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Spatial Autocorrelation for Subdivided Populations
with Invariant Migration Schemes

Ola Hössjer

Abstract For populations with geographic substructure and selectively neutral ge-
netic data, the short term dynamics is a balance between migration and genetic drift.
Before fixation of any allele, the system enters into a quasi equilibrium (QE) state.
Hössjer and Ryman (2012) developed a general QE methodology for computing
approximations of spatial autocorrelations of allele frequencies between subpop-
ulations, subpopulation differentiation (fixation indexes) and variance effective
population sizes. In this paper we treat a class of models with translationally invariant
migration and use Fourier transforms for computing these quantities. We show
how the QE approach is related to other methods based on conditional kinship
coefficients between subpopulations under mutation-migration-drift equilibrium.
We also verify that QE autocorrelations of allele frequencies are closely related to
the expected value of Moran’s autocorrelation function and treat limits of continuous
spatial location (isolation by distance) and an infinite lattice of subpopulations. The
theory is illustrated with several examples including island models, circular and torus
stepping stone models, von Mises models, hierarchical island models and Gaussian
models. It is well known that the fixation index contains information about the
effective number of migrants. The spatial autocorrelations are complementary and
typically reveal the type of migration (local or global).
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1 Introduction

Genetic variables of natural populations often exhibit geographic variation. This can
either be modeled by dividing the population into a discrete set of subpopulations, or
treating spatial location as a continuous variable. In either case, models for the sub-
sequent microevolution of the population involve four sources of variation; genetic
drift due to random fertilization, migration between geographic sites, mutation and
selection, see for instance Nei (1977) or Durrett (2008).

Genetic data involves markers at a number of loci along the genome, sampled for
individuals at a number of geographic sites at different points in time. In this paper
we are interested in the relatively short time scales encountered in conservation
biology (see for instance Palstra and Ruzzante 2008; Hare et al. 2011). For short
term protection of species, the number of generations of interest is typically two
orders of magnitude, corresponding to an increased amount of inbreeding of at most
one percent per generation. Therefore, we will focus on neutral genetic markers and
disregard the occurrence of new mutations. The dynamics of the system is then a
balance between genetic drift and migration. In absence of new mutations, one of the
alleles of each marker will eventually become fixed. However, before this happens
the population converges to a state of quasi equilibrium between genetic drift and
migration, as formalized by Hössjer et al. (2013) for the island model and more
generally in Hössjer and Ryman (2012).

In order to assess the nature and magnitude of genetic drift and migration, it
is customary to compute a few summary statistics from data, from which a genetic
model is fitted. This includes the effective population size (Wright 1931, 1938) that
quantifies the amount of genetic drift, the fixation index (Wright 1951) that quantifies
the amount of spatial genetic variation, and spatial autocorrelation functions (Sokal
and Oden 1978; Slatkin and Arter 1991; Sokal et al. 1997; Rousset 2001; Hardy and
Vekemans 2002).

Hössjer and Ryman (2012) derived formulas for approximations of so called
standardized genetic drift and spatial covariance matrices. This was used in order
to approximate the variance effective size, the fixation index and spatial autocorrela-
tions of the population at quasi equilibrium. In this paper, we treat populations with
spatial symmetry and translationally invariant migration and use Fourier analysis in
order to derive fast algorithms for computing these quantities, with special attention
to spatial autocorrelation. This is of interest, for instance, in plant genetics, since
the fine-scale genetic structure indicates the amount of inbreeding and selfing in the
population (Vekemans and Hardy 2004; Zhao et al. 2009).

The present paper is organized as follows: The models of migration and reproduc-
tion are defined in Section 2 and the standardized genetic drift and spatial covariance
matrices in Section 3. In particular, we show that the entries of the latter can be
interpreted as conditional kinship coefficients between subpopulations. The quasi
equilibrium approach is introduced in Section 4, and in Section 5 we treat the special
case of translationally invariant migration. In particular, we derive explicit formulas
for quasi equilibrium approximations of the fixation index, variance effective size
and spatial autocorrelation. We also show that the latter is closely related to the
expected value of Moran’s autocorrelation function. In Section 6 we consider the
traditional approach based on kinship coefficients between subpopulations under
migration-mutation-drift equilibrium. We extend this approach by allowing the local
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effective size of each subpopulation to be different from the local census size, and
we also assume that genes are drawn with replacement when computing kinship
coefficients. When the mutation probability tends to zero, it turns out that this
methodology is similar but not identical to the quasi equilibrium approach. In
Section 7 we consider models with infinitely many subpopulations; either continuous
spatial location (isolation by distance) or an infinite lattice. In Section 8 we illustrate
the theory for several models and in Section 9 we present algorithms and numerical
results. A summary and discussion is provided in Section 10 and proofs are collected
in the Appendix.

2 Migration and Reproduction Model

Consider a population of N diploid individuals divided into a set G of s subpop-
ulations, where N is a (large) positive integer. For each generation t = 1, 2, . . . ,
these subpopulations have sizes Nu j, j ∈ G, with 0 ≤ u j ≤ 1 denoting the fraction
of individuals in the total population that inhabit subpopulation j, so that

∑

j∈G
u j = 1.

We will focus on a polymorphic biallelic region of DNA, which, for simplicity, we
refer to as a gene, although it is typically a Single Nucleotide Polymorphism (SNP)
or some other genetic marker. Hence there are 2Nu j genes in subpopulation j, and
Ptj is the fraction of these having one of the two alleles. The overall frequency of this
allele is

Pw
t =

∑

j∈G
w j Ptj,

when subpopulations are assigned non-negative weights w = (w j; j ∈ G), with∑
j∈G w j = 1. In particular, all genes in the population are assigned the same weight if

w equals u = (u j; j ∈ G), so that subpopulations are weighted proportionally to their
sizes. However, this weighting scheme is not always appropriate, and we will find
that other subpopulation weights are sometimes preferable, taking the reproductive
fitness of each subpopulation into account. The vector

P t = (Ptj; j ∈ G)T (1)

summarizes how the allele frequency is spatially distributed over subpopulations,
with T the Hermitian or conjugate transpose operator.

