefore it seems intuitive
to define a manifold as a topological space which locally looks like Euclidean
n-space, for some n. However, we actually require more of a curve than just
looking like Rn around every point.

For instance, consider the disjoint R1 t R1 with the ordinary topology.
Define an equivalence relation ∼ on this space by saying x ∼ y if x = y 6= 0
as elements in R. The space R1 t R1/ ∼ is a space such that every point has
a neighbourhood homeomorphic to the real line, but it has “two origins”. We
can find an open set U containing one of the origins but not the other, but if
we try to find an open set V which contains the other origin and is disjoint
from U we invariably fail. Hence, R1 t R1/ ∼ is not Hausdorff (but it is T1).
This is not what we would call a “curve”, so this might justify the following
definition.

Definition 2.1. A topological manifold, M , is a paracompact Hausdorff topo-
logical space such that every point ofM has a neighbourhood homeomorphic
to some Euclidean space, Rn.

Recall that a space is paracompact if every open cover admits a locally
finite refinement, i.e. a refinement such that every point has a neighbourhood
which only intersects a finite number of sets of the refinement. Note that in
the above definition we do not require n to be constant. However, it turns
out that n will be constant on the connected components of M . We shall only
consider connected manifolds.

We shall always require more of manifolds than simply being topological
manifolds. Therefore we make the following definition.

3



4 2 Background Theory

Definition 2.2. A chart on a topological manifold M consists of an open set
U ⊂M and a homeomorphism φ : U → V ⊂ Rn, where V is an open subset
of Rn. A smooth atlas on M is a collection A = {(Ui, φi)}i∈I of charts such
that M =

⋃
i∈I Ui, φi(Ui ∩ Uj) is open for all i, j ∈ I and such that each

transition function

φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj),

is smooth for all i, j ∈ I such that Ui ∩ Uj 6= ∅.

We say that two smooth atlases A1 and A2 on M are equivalent if A1∪A2

is a smooth atlas on M . An equivalence class of smooth atlases on M is called
a smooth structure on M .

Definition 2.3. A smooth manifold (M,A ) is a topological manifold M with
a smooth structure A .

By complete analogy to the above we define complex manifolds.

Definition 2.4. A complex chart on a topological manifold M is a homeo-
morphism φ : U → V from an open set U ⊂ M to an open set V ⊂ Cn. A
holomorphic atlas on M is a collection of complex charts A = (Ui, φi)i∈I on
M such that the Ui cover M , the sets φi(Ui ∩ Uj) are open for each i, j ∈ I
and such that the transition functions

φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj),

are holomorphic for all i, j ∈ I such that Ui ∩ Uj 6= ∅. Two holomorphic
atlases A1 and A2 are equivalent if A1∪A2 is a holomorphic atlas. An equiv-
alence class of holomorphic atlases is called a complex structure. A complex
manifold is a topological manifold M with a complex structure A .

We are now ready to define Riemann surfaces.

Definition 2.5. A Riemann surface is a connected complex manifold of com-
plex dimension one.

Since a Riemann surface has complex dimension one, it has real dimension
two. This explains why we call them surfaces.

We now introduce the important class of holomorphic functions on a Rie-
mann surface.

Definition 2.6. Let X be a Riemann surface and let V be an open subset of
X. A function f : V → C is called holomorphic if the functions

f ◦ φ−1
i : φi(Ui ∩ V )→ C

are all holomorphic.
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Definition 2.7. The set of all holomorphic functions on V ⊂ X is denoted by
O(V ). The set O(V ) is a ring called the ring of holomorphic functions on V .

Another important class is the class of meromorphic functions.

Definition 2.8. Let X be a Riemann surface and let V be an open subset of
X. A function f : V → C is called meromorphic if there is a set of isolated
points A in V such that the restriction f : V \ A → C is a holomorphic map
and such that limx→p |f(x)| =∞ for all p ∈ A.

Definition 2.9. The set of all meromorphic functions on V ⊂ X is denoted
by K(V ). K(V ) is a field called the field of meromorphic functions on V .

Yet another important concept is that of a holomorphic map between two
Riemann surfaces.

Definition 2.10. Let X and Y be Riemann surfaces with atlases (Ui, φi),
(Vj , ψj), respectively. A map f : X → Y is holomorphic if the maps

ψj ◦ f ◦ φ−1
i : C→ C,

are holomorphic wherever they are defined.

Definition 2.11. Let X and Y be Riemann surfaces. f : X → Y is called
an analytic isomorpism (or a holomorphic isomorphism or simply an isomor-
phism) if f is bijective and holomomorphic with a holomorphic inverse. If
there is an isomorphism X → Y we say that X and Y are isomorphic.

Let X be a Riemann surface, let p be a point on X an let (U, φ) be a chart
around p. We may compose φ with a translation T so that T ◦ φ(p) = 0. This
will also be a homeomorphism compatible with the complex structure on X.
Further, we may restrict T ◦φ to an open subset U ′ of U so that T ◦φ(U ′) is an
open disc with center 0. We may then rescale this disc to obtain a disc with
radius 1. These are all operations compatible with the complex structure on
X. Hence, we may as well assume that a chart (U, φ) around p maps p to 0
and that φ(U) is the open unit disc. This will be convenient in the following
discussion of holomorphic and meromorphic functions.

Let f be a meromorphic function. The composition f ◦ φ−1 can be written
as

f ◦ φ−1(z) =
∞∑
i=m

ciz
i,

for some constants ci ∈ C and cm 6= 0. The number m is called the order of
f at p. If m is nonnegative, then f is holomorphic at p and if m is positive
then f has a zero of multiplicity m at p. If m is negative we call p a pole of
multiplicity −m of f . If X is a compact Riemann surface and f is a nonzero
function, then f has only finitely many zeros and poles. Further, if we denote
the order of a point p ∈ X by mp then
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pp

−mpp =
∑
pz

mpz ,

where the pp’s are the poles of f and the pz ’s are the zeros of f . In other
words, counted with multiplicities, f has equally many zeros as poles.

Let f : X → Y be a holomorphic map between Riemann surfaces. Let x
be a point of X. We may choose charts (U, φ) and (V, ψ) around x and f(x)
such that

ψ ◦ f ◦ φ−1 : C→ C,

is given by
ψ ◦ f ◦ φ−1(z) = zk,

for some positive integer k. This is clearly an open map and φ and ψ are
homeomorphisms and therefore open. It thus follows that f is an open map.
Hence, any holomorphic map between Riemann surfaces is an open map.
This observation has some important consequences.

Theorem 2.1. If X is compact and f : X → Y is a nonconstant holomorphic
map between Riemann surfaces, then f is surjective and Y is compact.

Proof. Since X is compact, f(X) ⊂ Y is compact, and therefore closed since
Y is Hausdorff. But on the other hand, X is open so f(X) is open. Hence,
f(X) is both open and closed. Since Y is connected, this impies that f(X) =
Y . �

Corollary 2.1. If X is a compact Riemann surface, then O(X) = C.

Proof. Suppose that there were a nonconstant holomorhic map f : X → C.
By Theorem 2.1, we have that C is compact. This is not the case so if f is
holomorphic, then f is constant. �

As a last remark, let X and Y be Riemann surfaces and let f : X →
Y be a holomorphic map. If g is a meromorphic function on Y , then the
pullback f∗g = g ◦ f is a meromorphic function on X. It follows that if f
is an isomorphism, then every meromorphic function on X is the pullback
of a meromorphic function of Y , and converserly. Hence, if X and Y are
isomorphic Riemann surfaces then K(X) ∼= K(Y ). In fact, the converse is
also true, [32].

Let p and q be points on a Riemann surface X. A continuous path from p
to q is a continuous map α : [0, 1] → X such that α(0) = p and α(1) = q. If
p = q we call α a loop based at p.

A homotopy between two paths α and β between p and q is a continuous
map

H : [0, 1]× [0, 1]→ X,

such that H(t, 0) = α(t) and H(t, 1) = β(t). If there is a homotopy between
α and β we write α ' β and say that α and β are homotopic paths. Being
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homotopic is an equivalence relation and the equivalence class of a path α is
denoted.

If α is a path from p to q and β a path from q to r we may define their
product

α.β(t) =
{
α(2t) if t ≤ 1/2,
β(2t− 1) if t > 1/2.

It is a path from p to r.
We now fix a point p and consider loops based at p. The product of two

loops based at p is again a loop based at p. We want this product to give us
a group structure on the loops based at p. Unfortunately, this is not the case
(actually, all group axioms fail to hold). However, if we define a product of
the homotopy classes of loops by [α].[β] = [α.β] we do get a group struc-
ture on the set of homotopy classes of loops based at p. This group is called
the fundamental group of X and is denoted π1(X, p). Since X is connected,
choosing another base point gives an isomorphic fundamental group. Hence,
we may just write π1(X).

The fundamental group of a topological space is homotopy invariant. In
particular, homeomorphic Riemann surfaces have isomorphic fundamental
groups. Suppose that X is a compact Riemann surface. All Riemann surfaces
are orientable, so it follows from the classifiaction theorem of compact sur-
faces that X is homeomorphic to “a sphere with g handles attached to it”,
where g is a nonnegative integer.

If g is equal to 0, then π1(X) is trivial. This is because every loop can be
shrunk into a point. This fact can be reformulated as “if X is homeomorphic
to a sphere, then X is simply connected”.

If g is 1, then π1(X) is isomorphic to Z × Z. One may think about π1(X)
as wrapping a string around a torus, the left coordinate representing the
number of times the string has been wrapped around the “solid” part and
the right how many complete laps arond the hole of the torus the string has
made. It does not matter if we first wrap the (very elastic) string n times
around the “solid” part and then smear it out m laps around the hole or the
other way around. This fact is reflected in the fact that π1(X) is abelian.

If we increase g to 2 or higher, π1(X) becomes more complicated. Re-
turning to the string analogy, this is because the manner in which we wrap
the string around X matters more when X is more complicated (for in-
stance if X is a “fat 8”). Therefore, π1(X) is no longer abelian. However,
it is still fairly simple, it is the quotient of the free group on 2g elements,
F (α1, β1, . . . , αg, βg), by a single relation:

π1(X) ∼=
F (α1, β1, . . . , αg, βg)(∏g

i=1 αiβiα
−1
i β−1

i

) .
If we abelianize the first fundamental group of a Riemann surface X, we

obtain what is called the first simplicial homology group of X, H1(X,Z) =
π1(X, p)ab. H1(X,Z) is isomorphic to direct sum of an even number of copies
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of Z

H1(X,Z) ∼=
2g⊕
k=1

Z.

The number g is called the genus of the Riemann surface X. It is equal to
the number of “holes” of X, [2]. The genus of a Riemann surface will be
important later.

2.2 Varieties

The algebraic analogue of a manifold is a nonsingular variety. In this section
we shall introduce affine and projective varieties.

Let k be an algebraically closed field and define

Ank = k × · · · × k︸ ︷︷ ︸
n times

.

The set Ank is called affine n-space over k. Elements P = (a1, . . . , an) of Ank
are called points and ai is called the ith coordinate of P .

Let k[x1, . . . , xn] denote the ring of polynomials in n variables over k. A
polynomial f in k[x1, . . . , xn] defines a function from Ank to k by defining

f(P ) = f(a1, . . . , an),

where ai is the ith coordinate of P . The zero set of a polynomial f in
k[x1, . . . , xn] is the set of points P in Ank such that f(P ) = 0 and is denoted by
Z(f). Similarly, if S is any subset of k[x1, . . . , xn] we define the zero set of S,
Z(S), as the set of points P of Ank such that f(P ) = 0 for all f in S. Suppose
that f and g are polynomials in k[x1, . . . , xn] such that f(P ) = g(P ) = 0.
Then

(f + g)(P ) = f(P ) + g(P ) = 0,

and if h is any element of k[x1, . . . , xn], then

(h · f)(P ) = h(P ) · f(P ) = 0.

Hence, the zero set of a subset S of k[x1, . . . , xn] is equal to the zero set of
the ideal generated by S. By Hilbert’s basis theorem, see for instance [14],
k[x1, . . . , xn] is Noetherian. Hence, any ideal of k[x1, . . . , xn] is generated by
a finite set of polynomials.