We assume that the migration rate from subpopulation k to j is Mkj. It is defined as
the expected number of offspring genes in subpopulation j that each subpopulation
k gene passes on to the next generation. Therefore, the expected total number of
genes that subpopulation j receives from all genes in k is 2Nuk Mkj. Adding the
expected contribution to j from all possible parental subpopulations k, the constant
subpopulation size requirement implies that

u j =
∑

k∈G
uk Mkj (2)
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holds for all j ∈ G. This can also be formulated as u being a left eigenvector of the
migration matrix M = (Mkj)k, j∈G with eigenvalue 1. In order to study the dynamics
of P t, it is more relevant to consider the backward migration matrix B = (B jk) rather
than M, where

B jk = uk Mkj

u j
(3)

is the fraction of genes of subpopulation j that originate from subpopulation k in the
previous generation. It follows from Eqs. 2 and 3 that B has row sums equal to one,
and hence it is the transition matrix of a Markov chain, assumed to be irreducible
and aperiodic with a unique stationary distribution γ = (γ j; j ∈ G).

It is shown in Hössjer and Ryman (2012) that

P t+1 = BP t + εt+1

evolves as vector valued time inhomogeneous autoregressive process for a large
class of reproduction models and migration schemes, with error term εt+1 satisfying
E(εt+1|P t) = 0 for a selectively neutral allele. The exact distributional properties of
εt depends on the chosen reproduction model.

We will assume that Nej is the variance effective size of subpopulation j and use
one of the reproduction models considered by Hössjer et al. (2013) and Hössjer and
Ryman (2012), with fertilization preceding migration (FM). It can be summarized as
follows:

FM1 Gamete formation: In each subpopulation k, the reproduction cycle from
generation t to t + 1 starts by randomly selecting 2Nek breeding genes without
replacement from the set of all 2Nuk genes. The 2Nek breeding genes of
subpopulation k generate an infinite gamete pool, with equal contribution
from each gene.

FM2 Fertilization: For each pair k, j of subpopulations, draw 2Nuk Mkj gametes
binomially from gamete pool k.

FM3 Migration: The 2Nuk Mkj genes of the previous step migrate from k to j. This
is repeated for all pairs k, j.

FM satisfies the constant subpopulation size requirement. This can be seen by
multiplying both sides of Eq. 2 by 2N. The right hand side is then identical to the
total number of immigrant genes to subpopulation j in the offspring generation t + 1
(not only the expected value of this quantity), and the left hand side equals 2Nu j.

3 Measures of Spatial and Temporal Allele Frequency Change

The allele frequency vector can be divided into two orthogonal components,

P t = Pt1 + P0
t , (4)

where

Pt = Pγt =
∑

j∈G
γ j Ptj
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is the global allele frequency of generation t when subpopulations are weighted as

w = γ , (5)

and 1 = (1, . . . , 1)T is an s × 1 column vector of ones, where s is the number of
subpopulations. Hence the first term Pt1 of Eq. 4 gives the overall genetic drift
whereas the second term P0

t describes spatio-temporal fluctuations of the allele
frequencies around the overall mean.

The dynamics of the time series {P t}t≥1 is well characterized by the standardized
genetic drift covariance matrix

�t = Cov(εt+1|Pt)

Pt(1 − Pt)

and the standardized spatial covariance matrix

V t =
E

(
P0

t

(
P0

t

)T |Pt

)

Pt(1 − Pt)
. (6)

It turns out that V t = (Vtjk) can be characterized in terms of kinship coefficients
(Malécot 1948). Define, for each pair j, k of subpopulations, the kinship coefficient
ft, jk of generation t as the probability that two randomly drawn (with replacement if
j = k) genes are identical by descent (IBD). In the same way, ft, the apriori kinship,
is taken to be the probability that two genes in generation t are IBD when drawn
with replacement from the whole population. Assuming an infinite alleles model, it
follows that IBD is equivalent to having the same allele, i.e. being identical by state.
Hence

ft, jk = Ptj Ptk + (1 − Ptj)(1 − Ptk),

ft = P2
t + (1 − Pt)

2. (7)

Yet another definition

f̃t, jk = (Ptj − Pt)(Ptk − Pt)

Pt(1 − Pt)
(8)

of the kinship coefficient between subpopulations j and k is given by Barbujani
(1987). The following result shows that Eqs. 7 and 8 are both closely related to Vtjk:

Proposition 1 The j, k entry of the standardized spatial covariance matrix equals

Vtjk = E( f̃t, jk|Pt) (9)

and

Vtjk = E( ft, jk|Pt) − ft + (1 − 2Pt)E(Ptj + Ptk − 2Pt|Pt)

1 − ft
(10)

respectively. In particular, if the components of P t in Eq. 1 are exchangeable, it follows
that E(P0

t |Pt) = 0 and Eq. 10 simplif ies to

Vtjk = E( ftjk|Pt) − ft

1 − ft
. (11)
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The right hand side of Eq. 11 is sometimes referred to as a conditional kinship
coefficient (Morton 1973; Hardy and Vekemans 1999; Rousset 2002), and E( ftjk|Pt)
as the average kinship coefficient (7) between subpopulations j and k. Even without
the exchangeability condition on P t, we expect E(P0

t |Pt) to be close to 0, so that
Eq. 10 holds approximately.

In this paper, we will mainly focus on the spatial autocorrelation function

ρwtjk = Corr
(
Ptj, Ptk|Pwt

) w=γ= Corr(Ptj, Ptk|Pt)
E(P0

t |Pt)=0= Vtjk√
Vtjj

√
Vtkk

(12)

between all pairs j, k of subpopulations in generation t, when local allele frequencies
are weighted according to w. It is shown by Hössjer and Ryman (2012) that Eq. 5
weights genes proportionally to their reproductive values. Indeed, since γ is the
equilibrium distribution of the backward migration matrix B, Eq. 5 implies that sub-
population j is weighted proportionally to the fraction γ j of offspring in the total pop-
ulation, many generations later, that will be descendants of genes in j. We will refer
to it as the canonical weighting scheme, and it has been advocated e.g. by Felsenstein
(1971) and Waples and Yokota (2007). Whenever this scheme is used, we will drop
superscript w for any quantity that involves w.

Nei (1973) considered a distance

Dtjk = − log

(
E( ft, jk)√

E( ft, jj)
√

E( ft,kk)

)
(13)

between subpopulations j and k. The expected values in Eq. 13 correspond to
arithmetic averages of ft, jk, ft, jj and ft,kk over multiple loci, in the limit when the
number of loci is large. Nei showed that Dtjk is a sum of two terms for subpopulations
j and k that once separated. One term quantifies the amount of genetic drift when
the two subpopulations once were formed, and the other term is proportional to the
divergence time since the split. A closely related version of Nei’s distance is

D∗
tjk = − log

(
E( ft, jk|Pt)√

E( ft, jj|Pt)
√

E( ft,kk|Pt)

)
. (14)

The following result shows that D∗
tjk is well approximated by − log

(
ρt jk

)
whenever

the apriori kinship coefficient ft is small:

Proposition 2 Given that Eq. 11 holds, the modif ied version (14) of Nei’s distance
between subpopulations j and k at time t, can be written as

D∗
tjk = − log

(
Vtjk + ft(1 − Vtjk)√

Vtjj + ft(1 − Vtjj)
√

Vtkk + ft(1 − Vtkk)

)
ft≈0≈ − log

(
ρt jk

)
. (15)

Formula (15) can be verified by combining the definition of D∗
t jk in Eq. 14 with

Eq. 11. The ft ≈ 0 approximation follows from the definition of ρt jk on the right hand
side of Eq. 12.
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The two other quantities we will study are the fixation index

FwST,t =
∑

j∈G w j
(
Ptj − Pwt

)2

Pwt
(
1 − Pwt

) w=γ=
∑

j∈G γi(Ptj − Pt)
2

Pt(1 − Pt)
(16)

the variance effective size

Nw
eV,t =

Pwt
(
1 − Pwt

)

2Var
(
Pwt+1 − Pwt |Pwt

) w=γ= Pt(1 − Pt)

2Var(Pt+1 − Pt|Pt)
(17)

of the population.

4 Quasi Equilibrium

Eventually, as t → ∞, one of the two alleles will become fixed in all subpopulations,
unless new mutations occur. The expected time to fixation is typically of the same
order as the size of the population, see for instance Chapter 4 of Ewens (2004). For
large populations the time to fixation is thus large, and before this happens the system
converges to a quasi equilibrium mode, see Collet et al. (2013) for a recent account of
the mathematics. Although the convergence time to quasi equilibrium may itself be
slow, Hössjer and Ryman (2012) motivated that the convergence rate is fast for the
standardized genetic drift and spatial covariance matrices �t and V t, and depends on
the amount of migration between the subpopulations. In particular, they showed that
conditionally on non-fixation of both alleles, �t and V t are well approximated, under
quasi equilibrium, by covariance matrices � = (� jk) and V = (V jk) for populations
so large that the genetic drift is small in comparison to the migration rates, and hence
the amount of allele frequency fluctuations between the subpopulations is small.
They also showed that � and V can be computed from a recursive set of equations,
whose first part is given by

V = BV BT + �̃, (18)

where

�̃ = Cov(εt − (γ εt)1) = (I − 1γ )�(I − 1γ )T , (19)

and I is the identity matrix of order s. The form of the second part of these equations
depends on the particular reproduction scheme. For FM1–FM3 they are given by

� jk =
∑

l∈G

(
1

2Nel
− 1

2Nul

)
B jl Bkl(1 − Vll) + 1{ j=k}

2Nu j

(
1 −

∑

l∈G
B jlVll

)
, (20)

for all j, k ∈ G.
By the symmetry of V and �, each matrix contains s(s + 1)/2 unknown entries on

or below the diagonal, and therefore Eqs. 18–20 defines a linear system of equations
for the s(s + 1) unknowns {V jk, � jk; j ≥ k}, given that the subpopulations in G are
ordered in some way.

Quasi equilibrium values of the spatial autocorrelation function, fixation index
and effective population size are defined as limits of the expected values of Eqs. 12,
16 and 17 as t → ∞, conditionally on that no allele gets fixed, see Nei et al. (1977),
Hössjer et al. (2013) and Hössjer and Ryman (2012). Approximate expressions
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ρ
appr,w
jk , Fappr,w

ST and Nappr,w
eV for these quasi equilibrium limits are computed from �

and V for a selectively neutral allele. They simplify considerably for the canonical
weighting scheme (5) and equal

ρ
appr
jk

E(P0
t |Pt)=0= V jk√

V jjVkk
, (21)

Fappr
ST =

∑

j∈G
γ jV jj (22)

and

Nappr
eV = 1

2γ�γ T
(23)

respectively.