We define an affine algebraic set to be the zero set of a subset S of Ank .
By the above, we may also define an affine algebraic set as the zero set of an
ideal of k[x1, . . . , xn] or as the zero set of a finite set of polynomials.

Let {Ai}i∈I be a collection of affine algebraic sets in Ank . Suppose that
Ai = Z(Si) where Si is a subset of k[x1, . . . , xn]. Then
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⋂
i∈I

Ai =
⋂
i∈I

Z(Si) = Z

(⋃
i∈I

Si

)
,

and
Ai ∪Aj = Z(Si) ∪ Z(Sj) = Z (Si ∩ Sj) .

Hence, the intersection of any collection of affine algebraic sets is an alge-
braic set and the union of two algebraic sets is an algebraic set. Further,
Ank = Z({0}) and ∅ = Z({1}) so both Ank and the empty set are affine alge-
braic sets. These results show that the affine algebraic sets define a topology
on affine n-space. This topology is called the Zariski topology.

The easiest example is, of course, A1
k. A subset C of A1

k is closed if and
only if it is the zero set of some ideal in k[x]. The ring k[x] is a principal
ideal domain so C must be the zero set of a single polynomial, f . A non-
zero polynomial has only a finite set of zeros so C must either be a finite set
of points, the empty set or the whole of A1

k. Since k is algebraically closed
it must be infinite. Hence, any two non-empty open sets have non-empty
intersection. In particular, the Zariski topology is not Hausdorff on Ank .

Definition 2.12. A topological space X is reducible if it can be written as
a union of two non-empty, proper closed subsets. If X is not reducible it is
irreducible.

Similarly, we say that a subset Y of a topological space X is reducible,
resp. irreducible, if it is reducible, resp. irreducible, in the subspace topology.
An important feature of irreducible spaces is that any non-empty open subset
of an irreducible space is dense. If X is an affine algebraic set which is also
irreducible, X is called an affine variety. An open subset of an affine variety
is called a quasi-affine variety.

Just as we can investigate at which points a certain set of polynomials
vanish, we may investigate which polynomials that vanish on a certain set of
points. We then arrive at the definition of an ideal of a subset of Ank . More
formally, let Y be a subset of Ank . The ideal of Y , denoted I(Y ), is then defined
as the set of polynomials f in k[x1, . . . , xn] such that f(P ) = 0 for all points P
in Y . The following proposition gives a condition on when an affine algebraic
set is an affine variety. For a proof, see for instance [21].

Proposition 2.1. An affine algebraic set Y in Ank is an affine variety if and only
if I(Y ) is a prime ideal.

The operations “taking the zero set of an ideal” and “taking the ideal of
a set” seem to be opposites. The following proposition explains the relation
between the two operations further.

Proposition 2.2. Let S1 and S2 be subsets of k[x1, . . . , xn] and Y1 and Y2 be
subsets of Ank .

(i) If S1 is a subset of S2, then Z(S2) is a subset of Z(S1).
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(ii) If Y1 is a subset of Y2, then I(Y2) is a subset of I(Y1).
(iii) If a is an ideal of k[x1, . . . , xn], then I(Z(a)) = rad(a).
(iv) I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).
(v) Z(I(Y1)) is the closure of Y1.

For a proof, see for example [21]. If we combine the above proposition
with Hilbert’s nullstellensatz we get the following result.

Proposition 2.3. There is a one-to-one, inclusion reversing correspondence be-
tween affine algebraic sets in Ank and radical ideals in k[x1, . . . , xn] given by
Y 7→ I(Y ) and a 7→ Z(a).

Let Y ⊆ Ank be an affine algebraic set. Two polynomials f, g ∈ k[x1, . . . , xn]
define the same function on Y if and only if f(P ) = g(P ) for all P ∈ Y or, in
other words, if f(P )− g(P ) = (f − g)(P ) = 0 for all P ∈ Y . Hence, f and g
define the same function on Y if and only if f − g lies in I(Y ). We therefore
define the affine coordinate ring of Y , denoted A(Y ), as

A(Y ) =
k[x1, . . . , xn]

I(Y )
.

By the above discussion, an element f̄ of A(Y ) unambiguously defines a
function from Y to k by f̄(P ) = f(P ). We remark that since I(Y ) is a prime
ideal if and only if Y is a variety it follows that Y is a variety if and only if
A(Y ) is an integral domain.

A topological space is called Noetherian if it satisfies the descending chain
condition on its closed subsets. Of course, we might as well define a Noethe-
rian space as a space which satisfies the ascending chain condition on its
open subsets. This point of view might make the analogy to Noetherian rings
clearer but is seldom used. The following example indicates why.

Let Y1 ⊇ Y2 ⊇ · · · be a descending chain of closed subsets of Ank . Then
I(Y1) ⊆ I(Y2) ⊆ · · · is ascending chain of ideals in k[x1, . . . , xn] by Propo-
sition 2.3. Since k[x1, . . . , xn] is Noetherian, the chain stabilizes for some i,
so I(Yi) = I(Yi+1) = · · · . By Proposition 2.3 we then have Yi = Yi+1 = · · · .
Hence, Ank is a Noetherian space.

Proposition 2.4. Let Y be a non-empty, closed subset of a Noetherian space.
Then there are unique irreducible closed subsets Y1, . . . , Yn such that

Y =
n⋃
i=1

Yi,

and Yi 6⊆ Yj if i 6= j.

For a proof, we again advice the reader to [21]. To us, he important con-
sequence of the above proposition is that any affine algebraic set can be
expressed uniquely as a union of varieties.
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Before we change the subject to projective varieties we shall define the
topological dimension of a topological space X. The topological dimension
of X is defined as

dim(X) = sup{n : there is a chain Z0 ⊂ Z1 ⊂ · · ·Zn}

where each Zi is an irreducible closed set and each inclusion is proper. We
define the dimension of the empty set to be −∞. The dimension of an affine
variety is its dimension as a topological space.

As promised, we shall now turn our attention to projective varieties. Before
reaching this definition we shall however need some preparation. First we
shall define projective n-space over our algebraically closed field k.

To this end, consider affine (n+1)-space over k, An+1
k . Introduce an equiv-

alence relation ∼ on An+1
k \{0} as follows: the points P = (a1, . . . , an+1) and

P ′ = (a′1, . . . , a
′
n+1) in An+1

k \ {0} are equivalent if and only if there is some
non-zero λ ∈ k such that

(a′1, . . . , a
′
n+1) = (λa1, . . . , λan).

Projective n-space over k, denoted Pnk , is now defined as (An+1 \ {0})/ ∼. If
P is a point in Pnk , then any representative (a1, . . . , an+1) of P in An+1

k \ {0}
is called a set of homogeneous coordinates for P .

Consider the polynomial f(x1, x2) = 1−x2
1−x2

2 ∈ k[x1, x2]. Then f(1, 0) =
0. If we choose λ such that λ2 6= 1 we have

f(λ, 0) = 1− λ2 6= 0.

Hence, if f ∈ k[x1, . . . , xn+1] we cannot expect to have f(x1, . . . , xn+1) =
f(λx1, . . . , λxn+1). Further, we cannot even say that f(λx1, . . . , λxn+1) = 0
if f(x1, . . . , xn+1) = 0. However, if f is homogeneous of degree m we have

f(λx1, . . . , λxn+1) = λmf(x1, . . . , xn+1).

Hence, f(x1, . . . , xn+1) is still not equal to f(λx1, . . . , λxn+1) in general, but
at least we have that f(x1, . . . , xn+1) = 0 if and only if f(λx1, . . . , λxn+1) = 0
for all λ 6= 0. In other words, the concept of “being zero on a point P ∈ Pnk” is
well defined for homogeneous polynomials in k[x1, . . . , xn+1]. It is important
to note, however, that f is still not well defined as a function from Pnk to k.

The above discussion suggests that we should not study arbitrary poly-
nomials on Pnk but homogeneous polynomials. When we convert definitions
and results from the affine to the projective environment we shall therefore
always use homogeneous polynomials.

As a start we define the zero set of a homogeneous polynomial f ∈
k[x1, . . . , xn+1] as

Z(f) = {P ∈ Pnk : f(P ) = 0}.
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Similarly, we define the zero set of a subset S ⊆ k[x1, . . . , xn+1] of homoge-
neous polynomials as

Z(S) = {P ∈ Pnk : f(P ) = 0 for all f ∈ S}.

Here another difference from the affine case arises. In the affine case, the
zero set of a set S of polynomials is the same as the zero set of the ideal
generated by S. However, even if every polynomial in S is homogeneous
there is no guarantee that every polynomial in the ideal generated by S is
homogeneous. Hence, this result does not extend directly.

Denote the set of homogeneous polynomials in k[x1, . . . , xn+1] of degree i
byKi. The setKi is an abelian group under addition. The ring k[x1, . . . , xn+1]
is graded

k[x1, . . . , xn+1] =
∞⊕
i=0

Ki.

We use this occasion to introduce

k[x1, . . . , xn+1]+ =
∞⊕
i=1

Ki.

An ideal a ⊆ k[x1, . . . , xn+1] is called homogeneous if it is generated by ho-
mogeneous polynomials. Equivalently, a is homogeneous if it can be decom-
posed as

a =
∞⊕
i=0

a ∩Ki.

For a proof of the equivalence, see [14]. Since a homogeneous ideal a is
generated by a set S of homogeneous polynomials we may define the zero
set of a as the zero set of S.

We may now define projective algebraic sets. A subset Y ⊆ Pnk is called
a projective algebraic set if Y = Z(S) for some set S ⊆ k[x1, . . . , xn+1] of
homogeneous polynomials. Analogously to the affine case, the projective al-
gebraic sets defines the closed sets of a topology on Pnk (and the proof is
very similar). This topology is called the Zariski topology on Pnk . We define
a projective variety as an irreducible projective algebraic set. An open subset
of a projective variety is called a quasi-projective variety. The dimension of a
projective variety is its dimension as a topological space.

Let Y be a subset of Pnk . We define the homogeneous ideal of Y as ideal
generated by the set

{f ∈ k[x1, . . . , xn+1] : f(P ) = 0 for all P ∈ Y }.

We define the homogeneous coordinate ring, S(Y ), of Y as
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S(Y ) =
k[x1, . . . , xn+1]

I(Y )
.

As in the affine case, there are relations between the operations “taking the
zero set of” and “taking the ideal of”.

Proposition 2.5. Let S1 and S2 be subsets of k[x1, . . . , xn+1] of homogeneous
elements and Y1 and Y2 be subsets of Pnk .

(i) If S1 is a subset of S2, then Z(S2) is a subset of Z(S1).
(ii) If Y1 is a subset of Y2, then I(Y2) is a subset of I(Y1).
(iii) If a is a homogeneous ideal of k[x1, . . . , xn+1] such that Z(a) 6= ∅, then
I(Z(a)) = rad(a).

(iv) I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).
(v) Z(I(Y1)) is the closure of Y1.

We also have the following result which corresponds to Proposition 2.3.

Proposition 2.6. There is a one-to-one, inclusion reversing correspondence be-
tween algebraic sets of Pnk and homogeneous radical ideals of k[x1, . . . , xn+1],
not equal to k[x1, . . . , xn+1]+, given by Pnk 3 Y 7→ I(Y ) and k[x1, . . . , xn+1] 3
a 7→ Z(a).

In the above correspondence, projective varieties correspond to prime ide-
als. As in the affine case, any projective algebraic set can be uniquely as a
finite union of varieties with none of the varieties containing another If Y is
a projective algebraic set and

Y =
n⋃
i=1

Yi,

is such a decomposition into varieties, the Yi are called the irreducible com-
ponents of Y .