5 Spatially Invariant Migration

We assume that the subpopulations are located at geographic sites X = {x j; j ∈
G} that form a group under +, with − the inverse operation. This induces the
corresponding (inverse) group operation + (−) on G through x j+k = x j + xk (x j−k =
x j − xk). Migration is invariant with respect +, i.e. Mjk = Mj ′k′ for all pairs j, k and
j ′, k′ such that ( j ′, k′) = ( j+ l, k + l) for some l ∈ G. Hence there exists a vector
m = (m j; j ∈ G) with

∑
j∈G m j = 1 such that

Mkj = m j−k (24)

for all j, k. From this it follows that Eq. 5 holds with

u = γ = 1T/s, (25)

and plugging Eq. 25 into Eq. 3 we find that B and M are both doubly stochastic
matrices, that is, they both have row and column sums equal to one, with

B = MT . (26)

For this reason, the migration rates Mkj will also be referred to as migration
probabilities. We will assume that the

s =
d∏

l=1

sl (27)

subpopulations are located as equispaced elements x j =
(
e2π ij1/s1 , . . . , e2π ijd/sd

)
of the

d-dimensional torus. That is, X is a commutative (Abelian) group, isomorphic to the
direct product

G = Zs1 ⊕ . . . ⊕ Zsd

of the d cyclic groups Zsl of order sl , so that each element of G can be written as
multiindex j = ( j1, . . . , jd), with 0 ≤ jl ≤ sl − 1.
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We will also assume that the reproduction model is spatially symmetric, with a
constant local effective size

Ne = Nej (28)

of all subpopulations j. It follows from Eq. 25 that the local census size

Nc = Nu j = N/s (29)

is also the same for all subpopulations. Equations 28 and 29, the translationally
invariant migration (24) and (26) imply that � is also translationally invariant.
Indeed, Eq. 20 simplifies to

� jk =
(

1
2Ne

− 1
2Nc

) ∑
l∈G MljMlk(1 − Vll) + 1{ j=k}

2Nc

(
1 −

∑
l∈G MljVll

)

=
(

1
2Ne

− 1
2Nc

) ∑
l∈G m j−lmk−l(1 − Vll) + 1{ j=k}

2Nc

(
1 −

∑
l∈G m j−lVll

)

=
(

1
2Ne

− 1
2Nc

) ∑
l∈G m−

l− jmk−l(1 − v0) + 1{ j=k}
2Nc

(
1 −

∑
l∈G m j−lv0

)

= σk− j, (30)

with m−
j = m− j,

σ j = (1 − v0)

{(
1

2Ne
− 1

2Nc

)
(m− ∗ m) j + 1{ j=0}

2Nc

}
(31)

and m− ∗ m the convolution operator between the vectors m and m− = (m−
j ). We

interpret the elements of the vector σ = (σ j; j ∈ G) as the (approximate) covariance
function of the spatially stationary random field εt+1/

√
Pt(1 − Pt), when quasi

equilibrium has been attained.
In the third step of Eq. 30 we used Eqs. 18, 19 and 25 to deduce that V is also

translationally invariant, i.e. there exists a vector v = (v j; j ∈ G) such that

V jk = vk− j (32)

for all j, k. We interpret v as the (approximate) covariance function of the spatially
invariant random field P0

t /
√

Pt(1 − Pt) under quasi equilibrium.
The system of equations in Eqs. 18 and 20 for computing � and V simplifies

considerably under spatial invariance (24), (30) and (32). To this end, we introduce
the scalar product

(q, q′) =
∑

j∈G
q jq̄′

j (33)

for column vectors q = (q j; j ∈ G)T and q′ = (q′
j; j ∈ G)T , with q̄′

j the complex
conjugate of q′

j. For any r = (r1, . . . , rd) ∈ G we define the unit column vector qr =
(qrj; j ∈ G)T with components

qrj = exp

(
2π i

d∑

l=1

rl jl/sl

)
/
√

s.
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As shown in the appendix, the translational migration invariance (24) implies that
{qr}r∈G forms an orthonormal system of right eigenvectors of B with

Bqr = m̂rqr, (34)

for all r ∈ G, where

m̂r =
∑

j∈G
m j exp

(
−2π i

d∑

l=1

rl jl/sl

)
(35)

are the Fourier coefficients of m. Notice that all m̂r are real when M is symmetric
and m− j = m j, although this need not generally be the case.

Put 0 = (0, . . . , 0), and define, for each j ∈ G,

S j = 1
s

∑

r∈G\0

(
1

2Ne
− 1

2Nc

)
|m̂r|2 + 1

2Nc

1 − |m̂r|2 cos

(
2π

d∑

l=1

rl jl/sl

)
, (36)

so that in particular

S0 = 1
s

∑

r∈G\0

(
1

2Ne
− 1

2Nc

)
|m̂r|2 + 1

2Nc

1 − |m̂r|2 ,

and

T j = 1
s

∑

r∈G

{(
1

2Ne
− 1

2Nc

)
|m̂r|2 + 1

2Nc

}
cos

(
2π

d∑

l=1

rl jl/sl

)
. (37)

We then have the following result that is proved in the Appendix:

Theorem 1 Consider a genetic model with reproduction scheme FM1–FM3 and spa-
tially invariant migration (24). Then the entries of the standardized genetic drift and
spatial covariance matrices � and V in Eqs. 30 and 32 can be retrieved from

σ j = T j

1 + S0
(38)

and

v j = S j

1 + S0
(39)

respectively, with S j and T j as def ined in Eqs. 36 and 37. Moreover, the approxima-
tions (22), (23) and (21) of the quasi equilibrium limits of the f ixation index, variance
ef fective size and spatial autocorrelation function simplify to

Fappr
ST = v0 = S0

1 + S0
, (40)

Nappr
eV = sNe

1 − Fappr
ST

(41)
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and

ρ
appr
j = ρ

appr
k,k+ j =

v j

v0
= S j

S0
(42)

respectively, for the canonical weights (5).

We notice in particular that Eq. 41 agrees with the well known expression for
the fixation index derived by Wright (1951) for the infinite island model, and more
generally by Wang and Caballero (1999, eqn. 15).

For spatially invariant migration schemes, it turns out that ρ
appr
j in Eq. 42 is related

to a version of Moran’s autocorrelation function

Itj =
s
∑

i,k∈G w jik(Pti − Pt)(Ptk − Pt)∑
i,k∈G w jik

∑
l∈G(Ptl − Pt)2 . (43)

between subpopulations at distance j ∈ G in generation t (Moran 1950; Sokal and
Oden 1978). The weights w jik are binary entries of a connectivity matrix W j = (w jik),
such that w jik = 1 if k − i = ± j and 0 otherwise. We denote the ratio of the expected
values of the numerator and denominator in Eq. 43 as

E(Itj|Pt)
∗ = s

∑
i,k∈G w jik E ((Pti − Pt)(Ptk − Pt)|Pt)∑

i,k∈G w jik
∑

l∈G E
(
(Ptl − Pt)2|Pt

) . (44)

In general this quantity differs in from E(Itj|Pt), although the difference is small
when the number of terms 2s in the numerator and denominator of Eq. 43 is large.
This is even more true for multilocus generalizations of Itj, when contributions from
several subpopulations and loci are added over separately in the numerator and
denominator.

The connection between E(Itj|Pt)
∗ and ρ

appr
j can summarized as follows:

Proposition 3 The approximation (44) of E(Itj|Pt) satisf ies

E(Itj|Pt)
∗ = s

∑
i,k∈G w jikVtik∑

i,k∈G w jik
∑

l∈G Vtll
. (45)

In particular, the quasi equilibrium approximation of Eq. 45, obtained by replacing
Vtik by Vik, equals

Iappr
j = ρ

appr
j (46)

for spatially invariant migration schemes.

It is well known that autocorrelations need to be averaged over several alleles
or loci in order to remove noise from single locus biallelic autocorrelations, see for
instance Slatkin and Arter (1991). This indicates, in view of Eq. 46, that {ρappr

j ; j ∈ G}
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should be useful summary statistics for inferential purposes. The same conclusion can
be drawn from the simulation study of Sokal et al. (1997).

6 Equilibrium Between Mutation, Migration and Drift

When each gene has a mutation probability μ > 0 per generation, it is possible
to attain equilibrium between mutation, migration and drift. This approach was
introduced by Malécot (1950, 1951), and has subsequently been studied by several
authors, see for instance Sawyer (1976) and Durrett (2008). We extend this work
and consider a scenario where the local census and effective population sizes are
separate entities. The reproduction model is slightly different from FM1–FM3, in
that migration precedes fertilization (MF), as follows:

MF1 Gamete formation: Same as FM1, but with a probability μ1 that each gamete
mutates.

MF2 Migration: The infinitely sized gamete pools mix, so that after migration,
gamete pool j contains exact proportions {B jk}k∈G of the contents of all pre-
migration gamete pools k ∈ G.

MF3 Fertilization: In each subpopulation j, 2Nu j genes are drawn binomially from
its infinitely sized post-migration gamete pool j. The mutation probability
during fertilization for each gamete is μ2.

This reproduction scheme was introduced by Hössjer et al. (2013) and generalizes the
stochastic migration scheme of Sved and Latter (1977) for the island model, when
Ne = Nc. Mutations in the fertilization step MF3 is of major interest for diploid
populations, and is not included in our framework. However, the haploid model
serves as an approximation for a diploid scenario and a possible generalization
(without translational invariance though) can be developed by having two separate
subpopulations for gametes within men, those that are inherited from a father and
those that are inherited from a mother respectively. Additionaly, two subpopulations
of gametes within women are required, those that are inherited from a father or
mother respectively.

Assuming that the mutation events in MF1 or MF3 are independent, the proba-
bility is

μ = μ1 + μ2 − μ1μ2

for a gene to mutate at least once during the whole reproduction cycle.
It is shown in the Appendix that MF1–MF3 facilitates computation of the kinship

coefficient or IBD probability f eq
jk (μ) at equilibrium between two genes sampled

randomly from subpopulations j and k. We use μ as argument, since it turns out that
f eq

jk depends on μ1 and μ2 only through μ. Latter and Sved (1981) studied the island
model and required that when j = k, the two genes are drawn with replacement from
subpopulation j. We follow this approach, since it offers additional flexibility and
generality. We will also assume that translational invariance holds, as in Section 5,
so that

f eq
j (μ) = f eq

k,k+ j(μ)
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independently of k ∈ G. The average equilibrium kinship coefficient for two ran-
domly drawn genes from the whole population is

f eq(μ) = 1
s2

∑
j,k∈G f eq

jk (μ)

= 1
s

∑
j∈G f eq

j (μ),

and the conditional kinship coefficient at equilibrium is

v
eq
j (μ) = f eq

j (μ) − f eq(μ)

1 − f eq(μ)
. (47)

Hardy and Vekemans (1999) noticed the connection between v
eq
j (μ) and measures

of spatial autocorrelation. In view of Eq. 11, it is also of interest to compare this
quantity for small mutation probabilities with the quasi equilibrium approximation
v j of the standardized spatial covariance (39). The following result shows that the
two quantities are indeed closely related but not identical:

Theorem 2 Assume a reproduction scheme MF1–MF3 and spatially invariant migra-
tion, as described in Section 5. Let μ > 0 be the mutation probability and v

eq
j (μ) the

conditional kinship coef f icient (47) under mutation-migration-drift equilibrium for
genes in subpopulations at distance j ∈ G. Then

v
eq
j (μ) = S̃ j(μ)

1 + S̃0(μ)
, (48)

where

S̃ j(μ) = 1

s
(

1 − 1
2Nc

)
∑

r∈G\0

(1 − μ)2
(

1
2Ne

− 1
2Nc

)
|m̂r|2 + 1

2Nc

1 − (1 − μ)2|m̂r|2 cos

(
2π

d∑

l=1

rl jl
sl

)
.