Projective n-space has an open covering by affine n-spaces given given by
Ui = Pnk \ Z(Xi). Each of the Ui:s are homeomorphic to Ank via the maps

φi(P ) = φi(a1, . . . , an+1) =
(
a0

ai
, . . . ,

âi
ai
, . . . ,

an+1

ai

)
,

where (a1, . . . , an+1) are homogeneous coordinates of P . Another choice of
homogeneous coordinates (a′1, . . . , a

′
n+1) differs from the original choice by

a non-zero factor λ, i.e. a′j = λaj for j = 1, . . . , n+ 1. Hence

a′j
a′i

=
λaj
λai

=
aj
ai
,

so φi is well defined. A proof that φi is a homeomorphism can be found in
[21]. It follows that any projective variety can be covered by affine varieties.
Similarly, quasi-projective varieties can be covered by quasi-affine varieties.
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Now that we have defined affine and projective varieties, we shall consider
functions on them. A function f : Y → k on a quasi-affine variety Y is called
regular at a point P in Y if there exists an open set U ⊂ Y containing P
and polynomials g and h in k[x1, . . . , xn] such that h is never zero on U and
f = g/h on U . The function f is called regular if it is regular at every point
of Y .

If we want to do something similar for a quasi-projective variety Y , we
run into the usual problem about homogeneity. Therefore, the corresponding
definition is a little more technical. More precisely, in addition to the above
we need to assume that g and h are both homogeneous polynomials of the
same degree. If the degree is n we have for any non-zero λ

g(λa1, . . . , λan+1)
h(λa1, . . . , λan+1)

=
λng(a1, . . . , an+1)
λn(h(a1, . . . , an)

=
g(a1, . . . , an)
h(a1, . . . , an)

,

so g/h is really a well-defined function on U even though g and h in general
are not. A regular function is continuous with respect to the Zariski topology
on k = A1

k. If Y is a quasi-affine or quasi-projective variety, the set of regular
functions on Y form a ring, O(Y ), called the ring of regular functions on Y .

If Y is an affine variety, the ring of regular functions on Y is isomorphic to
the coordinate ring of Y , i.e. O(Y ) ∼= A(Y ). Moreover, there is a one-to-one
correspondence between points of Y and maximal ideals in A(Y ) given by

P 7→ mP ,

where mP is the ideal of regular funcitons which vanish at P .
The situation is not as nice if Y is a projective variety. In fact, O(Y ) ∼= k.

In other words, if f is regular everywhere on the projective variety Y , then f
is a constant. Hence, any interesting function on Y has points where it is not
very nicely behaved.

Another important class of functions are the morphisms. Let X and Y
be quasi-affine or quasi-projective varieties (they do not need to be of the
same type). A morphism from X to Y is a continuous functions ϕ such that
the function f ◦ ϕ : ϕ−1(U) → k is a regular function for every open set
U ⊆ Y and every regular function f on U . A bijective morphism is called an
isomorphism if its inverse is also a morphism.

Example 2.1. Let f(x1, x2) ∈ k[x1, x2] and consider zero set Y = Z(x3 −
f(x1, x2)) ∈ A3

k. This is a variety because x3 − f(x1, x2) is irreducible. Con-
sider the function π : Y → A2

k given by π(x1, x2, f(x1, x2)) = (x1, x2). This
function is clearly bijective with inverse given by

π−1(x1, x2) = (x1, x2, f(x1, x2)).

Let U be an open subset of A2
k. The inverse image of U under π is

π−1(U) = {(x1, x2, f(x1, x2)) ∈ Y |(x1, x2) ∈ U}.
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Let g be a regular function on U . The composition g ◦ π : π−1(U) → k takes
an element (x1, x2, f(x1, x2)) to g(x1, x2). Hence, if g can be written as h1/h2

on V ⊆ U with h1, h2 ∈ k[x1, x2] and h2 not vanishing on V , then g ◦ π can
be written as ĥ1/ĥ2 on π−1(V ) where ĥi(x1, x2, x3) = h(x1, x2). Note that ĥ2

does not vanish on π−1(V ). Hence, g ◦ π is a regular function on π−1(U), so
π is a bijective morphism.

Now let U be an open subset of Y . We have

(π−1)−1(U) = π(U) = {(x1, x2)|(x1, x2, f(x1, x2)) ∈ U}.

Let g be a regular function on U so that g. Then, if g can be written as h1/h2

on some open subset V ⊆ U , with h1, h2 ∈ k[x1, x2, x3] and h2 nowhere van-
ishing on V , then g◦π−1 can be written as h1(x1, x2, f(x1, x2))/h2(x1, x2, f(x1, x2))
on π(V ) and h2(x1, x2, f(x1, x2)) does not vanish on π(V ). Hence, π−1 is also
a morphism, so Y is isomorphic to Ank .

Let Y be a quasi-affine or quasi-projective variety, let P be a point of Y
Consider pairs 〈U, f〉 where U is an open subset of Y containing P and f
is a regular function on U . Two pairs are 〈U, f〉 and 〈V, g〉 considered to be
equivalent if f = g on U ∩ V . Such an equivalence class is called a germ
of functions at P . We shall denote the germ containing 〈U, f〉 by [〈U, f〉].
The set of germs of functions at P is forms a ring, denoted OP (Y ), where
[〈U, f〉] + [〈V, g〉] = [〈U ∩ V, f + g〉] and [〈U, f〉] · [〈V, g〉] = [〈U ∩ V, f · g〉].
If [〈U, f〉] is such that f(P ) 6= 0, f is non-zero on some open subset V of Y
containing P . Hence, 1/f is regular on V and [〈U, f〉]·[〈V, 1/f〉] = [〈U∩V, 1〉].
Hence, if f(P ) 6= 0 then [〈U, f〉] is a unit in Op(Y ). On the other hand, the
set of germs [〈U, f〉] such that f(P ) = 0 clearly defines an ideal. Hence, this
ideal is a unique maximal ideal so OP (Y ). Therefore, OP (Y ) is called the
local ring of Y at P .

We may also consider pairs 〈U, f〉 where U is a non-empty open subset of
Y and f is a regular function on U under the same equivalence relation as
above (i.e. we no longer require U to contain any specific point). The set of
such functions is denoted K(Y ). If [〈U, f〉] is such that f is not identically
zero, then f is non-zero on some open subset V of Y so 1/f is regular on V .
Since both U and V are non-empty and open they are both dense so U ∩V is
non-empty. Since [〈U, f〉] · [〈V, 1/f〉] = [〈U ∩ V, 1〉] we conclude that K(Y ) is
a field. The field K(Y ) is called the function field of Y and elements of K(Y )
are called rational functions on Y .

We conclude this section with yet another construction rather similar to
the above constructions. Let X and Y be quasi-affine or quasi-projective va-
rieties (they do not need to be of the same type). Consider pairs 〈U, φ〉 where
U is a non-empty subset of X and φ is a morphism from U to Y . We say
that two pairs 〈U, φ〉 and 〈V, ψ〉 are equivalent if φ and ψ agree on U ∩ V .
The fact that this is an equivalence relation is proved in [21]. An equiva-
lence class of the above type is called a rational map from X to Y . A rational
map [〈U, φ〉] is called dominant if φ(U) is dense in Y . A rational map [〈U, φ〉]
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from X to Y such that there is a rational map [〈V, ψ〉] from Y to X such that
φ ◦ ψ = idY and ψ ◦ φ = idX as rational maps is called a birational map. If
there is a birational map between X and Y , X and Y are called birationally
equivalent.

2.3 Vector Bundles, Sheaves and Schemes

Let M be a smooth manifold. A smooth family of real vector spaces
parametrized by M consists of a smooth manifold E and a smooth map

π : E →M,

such that π−1(x) is a real vector space for every x ∈ M . The vector space
π−1(x) is called the fibre of x. Suppose that

ρ : F →M

is another family of real vector spaces parametrized by M . A homomorphism
between (E, π) and (F, ρ) is a map

φ : E → F,

such that ρ(φ(y)) = π(y) for all y ∈ E, and such that φ|π−1(x) : E → F is a
linear map for all x ∈M . A homomorphism φ is an isomorphism if there is a
homomorphism ψ : F → E such that ψ ◦ φ = idE and φ ◦ ψ = idF .

Definition 2.13. A smooth family (E, π) of real vector spaces over a smooth
manifold M is locally trivial if every point x ∈ M has a neighbourhood U
such that

π|π−1(U) : π−1(U)→ U,

is isomorphic to the family pr : U ×Rk → U for some positive integer k. Here
pr denotes projection onto the first coordinate.

We may now define vector bundles.

Definition 2.14. A vector bundle on a smooth manifold M is a locally trivial
smooth family of vector spaces

π : E →M.

If U is an open set such that π is trivial when restricted to U , we have that the
family π|π−1(U) : π−1(U) → U is isomorphic to the family pr : U × Rk → U
for some k. This integer k is called the rank of the vector bundle (E, π).

Example 2.2. Let M be a smooth manifold and let p be a point in M . Denote
by Ep the algebra of germs of smooth functions at p. A derivation at p is an
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R-linear map Dp : Ep → R such that Dp(f · g) = Dp(f) · g(p) + f(p) ·Dp(g).
The tangent space of M at p, TpM , is then defined as the vector space of all
derivations at p. The tangent space of M is defined as

TM =
⋃
p∈M
{p} × TpM.

We have a map π : TM → M , sending a point of TM to its first coordinate.
The family (TM, π) is then a vector bundle.

Example 2.3. Consider PnC and the set

E = {([l], x) ∈ PnC × Cn+1 : x ∈ l}.

The map

π : E → PnC,

([l], x) 7→ [l],

then gives (E, π) the structure of a vector bundle. The vctor bundle (E, π) is
called the tautological line bundle on PnC.

Definition 2.15. Let π : E → M be a vector bundle and let U be an open
subset of M . A section on U is a smooth function

s : U → E,

that maps each x in U into its fibre, i.e. π(s(x)) = x.

Let s and t be two sections on U . Since π−1(x) is a vector space, s(x)+t(x)
is an element of π−1(x). Similarly, c · s(x) is an element of π−1(x) for any
scalar c ∈ R. It is now easy to see, although a bit tedious to write out, that
the set of sections on U forms a real vector space. In fact, we may allow
multiplication by any smooth function on U . The set of sections on U then
becomes a module over the ring of smooth functions on U .

One may also define vector bundles over general topological spaces.

Definition 2.16. Let X be a topological space. A real vector bundle over X is
a pair (E, π) where E is a topological space and π is a continuous surjection
E → X such that each for each p ∈ X, π−1(p) is a real vector space, and such
that there is a neighbourhood U containing p such that π−1(U) is isomorphic
to U × Rk for some nonnegative integer k.

In an analogous way one may define complex vector bundles. Vector bun-
dles are examples of sheaves. Before defining a sheaf, we shall define a
presheaf.

Definition 2.17. Let X be a topological space. Let F be a way of assigning to
each open set U of X a set F(U). We require that for each pair of open sets
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U1 ⊆ U2 of X there is a map resU2,U1 : F(U2) → F(U1) (called a restriction
map) such that

(i) resU,U = idF(U) and
(ii) if U1 ⊆ U2 ⊆ U3, then resU3,U1 = resU2,U1 ◦ resU3,U2 .

Then F and the system res is called a presheaf on X.

Definition 2.18. A presheaf is a sheaf if, in additon to the above, for each
open U we have

(i) If x1 and x2 lie in FU and resU,Ui(x1) = resU,Ui(x2) for all Ui ⊆ U , then
x1 = x2.

(ii) If a collection xi ∈ F(Ui) , Ui ⊆ U , satisfies resUi,Ui∩Uj (xi) = resUj ,Ui∩Uj (xj)
for all i and j, then there is an x in F(U) such that resU,Ui(x) = xi.

As defined, F(U) is only required to be a set. However, in most cases F(U)
has more structure. For instance, if E is a vector bundle we may take F(U)
to be the set of all sections s : U → π−1(U). Then each F(U) is a vector
space and F is called a sheaf of vector spaces. In the same spirit, one speaks
of sheaves of vector modules, sheaves of abelian groups and so on.

If F0 is a presheaf we can get a sheaf F by requiring that F is a sheaf
such that every map from F0 to a sheaf factors uniquely through F . In other
words, we have a map f : F0 → F such that if F ′ is another sheaf and
g : F0 → F ′ is another map, then there is a unique map h : F → F ′ such
that g = h ◦ f . The sheaf F is called the sheafification of F0.

LetX be a topological space and let F and G be sheaves onX. A morphism
φ : F → G is a collection of functions, one for each open set U of X, such
that

resU,V ◦ φ(V ) = φ(U) ◦ resU,V .

If F and G are sheaves with values in the same category (i.e. such that F and
G gives objects with the same type of structure) then we also require φ(U) :
F(U) → G(U) to be a morphism with respect to the particular structure in
question.

Let X and Y be topological spaces, let F be a sheaf on X and let f :
X → Y be a continuous map. We can define a sheaf f∗F on Y by setting
f∗F(V ) = F(f−1(V )). The sheaf f∗F is called a direct image sheaf. If G is
a sheaf on Y we can define a sheaf f−1G on X as the sheafification of the
presheaf which takes an open set U ⊆ X to

lim
f(U)⊆V

G(V ).

f−1G is called an inverse image sheaf. In particular, let x ∈ X be a point and
let i : x → X be the inclusion. The inverse image sheaf i−1F on x is called
the stalk of F at x and is denoted Fx.

Recall that if A is a ring, then Spec(A) is the set of all prime ideals of A.
Spec(A) can be given a topology where a subset S ⊂ Spec(A) is closed if it
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is the set of prime ideals containing some ideal I. This topology is called the
Zariski topology on Spec(A). For each p ∈ A we may construct the local ring
Ap. If U is an open subset of Spec(A), we define a ring

O(U) =
∐
p∈U

Ap. (2.1)

If V is a subset of U , there is a natural restriction map O(U)→ O(V ) which
is a homomorphism of rings. The assignment U 7→ O(U) together with the
restriction maps is in fact a sheaf of rings on Spec(A). The topological space
Spec(A) together with the sheaf O is called the spectrum of A.

More generally, a ringed space is a pair (X,OX), where X is a topological
space and OX is a sheaf of rings on X. A morphism of ringed spaces (X,OX)
and (Y,OY ) is a pair (f, φ), where f : X → Y is a continuous map and φ is a
collection of ring homomorphisms, one for each open set U in Y , satisfying
resf−1(U),f−1(V ) ◦ φ(U) = φ(V ) ◦ resU,V for all open sets V ⊆ U ⊆ Y . A
ringed space is called a locally ringed space if for every p ∈ X, the stalk OX,p
is a local ring. A morphism of locally ringed spaces is a morphism of ringed
spaces such that the induced morphisms of stalks

φp : OY,f(p) → OX,p,

map the maximal ideal of OY,f(p) to the maximal ideal of OX,x. Of course,
an isomorphism (of ringed or locally ringed spaces) is a morphism with a
two-sided inverse which is a morphism.

For instance, the spectrum of a ring is a locally ringed space.

Definition 2.19. An affine scheme is a locally ringed space (X,OX), which
is isomorphic, as a locally ringed space, to the spectrum of a ring. A locally
ringed space (X,OX) is a scheme if every point p ∈ X has an open neigh-
bourhood U such that the locally ringed space (U,OX |U ) is an affine scheme.
A morphism of schemes is just a morphism of locally ringed spaces.

If k is a field, then Spec(k) is an affine scheme. Its underlying topolog-
ical space consists of the single point (0). Perhaps more interesting is the
spectrum of k[x]. If we assume that k is algebraically closed, then this is a
scheme where the underlying topological space consists of the ideals (x− a),
a ∈ k, and the ideal (0). Thus, we have a one-to-one correspondence be-
tween the points a ∈ A1

k and the closed points x− a ∈ Spec(k[x]). The point
(0) ∈ Spec(k[x]) does not correspond to a point in A1

k but rather to the whole
space A1

k. This is reflected in the fact that the closure of the point (0) in
Spec(k[x]) is the whole space. (0) is therefore called a generic point. Since
we have an “almost perfect” correspondence between points in A1

k and points
of Spec(k[x]), the scheme Spec(k[x]) is called the affine line over k and also
denoted A1

k.
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Definition 2.20. Let f : X → Y be a morphism of schemes. A morphism f is
called a closed immersion if f : X → f(X) is a homeomorphism, f(X) is a
closed subset of Y and f is an epimorphism as a morphism of sheaves.

Definition 2.21. A morphism f : X → Y is locally of finite type if Y may
be covered by open affine subsets Vi = Spec(Bi) such that f−1(Vi) may be
covered by open affine subsets Ui,j = Spec(Ai.j), where Ai,j is a finitely
generated Bi-algebra. If each f−1(Vi) can be covered by a finite number of
the Ui,j , f is said to be of finite type.

Definition 2.22. Let S be a scheme and let X and Y be schemes over S.
The fibre product, X ×S Y , of X and Y over S is a scheme with morphisms
p1 : X×S Y → X and p2 : X×S Y → Y , which commute with the morphisms
X → S and Y → S, such that given a scheme Z with morphisms f : Z → X
and g : Z → Y there is a unique morphism φ : Z → X ×S Y such that
f = p1 ◦ φ and g = p2 ◦ φ, i.e. the following diagram commutes

Z X ×S Y

X Y

S

........................................................................................................................................ .........
...

..................................................................................................................................................................................................................................................................................................................................................... ............

..................................................................................................................................
...
............

..................................................................................................................................... .........
...

............................................................................................................................................................................................ ............

........................................................................................................................................ .........
...

.....................................................................................................................................
...
............

It is not obvious that the fibre product of any two schemes exists. For a
proof of the fact that it does exist, see [21]. Given that X ×S Y exists, it is
not too hard to see that it is unique up to isomorphism. It is also true that the
fibre product over a fixed base scheme is associative.

One application of the fibre product is the following. Let S be a scheme
and let S′ → S and X → S be schemes over S. Define X ′ = X ×S S′. Then
X ′ is a scheme over S′ and we say that X ′ is obtained from X by making the
base extension S′ → S.

Definition 2.23. Let f : X → Y be a morphism of schemes. Define the diag-
onal morphism

∆ : X → X ×Y X,

as the morphism such that p1 ◦ ∆ = p2 ◦ ∆ = id. The morphism f is called
separated if ∆ is a closed immersion and X is then said to be separated over
Y . If X is separated over Spec(Z), X is simply said to be separated.

A morphism f : X → Y is said to be closed if the image of any closed
subset of X is closed in Y . The morphism f is said to be universally closed
if for any morphism Y ′ → Y , the corresponding morphism f ′ : X ′ → Y ′,
obtained by base extension, is closed.
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Let (X,OX) be a locally ringed space. An OX -module is a sheaf F on X
such that F(U) is an OX(U)-module for each open set U ⊂ X and such that
if V ⊂ U , then the restriction homomorphism F(U) → F(V ) is compatible
with the module structures via the ring homomorphism OX(U) → OX(V ).
A morphism of OX -modules is a morphism of sheaves which is also homo-
morphism of OX(U)-modules for each open set U ⊂ X. An OX -module, F ,
is free if F = ⊕i∈IOX . The rank of F is the cardinality of I. The sheaf F
is locally free if X can be covered by open sets Uj such that F|Uj is a free
OX |Uj -module for all j. If X is connected, then the rank of FUj is the same
for all j so we may then define the rank of a locally free sheaf as the rank of
its restriction to a trivializing open set.

If (X,OX) is a scheme, a sheaf F of OX -modules is called quasi-coherent
if X can be covered by open sets Ui ∼= Spec(Ai) such that for each i, F|Ui is
an Ai-module. If, further, each F|Ui can be chosen to be a finitely generated
Ai-module, F is called coherent.

Before we move on we make some final definitions. A schemeX is reduced
if OX(U) is a reduced ring for every open set U ⊆ X. Recall that a ring is
reduced if it contains no non-zero nilpotents. The scheme X is Noetherian if
OX(U) is Noetherian for all open sets U ⊆ X. A scheme is irreducible if its
underlying topological space is irreducible. Finally, a scheme is called integral
if it is both reduced and irreducible.

2.4 The Chow Ring

Let X be a integral scheme of finite type over an algebraically closed field k.
The group of cycles on X, Z(X), is the free abelian group generated by the
closed, integral subschemes of X. The group Z(X) is graded by dimension
so

Z(X) =
n⊕
k=0

Zk(X),

where Zk(X) is the free group generated by closed integral subschemes of
dimension k and n is the dimension of X. The group Zk(X) is called the
group of k-cycles on X. An element D =

∑
aiYi in Z(X) is called effective

if all the ai are non-negative. An element of Zn−1(X) is called a divisor. The
degree of a divisor

∑
aiYi is defined as

∑
ai.

Let Y be a closed, integral subscheme of dimension k+ 1 of a integral and
Noetherian schemeX. Let Y1, . . . , Ym be the set of k-dimensional subvarieties
of Y . For each Yi, define li as the length of the ring OY (Yi). Since X is
Noetherian, each li is finite. Hence, we may associate an effective cycle

〈Y 〉 =
m∑
i=1

liYi,
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to any closed, integral subscheme Y of X.
Similarly, we may associate divisors to rational functions. Let X be a

Noetherian, integral, separated scheme and let Y ⊂ X be a closed, inte-
gral subscheme of codimension 1. Then Y has a unique generic point P (i.e.
the closure of P is the whole of Y ) and the local ring OX,P is a discrete
valuation ring whose quotient field is the function field of X. Let vY be the
corresponding valuation. If f is a nonzero rational function on X, then vY (f)
is an integer. If vY (f) is positive, f is said to have a zero of order vY (f) along
Y . Similarly, if vY (f) is negative, f is said to have a pole of order −vY (f)
along Y . (For proofs, see [21]).

If X is a Noetherian, integral, separated scheme and f is a rational func-
tion on X, then vY (f) = 0 for all but possibly finitely many closed, integral
subschemes Y of codimension 1 in X. Hence, we may define a divisor

(f) =
∑
Y⊂X

vY (f) · Y,

where the sum is over all closed, integral, codimension 1 subschemes of X.
A divisior which can be written as (f) for some rational function f is called a
principal divisor. If D and D′ are divisors such that D −D′ is principal, then
D and D′ are called linearly equivalent. (For proofs, see [21]).

More generally, let L be a line bundle on X and let s be a section of L. We
may choose a trivializing cover, {Ui}, of X so that on each Ui, s is given by a
function fi. We may then define a divisor associated to s as

(s) =
∑
Y⊂X

vY (fi) · Y,

where the sum is over all closed, integral, codimension 1 subschemes of X
and, for each Y , we choose a Ui so that Y ⊂ Ui.

Define Rat(X) as the group generated by cycles of the form

〈W ∩ {t1} ×X〉 − 〈W ∩ {t2} ×X〉,

where t1 and t2 are elements of P1
k and W is a subscheme of P1

k ×Spec(Z) X

not contained in {t} × X for any t ∈ P1
k. We then define two cycles, Y1 and

Y2, to be rationally equivalent if Y1 − Y2 lies in Rat(X).
Rational equivalence is an equivalence relation on Z(X). We detote the

equivalence class of a cycle Y by [Y ] and define the Chow group of X as

A(X) =
Z(X)

Rat(X)
.

The Chow group is graded by dimension

A(X) =
⊕
k=0

Ak(X),
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where Ak(X) is the group of rational equivalence classes of k-cycles.
In fact, we can make the Chow group into a ring in a very geometrical

way. Let Y and Z be two closed subschemes of of a integral sheme X. We
also assume that X is of finite type over an algebraically closed field k. The
subschemes Y and Z are said to intersect transversally at a point p ∈ X
if X,Y and Z are all smooth at p and TpY + TpZ = TpX, i.e. the tangent
space of X is the sum of the tangent space of Y and the tangent space of
Z. The suschemes Y and Z are generically transverse if Y and Z intersect
transversally at each point of some open (and thus dense) subset of each
component of Y ∩ Z. One may then define a product on A(X) as

[Y ] · [Z] = [Y ∩ Z],

and then extend by linearity. This makesA(X) into a commutative ring called
the Chow ring. See [7] or [15] for a more complete discussion on this subject.

Intersecting something of codimension i with something of codimension j
in most cases gives something in codimension i+j. In fact, ifX has dimension
n and [Y ] ∈ An−i(X) and [Z] ∈ An−j(X), then [Y ] · [Z] ∈ An−i−j(X) (this is
due to Chow’s “Moving Lemma”, see [7]). Hence, when considering the ring
structure on the rational equivalence classes, it is more convenient to con-
sider the codimension than the dimension. If we define Ak(X) = An−k(X)
we have

A(X) =
n⊕
k=0

Ak(X).