(49)

Hence, in the limit of small migration probabilities,

lim
μ→0

v
eq
j (μ) = S̃ j

1 + S̃0
, (50)

where

S̃ j = limμ→0 S̃ j(μ)

= 1

s
(

1 − 1
2Nc

)
∑

r∈G\0

(
1

2Ne
− 1

2Nc

)
|m̂r|2 + 1

2Nc

1 − |m̂r|2 cos
(

2π
∑d

l=1

rl jl
sl

)
. (51)

We notice that S̃ j only differs from S j by a term (1 − 1/(2Nc))
−1. Therefore the limit

in Eq. 50 is very close to v j unless Nc is very small, and the two quantities coincide
when Nc = ∞. It follows from the proof of Theorem 2 in the appendix that Nc = ∞
is equivalent to drawing genes from the same subpopulation without rather than with
replacement.
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We will refer to

Fappr
ST = lim

μ→0
v0(μ) = S̃0

1 + S̃0
, (52)

and

ρ
appr
j = lim

μ→0

f eq
j (μ) − f eq(μ)

f eq
0 (μ) − f eq(μ)

= S̃ j

S̃0
(53)

as approximations of the fixation index and spatial autocorrelation function at
equilibrium, based on the mutation-migration-drift approach.

7 Infinite Number of Subpopulations

In this section will let the number of subpopulations grow by requiring that

min(s1, . . . , sd) → ∞, (54)

in Eq. 27, so that s → ∞. We will do this in two different ways:

7.1 Isolation by Distance Models

Wright (1943, 1946) introduced isolation by distance models, where discrete subpop-
ulation membership is replaced by a continuous spatial location. Many authors have
since then studied such models, including for instance Malécot (1948) and Rohlf and
Schnell (1971).

We model isolation by distance by keeping the total effective population Ne,tot =
sNe fixed, and divide the population into an increasingly large number s of small sub-
populations. In order to avoid a conditional genetic drift covariance matrix (30)–(31)
that converges to continuous white noise, we put N = ∞. For each subpopulation
k, this corresponds to having an allele frequency of genes that migrate from k to
subpopulation j that equals the allele frequency of gamete pool k, independently
of j. From Theorem 2 we deduce that the quasi equilibrium approach is equivalent
to mutation-migration-drift equilibrium for translationally invariant migration, when
the mutation probability μ tends to 0 and N = ∞. Therefore, the formulas below are
also analogues of continuous location result of Malécot (1950), Maruyama (1972),
Nagylaki (1976), Sawyer (1977) and Barton et al. (2002) as μ → 0.

We rescale subpopulation membership j as y = (y1, . . . , yd), with yl = jl/sl , and
denote the corresponding locations x(y) = (

e2π iy1 , . . . , e2π iyd
)
. Hence, in the limit

G∞ = [0, 1]d

and X = S
d, the d-dimensional torus, with S the unit sphere. The migration probabil-

ities of the vector m = (m j; j ∈ G) become a migration density m = {m(y); y ∈ G∞}
according to

sm j → m(y) as s → ∞. (55)
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This implies

m̂r = lims→∞
∑

j∈G m j exp
(
−2π i

∑d

l=1
rl jl/sl

)

=
∫

[0,1]d
m(y) exp

(
−2π i

∑d

l=1
rl yl

)
dy (56)

for all r ∈ Z
d. Analogously we get from Eqs. 36 and 37 that

S j → S(y) = 1
2Ne,tot

∑

r∈Zd\0

|m̂r|2
1 − |m̂r|2 cos

(
2π

d∑

l=1

rl yl

)
(57)

and

T j → T(y) = 1
2Ne,tot

∑

r∈Zd

|m̂r|2 cos

(
2π

d∑

l=1

rl yl

)
, (58)

when jl, sl → ∞ in such a way that yl = jl/sl are fixed, and N = ∞.
When the number of components of εt+1/

√
Pt(1 − Pt) and P0

t /
√

Pt(1 − Pt) grow,
they tend to spatially stationary random fields with a continuous index set and covari-
ance functions {�(z, z + y) = σ(y); y, z ∈ G∞} and {V(z, z + y) = v(y); y, z ∈ G∞}
respectively, with

σ(y) = T(y)

1 + S(0)
(59)

and

v(y) = S(y)

1 + S(0)
. (60)

The variance effective size formula (41) holds as before, the fixation index (40) is
rewritten as

Fappr
ST = v(0) = S(0)

1 + S(0)
, (61)

and the spatial autocorrelation function of P0
t /
√

Pt(1 − Pt) becomes

ρappr(y) = ρappr(z, z + y) = v(y)

v(0)
= S(y)

S(0)
(62)

in the limit of large s.

7.2 Fixed Local Population Size

We now keep the local effective and census subpopulation sizes Ne and Nc (cf.
Eq. 29) fixed, whereas the total subpopulation size N grows, as a consequence of
Eq. 54. In the limit we get an infinite d-dimensional lattice G∞ = Z

d of subpopulation
indexes. We also keep the migration rates m j between subpopulations k and k + j
fixed. It is therefore reasonable to assume that the pairwise distances between k and
k + j are kept fixed when s → ∞. This is achieved in the limit by having geographical
locations along a d-dimensional lattice, i.e. x j = j and X∞ = Z

d.
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Given r and s, define x = (x1, . . . , xd) through xl = rl/sl , and let the components
of r and s grow in such a way that those of x are kept fixed. Then

m̂r =
∑

j∈G m j exp
(
−2π i

∑d

l=1
rl jl/sl

)

→
∑

j∈G∞
m j exp

(
−2π i

∑d

l=1
xl jl

)

= m̂(x)

as all sl → ∞ according to Eq. 54, with m̂ : [0, 1]d → C the Fourier transform of m =
{m j; j ∈ G∞}. We can also view Eqs. 36 and 37 as Riemann sums that we would like
to converge to integrals

S j =
∫

[0,1]d

(
1

2Ne
− 1

2Nc

)
|m̂(x)|2 + 1

2Nc

1 − |m̂(x)|2 cos

(
2π

d∑

l=1

xl jl

)
dx, (63)

and

T j =
∫

[0,1]d

((
1

2Ne
− 1

2Nc

)
|m̂(x)|2 + 1

2Nc

)
cos

(
2π

d∑

l=1

xl jl

)
dx (64)

respectively. Once convergence is established, it follows that Eqs. 38, 39, 40 and 42
hold for the limiting infinite population model, with S j and T j as defined in Eqs. 63
and 64.