Since Ai(X) · Aj(X) ⊆ Ai+j(X), this grading makes the Chow ring into a
graded ring.

Before ending this section we shall give a comment on the so-called Chern
classes. LetX be an integral scheme of finite type over an algebraically closed
field k, let L be a line bundle on X and let s be a rational section of L. As
stated earlier, we may define an associated divisor, (s), to s. If t is another
rational section of L then s/t is a rational function and therefore (s/t) =
(s) − (t) is a principal divisor. Principal divisors lie in Rat(X) so so s and t
define the same class in A1(X). We define the first Chern class of L, denoted
c1(L), as the class defined by (s) for any rational section of L.

There are also other Chern classes, ci(L) ∈ Ai(X), and one may also
define Chern classes for more general bundles. However, this requires quite
a bit more work and we therefore refer the reader to [7], [15] or [21]. We
remark that the total Chern class of a vector bundle, V , is defined as

c(V ) = c0(V ) + c1(V ) + · · ·+ cr(V ),

where r is the rank of the vector bundle.
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2.5 Moduli Spaces of Curves

As a set, the moduli space of curves is the collection of all isomorphism classes
of algebraic curves. However, there are several things to note. Firstly, a curve
C of a given genus can only be isomorphic to another curve of the same
genus. (We have only given a defintion of the so-called topological genus.
There are other definitions, most importantly the so-called geometric genus.
For a 1-dimensional complex manifold M , this is defined as the dimension
of the space of holomorphic 1-forms on M . There is also something called
the arithmetic genus, but this requires a bit more work to define). Hence, the
moduli space is a disjoint union of the moduli spaces of curves of different
genera. Secondly, if one thinks about algebraic curves rather concretely as
the zero set of some polynomial, one might expect to obtain a continuously
varying family of curves as one alters the coefficients in a contiuous manner.
More topologically, we may think about this process as deformations of one
curve into another. From either point of view, it seems desirable to impose
some structure on the moduli space which captures this behaviour.

More precisely, we define a non-singular curve to be a one-dimensional,
integral, separated scheme of finite type over an algebraically closed field k.
A family of curves of genus g over a scheme B is a scheme X together with
an epimorphism

π : X → B,

such that Xp := π−1(p) is a curve of genus g for each p in the base scheme
B. We say that the family is parametrized by B. Two families, (X,π) and
(X ′, π′), over B are isomorphic if there is an isomorphism φ : X → X ′ such
that π′ ◦ φ = π.

For technical reasons, the above definition does not work if g < 2. How-
ever, since we shall only consider the case g ≥ 2, this definition is sufficient
for our needs.

Since we have noted that two curves of different genera cannot be iso-
morphic, we consider the set of isomorphism classes of curves of some fixed
genus g over an algebraically closed field k. We denote this set byMg. Given
a family of curves of genus g, π : X → B, we can define a function

φB,X : B →Mg,

φB,X(p) = [Xp].

We want to impose a scheme structure onMg such that φB,X is a morphism.

Definition 2.24. Let S denote the set of isomorphy classes of curves of genus
g. LetMg be a scheme such that there is a bijection ψ : S →Mg such that

(i) for every family π : X → B, the composition ψ ◦ φB,X : B → Mg is a
morphism.

(ii) ifM′g is another scheme with a bijection ψ′ : S →M′g such that (i) holds,
then ψ′ ◦ ψ−1 :Mg →M′g is a morphism.
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We then callMg a coarse moduli space of curves of genus g.

The moduli space defined above is less than perfect in the following sense.
It would be very nice if there were a family of curves

π : U →Mg,

such that for every family of curves X → B we would have a commutative
diagram

X

B

φ∗B,X(U) U

Mg

........................................................................................................................................ .........
...

............................................................ ............
∼=

.....................................................................................
...
.........
...

............................................................ ............

.....................................................................................
...
.........
...

π

..................................................................................... ............
φB,X

The family U would then be called a universal curve overMg andMg would
be called a fine moduli space. Unfortunately, Mg does not exist as a fine
moduli space (at least not if we require Mg to be a scheme). However, the
coarse moduli space exists, and for g > 2 it contains a dense open subset
which has a universal family.





Chapter 3
Tautological Rings

In Chapter 2 we defined the moduli space Mg of smooth surves of genus g
over a field k. From now on, we shall always assume that k is algebraically
closed and that g is at least 2.

Similarly, we may consider the moduli space of tuples (C, p1, . . . , pn),
where C is a smooth curve of genus g over k and p1, . . . , pn are distinct points
of C. Such tuples are called marked curves and the moduli space parametriz-
ing them, denoted Mg,n, is consequently called a moduli space of marked
curves. The moduli space of curves marked with one point, Mg,1, is given
the symbol Cg. There is a natural morphism π : Cg →Mg defined by “forget-
ting the point”, i.e. π ([C, p]) = [C]. Over the dense open subset,M0

g, ofMg

consisting of curves without automorphisms, Cg is a universal curve. There-
fore Cg is sometimes called, by abuse of language, the universal curve over
Mg.
Cg is a scheme overMg and we may thus construct the n-fold fibre product

of Cg overMg, denoted Cng :

Cng = Cg ×Mg
· · · ×Mg

Cg︸ ︷︷ ︸
n times

.

The space Cng parametrizes smooth curves marked with n, not necessarily
distinct, points. For notational convenience we shall sometimes write C1g to
mean Cg and C0g to meanMg.

For m ≥ n we have morphisms π : Cmg → Cng defined by forgetting m − n
points. Especially important are the morphisms

πn,i : Cng → Cn−1
g ,

defined by forgetting the i:th point.
The spaces Cng have Chow rings A(Cng ). These rings are however believed

to be very big so one instead chooses to concentrate on a subring generated

27
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by the most important cycles. (Throughout, we shall work with rational co-
efficients in A(Cng ) rather than integers).

Consider the morphism
π1 : Cg →Mg.

Denote by ωπ1 the sheaf of rational sections of Coker(dπ1 : π∗1ΩMg
→ ΩCg ).

This sheaf is called the relative dualizing sheaf of π1. Define K to be the first
Chern class of ωπ1 , i.e.

K := c1(ωπ1) ∈ A1(Cg).

We use K to define the so-called κ-classes

κi := π1∗(Ki+1) ∈ Ai(Mg).

In particular, κ−1 = 0 and κ0 = 2g − 2.
We may also define

E := π1∗(ωπ1).

This is the Hodge bundle. It is a vector bundle of rank g on Mg. Its fiber
at each point [C] of Mg is the space of holomorphic differentials on C. We
define the λ-classes as

λi := ci (E) ∈ Ai(Mg).

In particular, λ0 = 1 and λi = 0 if i > g. The κ- and λ-classes generate a
Q-subalgebra of A(Mg). This subalgebra is in fact a graded ring which we
call the tautological ring ofMg and denote by R(Mg). We write Ri(Mg) to
denote the degree i component of R(Mg).

We shall define an analogous ring for Cng . We therefore consider the mor-
phism

πn,i : Cng → Cn−1
g ,

which forgets the i:th point. Let ωπn,i be its relative dualizing sheaf and define

Ki := c1
(
ωπn,i

)
∈ A1(Cng ).

We also have the class of points

[(C, p1, . . . , pn)] ∈ Cng ,

such that pi = pj , i 6= j. This class is called a diagonal class and it is denoted
by Di,j . Finally, we pull back the κ- and λ-classes. By abuse of notation we
shall also denote the pull-back of κi and λi by κi and λi, respectively. We
now define the tautological ring of Cng , denoted R(Cng ), as the subalgebra
generated by the Ki-, Di,j-, κ- and λ-classes.

Remark 3.1. Note that to conform with the latter notation, the class K in
A1(Cg) should really be denoted by K1. However, there is only one marked
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point to forget in Cg so there should be no confusion. We shall therefore drop
the index whenever we work with R(Cg).

3.1 Known Results

An early result concerning the tautological ring is the following theorem of
Mumford, [30].

Theorem 3.1 (Mumford). The classes λi and κi are polynomials in the classes
κ1, . . . , κg−2.

For instance, we have the following relation between the λi and the κj

∞∑
i=0

λit
i = exp

( ∞∑
i=1

B2iκ2i−1

2i(2i− 1)
t2i−1

)
,

where the B2i are signed Bernoulli numbers.
A few years back, Mumfords result was improved quite a bit by Ionel, [23].

Theorem 3.2 (Ionel). The [g/3] classes κ1, . . . , κ[g/3] generate R(Mg).

In the above theorem, [x] denotes the integer closest to x.
We also have relations between other classes. A few important ones are

the following, which were discovered by Harris and Mumford, [20].

Lemma 3.1 (Harris and Mumford). The following identities hold in R(Cng ):

Di,nDj,n = Di,jDi,n, i < j < n, (1)

D2
i,n = −KiDi,n, i < n, (2)

KnDi,n = KiDi,n, i < n. (3)

Using the above identities repeatedly, every monomial in the classes Ki and Dij

(i < j < n) inR(Cng ) can be rewritten as a monomial pulled back fromR(Cn−1
g )

times either a single diagonal Di,n or a power of Kn.

Harris and Mumford also give the following formulas for the map πn,n∗ :
R(Cng )→ R(Cn−1

g ).

Lemma 3.2 (Harris and Mumford). If M is a monomial in R(Cng ) which is
pulled back from R(Cn−1

g ), then

πn,n∗(M ·Di,n) = M, (1)

πn,n∗(M ·Kk
n) = M · π∗(κk−1) = M · κk−1. (2)
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Lemmas 3.1 and 3.2 will be very important in our calculations later but we
will see their usefulness already in the proof of Corollary 3.1. The following
vanishing result is due to Looijenga, [26].

Theorem 3.3 (Looijenga). Rj(Cng ) = 0 if j > g+n− 2 and Rg+n−2(Cng ) is at
most one-dimensional.

Looijengas theorem was improved a bit by Faber, [11].

Theorem 3.4 (Faber). κg−2 is non-zero in R(Mg).

It follows thatRg−2(Mg) is one-dimensional. The non-vanishing ofRg+n−2(Cng )
extends easily to higher n.

Corollary 3.1. Rg+n−2(Cng ) is one-dimensional.

Proof. The monomial D1,2 ·D1,3 · · ·D1,n ·Kg−1
1 in R(Cng ) has degree g+n−2

and projects to κg−2 in R(Mg). The class κg−2 is non-zero by Theorem 3.4
so D1,2 · · ·D1,nK

g−1
1 is non-zero. The result now follows from Theorem 3.3.

�

3.2 The Faber Conjectures

We shall now state the so-called Faber conjectures. They were first stated in
1993 but not published until 1999, [10].

Conjecture 3.1 (Faber). (a) The tautological ring R∗(Mg) is Gorenstein with
socle in degree g − 2, i.e. it vanishes in degrees > g − 2, is 1-dimensional in
degree g − 2 and, when an isomorphism Rg−2(Mg) ∼= Q is fixed, the natural
pairing,

Ri(Mg)×Rg−2−i(Mg)→ Rg−2(Mg) ∼= Q,

is perfect.
(b) The [g/3] classes κ1, . . . , κ[g/3] generate R∗(Mg), with no relations in

degrees ≤ [g/3].
(c) There exist explicit formulas for the proportionalities in degree g − 2,

which may be given as follows. Let (d1, . . . , dk) be a partition of g − 2 into
positive integers. We define expressions 〈τd1+1τd2+1 · · · τdk+1〉 ∈ Rg−2(Mg) in
two ways,

〈τd1+1τd2+1 · · · τdk+1〉 =
(2g − 3 + k)!(2g − 1)!!

(2g − 1)!
∏k
j=1(2dj + 1)!!

κg−2, (1)

〈τd1+1τd2+1 · · · τdk+1〉 =
∑
σ∈Sn

κσ, (2)
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where κσ = κ|α1|κ|α2|···κ|ν(σ)| for a decomposition σ = α1α2 · · ·αν(σ) into dis-
joint cycles, including the 1-cycles. |α| is defined as the sum of the elements
in the cycle α, where we think of Sk as acting on the k-tuples with entries
d1, d2, . . . , dk. (1) and (2) allow us to express every monomial κI of degree
g − 2 (where I is a multi-index) as a multiple of κg−2.

Above, n!! denotes the double factorial, defined for non-negative odd in-
tegers n = 2k − 1 as n!! =

∏k
i=1(2i− 1).

It is worth mentioning that Theorems 3.3 and 3.4 together prove the first
half of part (a) of the conjecture and that Theorem 3.2 proves part (b). We
also have the following result of Liu and Xu, [24].

Theorem 3.5 (Liu and Xu). Conjecture 3.1. (c) is true.

Another proof of this result has later been given by Buryak and Shadrin,
[6]. Consider the projection π = πn+1,n+1 : Cn+1

g → Cng that forgets the
(n+ 1):st point and let ∆n+1 denote the sum,

∆n+1 = D1,n+1 +D2,n+1 + · · ·+Dn,n+1,

as well as the corresponding divisor. Denote by ωi the line bundle on Cng
obtained by pulling back ωπ1 along the projection πi : Cng → Cg onto the i:th
factor. Define a coherent sheaf Fn on Cng by

Fn = π∗
(
O∆n+1 ⊗ ωn+1

)
.

We may now state Faber’s third conjecture, [10].

Conjecture 3.2 (Faber). Let Ig ⊂ Q[κ1, . . . , κg−2] be the ideal generated by
the polynomials of the form,

π∗(M · cj(F2g−1 − E)),

with j ≥ g and M a monomial in the Ki and Di,j and π : C2g−1
g → Mg the

forgetful map. Then Q[κ1, . . . , κg−2]/Ig is Gorenstein with socle in degree g−2.
Hence, it is isomorphic to R(Mg).

It should be mentioned that the above conjecture is based on the following
result, [10].

Theorem 3.6 (Faber). If n ≥ 2g − 1 and j ≥ n− g + 1, then cj(Fn − E) = 0.

In [10], Faber uses Theorem 3.6 to obtain an algorithm to compute rela-
tions in R(Mg). An important step is the following identity

c(Fd) = (1 +K1)(1 +K2 −∆2)(1 +K3 −∆3) · · · (1 +Kd −∆d).

We also have the following identity of Mumford, [30]
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c(E)−1 = c(E∨) =
g∑
i=0

(−1)iλi = 1− λ1 + λ2 − λ3 + · · ·+ (−1)gλg.

The idea is now to choose n and j so that Theorem 3.6 is satisfied, so that
cj(Fn − E) = 0. If we multiply this equation by a monomial M in the Ki’s
and Di,j ’s we see that M · cj(Fn − E) = 0. We may then push this relation
down one step at a time using the maps πd,d∗ to obtain a relation in R(Mg).
To perform the calculations one may use Lemma 3.1 and 3.2. In this way
we may calculate a number of relations in Ri(Mg) and thus obtain an upper
bound of its dimension.

We shall now discuss how to obtain a lower bound for the dimension. First
we remind the reader of the following definition.

Definition 3.1. Let κI = κn1
i1
· κn2

i2
· · ·κnrir be a monomial in the κ-classes.

Then the degree of κI is

deg(κI) =
r∑
j=1

njij .

Let κI be a monomial in the κ-classes of degree i and let κJ be a monomial
in the κ-classes of degree j, where j = g − 2− i. Then κI · κJ is a monomial
of degree g− 2. Since Rg−2(Mg) is one-dimensional and generated by κg−2,
we may express κI · κJ as a rational multiple of κg−2, κI · κJ = r · κg−2. We
therefore make the following definition.

Definition 3.2. Let κI be a monomial of degree g− 2 in the κ-classes. Define
r(κI) to be the rational number which satisfies

κI = r(κI) · κg−2.

We remark that Theorem 3.5 may be used to calculate the numbers r(κI).

From this point on we fix a monomial ordering <κ of the monomials in
the κ-classes. Which one is of no importance so the reader may think of his
or her favourite.

Recall that the partition function, p, is the function which for each non-
negative integer gives the number of ways of writing it as an unordered sum
of positive integers. For instance, p(1) = 1, p(2) = 2, p(3) = 3 and p(4) = 5.
Since it is not completely uncommon to define the partition function only for
positive integers, we point out that p(0) = 1 (the empty partition).

Definition 3.3. Let i ≤ g − 2 be a non-negative integer. We define the p(i)×
p(g − 2 − i)-matrix Pg,i as follows. Let κK be the kth monic monomial of
degree i and let κL be the lth monic monomial of degree g− 2− i (according
to <κ). Then the (k, l)th entry of Pg,i is r(κK · κL). We shall refer to matrices
of this type as pairing matrices.
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The monomials κI , where I is a multi-index such that∑
ir∈I

r · ir = i,

generate Ri(Mg) by Theorem 3.1. Note that every Q-linear relation among
the monomials κI of degree i clearly gives a linear relation among the rows
of Pg,i. Hence, if the rank of Pg,i is n, then Ri(Mg) has dimension at least n.

We now have a two-step program to prove Conjecture 3.3 close at hand.
First we compute the rank of Pg,i to obtain a lower bound n on the dimension
of Ri(Mg). We then multiply the relation in Theorem 3.6 by monomials and
use Lemmas 3.1 and 3.2 to push these relations to R(Mg). We then pick
out the degree i part of the relation which must be a relation in Ri(Mg). If
we can find enough relations we may obtain n as an upper bound for the
dimension. Then we are done. This idea is due to Faber, [10], and has been
used by him to prove Conjecture 3.2 for g ≤ 23.





Chapter 4
The Tautological Ring of the Universal Curve

The aim of this project has been to pose and verify questions similar to Con-
jecture 3.1 (a) and Conjecture 3.3 in the tautological ring of the universal
curve, R(Cg). The analogue of Conjecture 3.1 (a) is the following.

Question 4.1 Is the tautological ring R(Cg) Gorenstein with socle in degree
g− 1, i.e. does it vanish in degrees > g− 1, is it one dimensional in degree g− 1
and, when an isomorphism Rg−1(Cg) ∼= Q is fixed, is the natural pairing,

Ri(Cg)×Rg−1−i(Cg)→ Rg−1(Cg) ∼= Q,

perfect?

We note that the first part follows from Theorem 3.3 and Corollary 3.1.
What remains is to check whether the pairing is perfect or not.

We shall now state the analogue of Conjecture 3.3.

Question 4.2 In the polynomial ring Q[K,κ1, . . . , κg−2], let Jg be the ideal
generated by relations of the form,

π∗(M · cj(F2g−1 − E)),

with j ≥ g and M a monomial in the Ki and Dij , and π : C2g−1
g → Cg a for-

getful map. Is the quotient ring Q[K,κ1, . . . , κg−2]/Jg is Gorenstein with socle
in degree g − 1? If so, it is isomorphic to the tautological ring R∗(Cg).

Our strategy will be to adapt the technique of Faber described in Chapter
3 to R(Cg). To do so we first note that we may stop pushing down at R(Cg)
instead of at R(Mg). Thus, the method for generating relations extends to
R(Cg) without any trouble.

In question 4.2 it would be natural to consider the ideal J ′g, generated by
the ideal Jg and the relations pulled back from R(Mg) instead of the ideal
Jg. Of course, the pulled back relations must also be valid but it has turned
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out in the calculations for low genera that Jg is the full set of relations, i.e.
that Jg = J ′g. Hence, at this point there is little reason to pose question 4.2
differently. However, it would not be surprising if it would be the case that Jg
and J ′g are different for higher genera than those that has been investigated
this far.

4.1 Pairing Matrices

Recall the matrices Pg,i, introduced in Definition 3.3. There are also pairing
matrices corresponding to the matrices Pg,i on R(Cg). To define these we
need a bit of preparation.

In R(Cg) we only have one more class than in R(Mg), namely the class
K1 = K. Hence, Theorem 3.1 gives thatR(Cg) is generated by the monomials
in κ1, . . . , κg−2 and K. K has degree 1 so a monomial M = Kjκn1

1 · · ·κ
ng−2
g−2

has degree

deg(M) = j +
g−2∑
j=1

nj · j.

We define a monomial ordering as follows. First fix the same monomial or-
dering <κ as in Chapter 3 on the monomials in the κ-classes. We then note
that any monomial M in the κ-classes and K can be written as M = Kj · κI
where κI is a monomial in the κ-classes only. We now define a monomial
order as follows.

Definition 4.1. Let M = KrκI and N = KsκJ be monomials in the κ-classes
and K. We define a monomial ordering <∗ by

(a) M <∗ N if r < s or,

(b) M <∗ N if r = s and κI <κ κJ .

Note that by Theorem 3.3 and Corollary 3.1 any monomial, M , of degree
g − 1 is a rational multiple of Kκg−2, i.e. M = s(M) ·Kκg−2. Using Lemma
3.2 we have that π1,1∗(M) = s(M) · κg−2. We use this observation to define
the analogues of the matrices Pg,i.

Definition 4.2. Let M be the kth monic monomial of degree i according to
<∗ and let N be the lth monic monomial of degree (g − 1 − i) according to
<∗. Define sk,l as the rational number satisfying π1,1∗(M ·N) = sk,lκg−2. We
define the matrix Qg,i as

Qg,i = (sk,l).

The dimensions of Qg,i are(
i∑

r=0

p(r)

)
×

(
g−1−i∑
r=0

p(r)

)
,
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where p is the partition function (remember that we have defined p(0) = 1).
As with the matrices Pg,i, the rank of Qg,i determines a lower bound for the
dimension of Ri(Cg).

The definition of Qg,i suggests that there should be a relationship between
Qg,i and the matrices Pg,j . To provide this relationship it is convenient to
introduce some notation. To this end we recall that the (i, j)th entry of Pg,i
corresponds to the monomial κI κJ , where κI is the ith monomial of degree
i with respect to the chosen monomial ordering, and κJ is the jth monomial
of degree (g−2− i). Hence, we may think of ith row of Pg,i as being labelled
by the monomial κI .

Definition 4.3. Let j ≤ i be a positive integer. Define P jg,i as the p(i − j) ×
p(g−2− i)-submatrix of Pg,i consisting of the rows of Pg,i which are labelled
by monomials κI containing at least one factor κj .

It turns out to be notationally convenient to define,

P 0
g,i = (2g − 2) · Pg,i,

and,
P−1
g,i = the zero matrix of size p(i+ 1)× p(g − 2− i).

We are now ready to state the following Proposition.

Proposition 4.1. (a) Let Qg,i and P rg,j be defined as above and let i ≥ 1. Then,

Qg,i =



P−1
g,i−1 P

0
g,i P

1
g,i+1 P

2
g,i+2 · · · P

g−2−i
g,g−2

P 0
g,i−1 P

1
g,i P

2
g,i+1 · · · · · ·

...

P 1
g,i−1 P

2
g,i

. . .
...

P 2
g,i−1

...
. . .

...
...

...
. . .

...
P i−1
g,i−1 · · · · · · · · · · · · P g−2

g,g−2


.

(b) The rank of Qg,0 is 1.

Proof. (a) Denote the monomial labelling the rth row of Qg,i by Nr and the
monomial labelling the sth column of Qg,i by Ns.

Consider first the submatrix of Qg,i corresponding to rows and columns
labelled by monomials Nr and Ns not containing a factor K. Then Nr · Ns
projects to 0 so this submatrix consists entirely of zeros. With the above no-
tation, this submatrix is equal to P−1

g,i−1.
Now consider a submatrix C of Qg,i corresponding to rows and columns

labelled by monomials Nr and Ns such that ,

i) Nr = KnrN ′r and Ns = KnsN ′s where K does not divide N ′r or N ′s and,
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ii) not both nr and ns are zero.

Then,

π1,1(Nr ·Ns) = π1,1(Knr+ns ·N ′r ·N ′s) = κnr+ns−1 ·N ′r ·N ′s.