In order to check convergence, let J = (J1, . . . , Jd) ∈ Z
d denote a random vector

with distribution m. Since

m̂(x) = 1 − 2π ixE(J)T − (2π)2

2
xCov(J)xT + o(|x|2),

as the Euclidean norm |x| of x tends to zero, it follows that

|m̂(x)|2 = 1 + O(|x|2).
Hence, given any j ∈ Z

d, the integral in Eq. 63 has a singularity at 0 in dimensions d =
1, 2, whereas the integral converges for d ≥ 3. If we formally compute the fixation
index and autocorrelation function at quasi equilibrium from Eqs. 40 and 42, the
conclusion is that Fappr

ST = ρ
appr
j = 1 for d = 1, 2 and j ∈ Z

d, whereas Fappr
ST and ρ

appr
j

are both less then one for d ≥ 3.
This indicates that the spatial allele frequency fluctuations on Z

d are locally
isolated for d = 1, 2, when there is less space for small distance migration to reach out
to remotely distant subpopulations. We can motivate this in terms of the mutation-
migration-drift equilibrium approach of Section 6: Let τ be the coalescence time
between two randomly chosen genes. Slatkin (1991) has shown that

f eq
j (μ) = E j

(
(1 − μ)2τ

) ≈ 1 − 2μE j(τ ),

f eq(μ) = E
(
(1 − μ)2τ

) ≈ 1 − 2μE(τ ), (65)

where E j and E denote expectation given that the two genes are picked from
subpopulations 0 and j or randomly from the whole population respectively. The
approximations in Eq. 65 hold when the mutation probability μ is small. Cox and
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Durrett (2002) have derived formulas for E j(τ ) and E(τ ) for the two-dimensional
stepping stone model and reproductive scheme MF1–MF3 when Ne = Nc and s1 =
s2 = √

s → ∞. By inserting these expressions for E j(τ ) and E(τ ) into Eqs. 65 and 47,
it follows that Fappr

ST and ρ
appr
j in Eqs. 52 and 53 both equal 1 in the limit when μ → 0

and s → ∞ in such a way that μs log(s) → 0. Somewhat related results for the one-
dimensional stepping stone model can be found in Durrett and Restrepo (2008).

8 Examples

Example 1 (Island model) The island model (Wright 1943; Maruyama 1970; Latter
1973) is the simplest possible way of describing a subdivided population. We assume a
total migration probability 0 < m ≤ 1 from any subpopulation, with equal probability
m/(s − 1) of migrating to any other subpopulation. Since migration probabilities are
not dependent on the distance between subpopulations, the island model can be
incorporated into any dimension d = 1, 2, . . ., with

m j = (1 − m)1{ j=0} + m
s − 1

1{ j�=0}

= (1 − m′)1{ j=0} + m′

s
,

where m′ = ms/(s − 1). This yields

m̂r = (1 − m′) + m′1{r=0}. (66)

With the quasi equilibrium approach, we insert Eq. 66 into Eqs. 36, 40 and 42 in order
to get

Fappr
ST = 1

s
s−1

(
1 − (1 − m′)2

)
2Ñ + 1

(67)

for the fixation index and

ρ
appr
j =

{
1, j = 0,
−1/(s − 1), j �= 0,

(68)

for the spatial autocorrelation function. Here Ñ is a local population size, defined as
an harmonic mean

1

Ñ
= (1 − m′)2

Ne
+ 1 − (1 − m′)2

Nc

of Ne and Nc. Formula (67) (and refinements thereof) has also been derived by other
methods in Hössjer et al. (2013) and Hössjer and Ryman (2012).
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The mutation-migration-drift approach yields a spatial autocorrelation function
(53) identical to Eq. 68 and an expression

Fappr
ST = 1

s
s−1

(
1 − (1 − m′)2

)
2N̄ 2Nc−1

2Nc
+ 1

=

⎧
⎪⎨

⎪⎩

(1−m′)2

s
s−1 (1−(1−m′)2)2Ne+(1−m′)2 , Nc = ∞,

1
s

s−1

(
1 − (1 − m′)2

)
(2Nc − 1) + 1

, Nc = Ne,
(69)

for the fixation index. The upper part of the right hand side of Eq. 69 can also be
interpreted as having Nc = Ne and drawing genes from the same subpopulation with-
out replacement, see for instance Takahata (1983) and Takahata and Nei (1984). The
main advantage of drawing genes from the same subpopulation with replacement is
that Fappr

ST does not tend to zero as m′ tends to 1. See Hössjer et al. (2013) for a more
detailed discussion on this topic within a quasi equilibrium framework.

Example 2 (Stepping stone model) Kimura (1953) proposed a class of so called
stepping stone models, where migration occurs to subpopulations in a local neigh-
bourhood of the present one. For a mathematical treatment of these models, see for
instance Kimura and Weiss (1964), Weiss and Kimura (1965) and Durrett (2008).

In one dimension (d = 1), the circular stepping stone model is defined as fol-
lows: Assume 0 < m ≤ 1 and 0 ≤ p ≤ 1. Migration is only possible to the closest
neighbours, with a probability mp of migrating one step to the right and probability
m(1 − p) of migrating one step to the left, so that

m j =

⎧
⎪⎪⎨

⎪⎪⎩

1 − m, j = 0,
mp, j = 1,
m(1 − p), j = −1,
0, otherwise

and

m̂r = (1 − m) + m cos(2πr/s) + im(1 − 2p) sin(2πr/s).