Note that κnr+ns−1 ·n′r is a monomial in the κi’s of degree i+ns−1 containing
a factor κnr+ns−1 and that N ′s is a monomial of degree g−1−i−ns = g−2−
(i+ns−1) in the κi’s. Further, every monomial in the κi’s of degree i+ns−1
containing a factor κnr+ns−1 is the image of some monomial Knr+ns ·N ′r and
every polynomial of degree g − 2 − (i + ns − 1) is represented by the N ′s’s.
By our choice of monomial order labelling the rows and columns of Qg,i we
now see that C = Pnr+ns−1

g,i+ns−1 . This completes the proof of (a).
(b) The only row ofQg,0 is labelled by 1. The last column ofQg,0 is labelled

by Kg−1. Hence, the (1, g−1):st entry of Qg,0 is 1 6= 0. Hence, Qg,0 must have
rank 1. �

The merit of Proposition 4.1 is that it tells us how to compute the matrices
Qg,i without having to project monomials ofR∗(Cg) down toR∗(Mg). Hence,
we have reduced the problem of computing the matrices Qg,i to computing
the matrices Pg,i, which are smaller and easier to compute. We shall describe
a rather efficient way of doing this shortly. However, first we note a few things
which reduce the calculations a bit.

Firstly, the (k, l):th element ofQg,i is sk,l, where sk,l is the rational number
satisfying π1,1∗(M · N) = sk,lκg−2, where M is the kth monic monomial of
degree i and N is the l:th monic monomial of degree g − 1 − i. But since
M ·N = N ·M we also have that π1,1∗(N ·M) = sk,lκg−2. Hence, sk,l = s′l,k,
where s′l,k is the rational number satisfying π1,1∗(N ·M) = s′l,kκg−2. We thus
have that Qg,g−1−i = QTg,i. Similarly, Pg,g−2−i = PTg,i. Hence, we only have to
compute Pg,i for i ≤ [(g−2)/2] in order to apply Proposition 4.1 and we only
have to compute the rank of Qg,i for i ≤ [(g − 1)/2] since rank(Qg,g−1−i) =
rank(Qg,i).

Our second remark is less straightforward. There is a homomorphism from
the Chow ring ofMg, A(Mg), (with rational coefficients) to the rational co-
homology ring ofMg, H∗(Mg,Q). We denote the image of κi by κ̂i. The fol-
lowing theorem of Madsen and Weiss, [29] (known as “the Mumford conjec-
ture” or “the Madsen-Weiss theorem”) gives quite a bit of information about
H∗(Mg,Q).

Theorem 4.1 (Madsen and Weiss). Let Q[x1, x2, x3, . . .] be the polynomial
ring over Q in infinitely many variables xi, where xi has degree 2i. Then, the
map

Q[x1, x2, x3, . . .]→ H∗(Mg,Q)

sending xi ∈ Q[x1, x2, x3, . . .] to κ̂i ∈ H2i(Mg,Q) is an isomorphism in degrees
less than (g − 1)/2.
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It should probably be mentioned that the Madsen-Weiss theorem is usually
stated a bit differently. The above form can be found in the article [9].

We also have the following stability result of Boldsen, [5].

Theorem 4.2 (Boldsen). If g ≡ 1 or 2 mod 3 and i ≤ 2[g/3], then Hi(Mg)
is independent of g. If g ≡ 0 mod 3 and i < 2g/3, then Hi(Mg) is independent
of g.

The result below follows.

Theorem 4.3. In R(Mg), there are no relations in codimensions < g/3.

By a result of Looijenga, [27], we also have the following.

Theorem 4.4. In R(Cg), there are no relations in codimensions < g/3.

Hence, we do not have to compute the rank of Qg,i for i < [g/3]. What
needs to be computed is the rank of Qg,i for [g/3] ≤ i ≤ [g/2]. This is done
by means of Proposition 4.1 and the following algorithm of Liu and Xu, [25].

4.2 Computing Pg,i

In this section we describe an algorithm due to Liu and Xu, [25], by means
of which one may efficiently compute the matrices Pg,i.

Let m = (m1,m1, · · · ) be a sequence of non-negative integers with only
finitely many of themi non-zero. The set of such sequences is a monoid under
coordinatewise addition. Define

|m| =
∞∑
i=1

i ·mi, ||m|| =
∞∑
i=1

mi, m! =
∞∏
i=1

mi!.

A sequence m determines a monomial, κm, in the κ-classes as follows.

κm =
m∏
i=1

κmii

We inductively define constants βm and by setting β0 = 1 and requiring

∑
m′+m′′=m

(−1)||m
′||βm′

m′′!(2|m′′|+ 1)!!
= 0 when m 6= 0.

We also define constants γm as

γm =
(−1)||m||

m!(2|m|+ 1)!!
.
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Note that Liu and Xu writes β−1
m instead of γm. This is however misleading

since βm · γm 6= 1 in most cases. We use βm and γm to define new constants,
Cm.

Cm =
∑

m′+m′′=m

2|m′|βm′γm′′ .

Now let |m| ≤ g − 2 and define further constants Fg(m) via

|m| · Fg(m) = (g − 1) ·
∑

m′+m′′=m
m′ 6=0

Cm′Fg(m′′),

and Fg(0) = 1. We now have the following result of Liu and Xu, [25].

Lemma 4.1 (Liu and Xu). Let |m| = g − 2 and r(κm) as defined in Definition
3.2. Then r(κm) is given by

r(κm) =
(2g − 3)!! ·m!

2g − 2
· Fg(m).

Lemma 4.1 gives a much more efficient way to compute Pg,i, especially if one
wants to compute many different Pg,i, since much of the work can be reused.

Example 4.1. Since the definitions are quite involved it might be nice to see
an example. We shall therefore compute r(κ(2,0,··· )) for g = 4.

First take m = (1, 0, 0, · · · ). Then

0 =
(−1)||0||β0

(1, 0, 0, · · · )!(2|(1, 0, 0, · · · )|+ 1)!!
+

(−1)||(1,0,0,··· )||β(1,0,0,··· )

0!(2|0|+ 1)!!
=

=
1 · 1

1 · (2 · 1 + 1)!!
−

β(1,0,0,··· )

1 · (2 · 0 + 1)!!
=

=
1
3
− β(1,0,0,··· ).

Hence, β(1,0,0,··· ) = 1
3 . We continue with m = (2, 0, 0, · · · ). Then

0 =
(−1)||0||β0

(2, 0, · · · )!(2|(2, 0, · · · )|+ 1)!!
+

(−1)||(1,0,··· )||β(1,0,··· )

(1, 0, · · · )!(2|(1, 0, · · · )|+ 1)!!
+

+
(−1)||(2,0,··· )||β(2,0,··· )

0!(2|0|+ 1)!!
=

=
1 · 1

2 · (2 · 2 + 1)!!
−

1 · 1
3

1 · (2 · 1 + 1)!!
+

1 · β(2,0,··· )

1 · (2 · 0 + 1)!!
=

=
1
30
− 1

9
+ β(2,0,··· ).

We thus obtain that β(2,0,··· ) = 7
90 . We also compute the corresponding γm:
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γ0 =
(−1)||0||

0!(2|0|+ 1)!!
= 1,

γ(1,0,··· ) =
(−1)||(1,0,··· )||

(1, 0, · · · )!(2|(1, 0, · · · )|+ 1)!!
= −1

3
,

and

γ(2,0,··· ) =
(−1)||(2,0,··· )||

(2, 0, · · · )!(2|(2, 0, · · · )|+ 1)!!
=

1
30
.

We continue by computing the Cm:

C(1,0,··· ) = 2|(1, 0, · · · )|β(1,0,··· )γ0 + 2|0|β0γ(1,0,··· ) = 2 · 1 · 1
3
· 1 =

2
3
,

and

C(2,0,··· ) = 2|(2, 0, · · · )|β(2,0,··· )γ0 + 2|(1, 0, · · · )|β(1,0,··· )γ(1,0,··· ) =

= 2 · 2 · 7
90
· 1 + 2 · 1 · 1

3
·
(
−1

3

)
=

=
28
90
− 2

9
=

=
4
45
.

Up to now, everything holds for all g ≥ 2. However, Fg(m) depends on g. We
therefore choose g = 4.

|(1, 0, · · · )|F4((1, 0, · · · )) = (4− 1) · 2
3
· 1.

We conclude that F4((1, 0, · · · )) = 2. We also have

|(2, 0, · · · )|F4((2, 0, · · · )) = (4− 1) ·
(

4
45

+
2
3
· 2
)

=
64
15
.

Hence, F4((2, 0, · · · )) = 32
15 . Lemma 4.1 now gives that

r(κ(2,0,··· )) =
(2 · 4− 3)!! · (2, 0, · · · )!

2 · 4− 2
· 32

15
=

15 · 2
6
· 32

15
=

32
3
.

Since κ(2,0,··· ) = κ2
1, this is another way of expressing that in R2(M4), the

relation
κ2

1 =
32
3
· κ2,

holds. This relation can also be found in [10].
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4.3 The Rank of Qg,i

I have used Proposition 4.1 and Lemma 4.1 to write a Maple1 program for
computing the rank of Qg,i. The results for g ≤ 27 are shown in Table 4.1
below.

Write g = 3k− l− 1 with k a positive integer and l a non-negative integer.
In [10], Faber remarked that the computational evidence suggests that the
number of relations inRk(Mg) only depends on l as long as 2k ≤ g−2. Under
this assumption, a(l) is defined to be the number of relations in Rk(Mg). a(l)
has been computed in [10] for 0 ≤ l ≤ 9. This has later been extended to
l ≤ 14 in [25]. We show the results for 0 ≤ l ≤ 11 in Table 4.2.

Faber and Zagier have guessed that a(l) equals the number of parti-
tions of l without any parts other than 2 which are congruent to 2 mod-
ulo 3. The guess is supported by the following (see also [1]). Let p =
{p1, p3, p4, p6, p7, p8, p9, . . .} be a collection of variables indexed by the posi-
tive integers not congruent to 2 modulo 5. Define

Ψ(t,p) =
∞∑
i=0

tip3i

∞∑
j=0

(6j)!
(3j)!(2j)!

tj +
∞∑
i=0

tip3i+1

∞∑
j=0

(6j)!
(3j)!(2j)!

6j + 1
6j − 1

tj ,

where we take p0 = 1. Let σ = (α1, 0, α3, α4, 0, α6 . . .) be a sequence of non-
negative integers with all coordinates with indices congruent to 2 modulo 5
equal to zero. Define

pσ = pα1
1 pα3

3 pα4
4 · · · .

Define constants Cr(σ) via

log (Ψ(t,p)) =
∑
σ

∞∑
r=0

Cr(σ)trpσ.

We use these constants to define

γ =
∑
σ

∞∑
i=0

Cr(σ)κrtrpσ.

It was show by Faber and Zagier that the relation

[exp (−γ)]trpσ = 0,

holds in the Gorenstein quotient of R(Mg) when g − 1 + |σ| < 3r and g ≡
r + |σ| + 1 mod 2. These are the so-called FZ-relations. It was shown quite
recently by Pandharipande and Pixton, [31], that these relations also hold in
R(Mg). These relations are sufficiently many for codimensions≤ b(g−2)/2c,
but it is not clear whether these relations are linearly independent or not.

1 Maple c©is a trademark of Waterloo Maple Inc.
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Note the central role of positive integers not congruent to 2 modulo 3 in the
above. This phenomenon will reappear elsewhere in a moment.

With this in mind, it might be interesting to investigate whether a similar
behaviour can be observed in R(Cg). We therefore note that the expected
number of relations, n, in codimension k is given through the formula

n =
k∑
i=0

p(i)− rank(Qg,k).

Here p(i) is the partition function extended with p(0) = 1. The computations
for l ≤ 9 suggested that the number of relations is a function of l only, as
long as 2k ≤ g − 1. Even though this turned out not to be the case, we shall
momentarily pretend that n is a function of l. We show the computations of
n for 0 ≤ l ≤ 11 in Table 4.3.

Using Table 4.3, Faber and I each guessed a formula for n as a function of
l (although at that time I had only computed the values for g ≤ 26). Faber’s
guess, bF , was

bF (l) =
l∑
i=0

i 6≡2 (mod 3)

a(l − i),

where a is the a-function discussed above. My guess was the following recur-
sive formula

bB(l) = 2
l−1∑
i=0

a(i) + a(l)− bB(l − 1)− bB(l − 2), l ≥ 2,

with initial values bB(0) = a(0) and bB(1) = a(0)+a(1). However, the guesses
are only superficially different.

Proposition 4.2. Define bF by

bF (l) =
l∑
i=0

i6≡2 (mod 3)

a(l − i),

and bB by the recursion

bB(l) = 2
l−1∑
i=0

a(i) + a(l)− bB(l − 1)− bB(l − 2), l ≥ 2,

with initial values bB(0) = a(0) and bB(1) = a(0) + a(1). Then bF = bB .

Proof. The statement is evidently true for l = 0 and l = 1. Suppose that it is
true for all i < l for some l > 1. We have
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bB(l) = 2
l−1∑
i=0

a(i) + a(l)− bB(l − 1)− bB(l − 2) =

= 2
l−1∑
i=0

a(i) + a(l)−

(
2
l−2∑
i=0

a(i) + a(l − 1)− bB(l − 2)− bB(l − 3)

)
−

− bB(l − 2) =
= a(l − 1) + a(l) + b(l − 3).

But, by assumption, bB(l − 3) = bF (l − 3). Hence

bB(l) = a(l) + a(l − 1) +
l−3∑
i=0

i 6≡2 (mod 3)

a(l − i) =
l∑
i=0

i 6≡2 (mod 3)

a(l − i) = bF (l).

The result now follows by induction. �

From now on, we write bG (G for guess) to denote the function bF = bB .
Our guess, bG, gives the right number of relations n when 0 ≤ l ≤ 9 but it

gives the value bG(10) = 90 instead of the value n = 91 which was obtained
by computing the rank ofQ25,12. To investigate the matter further I computed
the rank of Q28,13 and Q31,14. Both computations gave the predicted value
n = bG(10) = 90 which suggests that Q25,12 is exceptional. Noteworthy is
that the anomaly occurs in the middle dimension, (g − 1)/2.

The above results suggest that n may exhibit a similar behaviour in the
middle dimension also for g > 25. If this is so, we expect an anomaly for g =
27, k = 13. The rank of Q27,13 gives n = 120 while bG(11) = 119. Computing
the rank of Q30,14 again yields the predicted value, n = bG(11) = 119.

One way to avoid this anomaly would be to require 2k ≤ g − 2 instead of
2k ≤ g − 1, although this is not very appealing (and very ad hoc). It might
be interesting to mention in this context that the method of Faber has been
unsuccessful in proving the Faber conjectures in R12(M24). Note that also
here the problem arises in the middle dimension.

4.4 Generating Relations

We earlier described a method for generating relations. Even though the
method is rather easy in principle, its computational complexity is quite an
obstacle. We shall discuss a few tricks which have helped to make the com-
putations more efficient.

The first step of the algorithm is to pick a monomial M in R(C2g−1
g ) in

the K and Di,j-classes. However, the set of all such polynomials is much too
large already for low g. The computations so far suggest that the algorithm
described below produces enough relations.
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g \ i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
2 1 1
3 1 2 1
4 1 2 2 1
5 1 2 3 2 1
6 1 2 4 4 2 1
7 1 2 4 5 4 2 1
8 1 2 4 6 6 4 2 1
9 1 2 4 7 9 7 4 2 1
10 1 2 4 7 10 10 7 4 2 1
11 1 2 4 7 11 13 11 7 4 2 1
12 1 2 4 7 12 16 16 12 7 4 2 1
13 1 2 4 7 12 17 20 17 12 7 4 2 1
14 1 2 4 7 12 18 24 24 18 12 7 4 2 1
15 1 2 4 7 12 19 27 31 27 19 12 7 4 2 1
16 1 2 4 7 12 19 28 35 35 28 19 12 7 4 2 1
17 1 2 4 7 12 19 29 39 45 39 29 19 12 7 4 2 1
18 1 2 4 7 12 19 30 42 53 53 42 30 19 12 7 4 2 1
19 1 2 4 7 12 19 30 43 57 64 57 43 30 19 12 7 4 2 1
20 1 2 4 7 12 19 30 44 61 75 75 61 44 30 19 12 7 4 2 1
21 1 2 4 7 12 19 30 45 64 83 94 83 64 45 30 19 12 7 4 2 1
22 1 2 4 7 12 19 30 45 65 87 106 106 87 65 45 30 19 12 7 4 2 1
23 1 2 4 7 12 19 30 45 66 91 117 131 117 91 66 45 30 19 12 7 4 2 1
24 1 2 4 7 12 19 30 45 67 94 125 150 150 125 94 67 45 30 19 12 7 4 2 1
25 1 2 4 7 12 19 30 45 67 95 129 162 181 162 129 95 67 45 30 19 12 7 4 2 1
26 1 2 4 7 12 19 30 45 67 96 133 173 208 208 173 133 96 67 45 30 19 12 7 4 2 1
27 1 2 4 7 12 19 30 45 67 97 136 181 227 253 227 181 136 97 67 45 30 19 12 7 4 2 1

Table 4.1 The rank of Qg,i for 2 ≤ g ≤ 27 and 0 ≤ i ≤ 26.

l 0 1 2 3 4 5 6 7 8 9 10 11
a(l) 1 1 2 3 5 6 10 13 18 24 33 41

Table 4.2 The a-function for 0 ≤ l ≤ 11. The values for l ≤ 9 can be found in [10] while
a(10) and a(11) are found in [25].

l 0 1 2 3 4 5 6 7 8 9 10 11
n 1 2 3 6 10 14 22 33 45 64 90 (91) 119 (120)
# 8 7 6 6 5 4 4 3 2 2 2 (1) 1 (1)

Table 4.3 n for 0 ≤ l ≤ 11. # is the number of g for which n has been computed. The
numbers in parentheses are values for which the expected behaviour fails along with how
many times that happened for each l.

Suppose that we want to produce relations in Ri(Cg) by multiplying
cj(F2g−1 − E) ∈ Rj(C2g−1

g ) by a monomial M and then pushing down. Since
the degree drops by 2g − 2 and cj(F2g−1 − E) has degree j, the degree d of
the monomial must be d = i + 2g − 2 − j. Choose q = 2g + 2i − 2j + 1 and
define monomials in the following way.

(a) Define M0 = D1,2D1,3 · · ·D1,qDq+1,q+2Dq+3,q+4 · · ·D2g−2,2g−1,
(b) for r = 0, 1, . . . , q−3, replaceD1,q−r byDq−r,q−r+1 inMr to obtainMr+1.
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Each Mr is a monomial of degree i + 2g − 2 − j and Mrcj(F2g−1 − E) will
thus give a relation in Ri(Cg) when pushed down.

The second step is to calculate M · cj(F2g−1 − E) for suitable choices of j.
As stated earlier, we have

c(F2g−1) = (1 +K1)(1 +K2 −∆2)(1 +K3 −∆3) · · · (1 +K2g−1 −∆2g−1),

and

c(E)−1 =
g∑
i=0

(−1)iλi.

Hence

c(F2g−1 − E) = c0(F2g−1) + c1(F2g−1)− λ1c0(F2g−1) + c2(F2g−1)−
− λ1c1(F2g−1) + λ2c0(F2g−1) + · · ·

If we identify the degree k part we obtain the formula

ck(F2g−1 − E) =
k∑
i=0

(−1)iλick−i(F2g−1). (1)

The following is pointed out in [10]:

ck(Fn) = ck(Fn−1) + (Kn −∆n)ck−1(Fn−1).

No term of cj(Fn−1) has a factor Kn or Di,n. Hence, if P is a polynomial in
Ki and Di,j then, πn,n∗(P · cj(Fn−1)) = πn,n∗(P ) · cj(Fn−1). Putting these
pieces together yields the following formula:

πn,n∗(Mck(Fn)) = πn,n∗(M)ck(Fn−1)+πn,n∗(M(Kn−∆n))ck−1(Fn−1). (2)

Using formulas (1) and (2), the computations become more manageable.
Finally, one may use Lemmas 3.1 and 3.2 along with formulas (1) and (2)

to push the relations down to R(Cg).
Several Maple procedures has been written for performing these compu-

tations. These procedures has then been used to find the necessary number
of relations for 2 ≤ g ≤ 9. No higher genera have been attempted since the
computations are expected to take unfeasibly long time. Below, we present
the relations for g = 2, 3 and 4. The other relations, as well as the Maple
code, are available from the author upon request.

g = 2

Since κ0 = 2g − 2 = 2, there should be no relation in degree zero. In degree
one there should be one relation. Multiplying c2(F3−E) by D2,3 and pushing
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down to R∗(C2) yields the relation 5
3κ1 = 0. Hence, K 6= 0 and κ1 = 0. This

is no surprise, since κ1 is the pullback of κ1 in R∗Mg, which is zero by [10].
The result also follows from Theorem 3.3 and Theorem 3.4.

g = 3

Since g/3 = 1 we should have no relations in degrees zero and one. In degree
two we should have three relations (and will have, by Theorems 3.3 and
3.4). Multiplying c3(F5−E) with D1,2D1,3D4,5 respectively D1,2D3,4D4,5 and
pushing down to R∗(C3) yields the relations

42K2 − 21
2
Kκ1 +

7
48
κ2

1 = 0, 126K2 − 63
2
Kκ1 +

41
48
κ2

1 − 6κ2 = 0.

Multiplying c4(F5 − E) with D2,3D4,5 and pushing down yields the relation

56K2 − 14Kκ1 +
47
12
κ2

1 − 20κ2 = 0.

These three relations are linearly independent, so we are done. If we solve
the equations we see that

κ2
1 = κ2 = 0, and Kκ1 = 4K2.

g = 4

We expect to find two relations in degree 2 and six in degree 3. Multiplying
c4(F7−E) with D1,2D1,3D4,5D6,7 respectively D1,2D3,4D4,5D6,7 and pushing
down yields the relations

420K2− 70Kκ1 +
115
6
κ2

1− 150κ2 = 0, 120K2− 20Kκ1 +
10
3
κ2

1− 20κ2 = 0.

These relations are linearly independent so we are done in degree 2. We solve
the equations to obtain

κ2
1 =

32
3
κ2, and Kκ1 = 6K2 +

7
9
κ2.

Note that the first of these relations is the relation we obtained in R(M2
4) in

Example 4.1.
In degree 3 we have the six linearly independent relations which can be

written as

κ3 = κ2κ1 = κ3
1 = 0, K2

1κ1 =
32
3
K3

1 , K1κ
2
1 = 64K3

1 , K1κ1 = 6K3
1 .
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4.5 Concluding Remarks

We have already mentioned that the method for finding relations is too in-
efficient to generate relations for genus 10 and higher, at least in its present
implementation. It is therefore desirable to find a way to overcome this ob-
stacle.

One possible way to do this would be to encode the relations in a gener-
ating function and then retrieve coefficients. This approach has been applied
quite extensively in the case of R(Mg), for instance by Ionel, [23], and more
recently by Pandharipande and Pixton, [31]. It therefore seems very plausible
that similar methods may be applied in the case of R(Cg).

Some attempts in this direction have already been made. One may note
that Ionel derives some of her results in [23] from a relation in R(Cg). How-
ever, this just gives one relation in every other codimension so it does not
help us very much, at least not without further analysis.

Perhaps more interesting is the fact that Theorem 4 in the article [31] of
Pandharipande and Pixton is derived from the results of Ionel. It is therefore
not unreasonable to expect that one might find a corresponding generating
function for relations in R(Cg). This is however not so easy, since one has to
guess several families of coefficients, but still not completely hopeless, since
these families have to satisfy several conditions.

Another possible direction is to note the close relationship between the
functions a(l) and bG(l) described earlier in this chapter since a(l) counts the
number of relations in Rk(Mg) for certain g and k and bG(l) is supposed to
count the number of relations in Rk(Cg) for certain g and k. Recall that

b(l) = a(l) + a(l − 1) + a(l − 3) + a(l − 4) + · · · .

We interpret the term a(l) as corresponding to the relations on Rk(Cg) that
are pulled back from Rk(Mg). With this interpretation, is not far-fetched
to expect that the other terms might correspond to classes of relations on
R(Mg) in a similar way.

Finally, it would of course be interesting to investigate R(C25) in greater
detail. Perhaps one could then explain the discrepancy between the actual
(expected) number of relations and bG(l) at l = 10.
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