We will refer to p = 0.5 as the symmetric one-dimensional stepping stone model.
In d = 2 dimensions, migration from (0, 0) in one generation is possible to a

neighbourhood

N = {(−1, 0), (0,−1), (0, 1), (1, 0)}

of four subpopulations, by moving one step, horizontally or vertically. Define pj ≥ 0
for j ∈ N so that

∑
j∈N pj = 1. Then put

m j =
⎧
⎨

⎩

1 − m, j = (0, 0),
mpj, j ∈ N ,
0, otherwise,
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where m > 0 is the total migration probability, as before. Taking the Fourier trans-
form we get

m̂r = 1 − m

+m(p(−1,0) + p(1,0)) cos
(

2πr1

s1

)
+ m(p(0,−1) + p(0,1)) cos

(
2πr2

s2

)

+ im(p(−1,0) − p(1,0)) sin
(

2πr1

s1

)
+ im(p(0,−1) − p(0,1)) sin

(
2πr2

s2

)
.

We refer to pj ≡ 0.25, j ∈ N , as the symmetric two-dimensional torus stepping stone
model.

Example 3 (von Mises models) Starting with the one-dimensional (d = 1) case, we
let 0 < m ≤ 1 refer to the total migration probability and put

pj = exp (κ cos(2π j/s))
∑s−1

k=1 exp (κ cos(2πk/s))
(70)

for j = 1, . . . , s − 1, where κ ≥ 0, and

m j =
{

1 − m, j = 0,
mpj, j �= 0.

(71)

This migration distribution is symmetric, with κ an inverse variance parameter
quantifying the magnitude of jumps. We refer to it as the one-dimensional discrete
von Mises model. The two extreme choices are the island model (κ = 0) and the
symmetric one-dimensional circular stepping stone model (κ = ∞).

Let s → ∞, as described in Section 7.1. Both m and κ are kept fixed in Eqs. 70
and 71, and in order for Eq. 55 to hold we must therefore put m = 1. In the limit we
get a migration density

m(y) = 1
I0(κ)

exp (κ cos(2πy)) , 0 ≤ y ≤ 1, (72)

with I0(κ) = ∫ 1
0 exp (κ cos(2πy)) dy a modified Bessel function of the first kind of

order 0 (cf. Section 9.6 of Abramowitz and Stegun 1972). We refer to Eq. 72 as the
migration density of the continuous one-dimensional von Mises model. Because of
the symmetry of m(·) we deduce from Eq. 56 that

m̂r = Ir(κ)

I0(κ)
, r ∈ Z,

where Ir(κ) = ∫ 1
0 exp(κ cos(2πy)) cos(2πry)dy is a modified Bessel function of the

first kind of order r.
In d = 2 dimensions, we let κ1 and κ2 be non-negative dispersion parameters and

define

pj = exp (κ1 cos(2π j1/s1) + κ2 cos(2π j2/s2))∑
k∈G\(0,0) exp (κ1 cos(2πk1/s1) + κ2 cos(2πk2/s2))

, j �= (0, 0).
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We let 0 < m ≤ 1 refer to the total migration probability and put

m j =
{

1 − m, j = (0, 0),
mpj, j �= (0, 0).

The island model corresponds to κ1 = κ2 = 0 and the symmetric torus stepping
stone model to κ1 = κ2 = ∞. The continuous analogue, obtained by putting m = 1
and letting s → ∞, as described in Section 7.1, has a migration density with two
independent components (72), i.e.

m(y) = 1
I0(κ1)I0(κ2)

exp (κ1 cos(2πy1) + κ2 cos(2πy2)) , y ∈ [0, 1]2,

and the Fourier coefficients

m̂r = Ir1(κ1)Ir2(κ2)

I0(κ1)I0(κ2)
, r ∈ Z

2,

are obtained from the modified Bessel function of the first kind, as before.

Example 4 (Hierarchical island model) Assume d = 2 and that all subpopulations
j = ( j1, j2) can be divided into s1 groups of equal size s2, so that j1 is the group num-
ber and j2 the subpopulation number within group j1. The total migration probability
0 < m ≤ 1 is either within a group, with total probability mw = pm, where 0 ≤ p ≤ 1,
divided equally mw/(s2 − 1) between subpopulations within the group, or with total
probability mb = (1 − p)m between groups, with each subpopulations outside the
group having the same probability mb /((s1 − 1)s2) of being reached. This model has
been treated by Carmelli and Cavalli-Sforza (1976), Sawyer and Felsenstein (1983)
and Slatkin and Voelm (1991), and the latter authors referred to it as the hierarchical
island model.

It will be convenient to introduce m′
w = mws2/(s2 − 1) and m′

b = mb s1/(s1 − 1).
Then we can write

m j = (1 − m)1{ j=(0,0)} + mw

s2 − 1
1{ j1=0, j2 �=0} + mb

(s1 − 1)s2
1{ j1 �=0}

=
(

1 − m − m′
w

s2

)
1{ j=(0,0)} +

(
m′

w

s2
− m′

b

s1s2

)
1{ j1=0} + m′

b

s1s2
,

so that

m̂r =
(

1 − m − m′
w

s2

)
+

(
m′

w − m′
b

s1

)
1{r2=0} + m′

b 1{r=(0,0)}.

Example 5 (Spherically symmetric Gaussian models) This is a continuous model
with migration density

m(y) =
∑

r∈Zd

1

(2π)d/2(σ/
√

2)d
exp

(
−

∑d
l=1(yl + rl)

2

σ 2

)
, y ∈ [0, 1]d,

so that jumps are taken independently in each direction of R
d according to

Gaussian distributions with mean 0 and variance σ 2/2, and then wrapped onto the
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d-dimensional torus. This model has been studied for d = 1, 2 by Maruyama (1972).
If two genes are located at the same point, their offspring in the next generation have
diverged according to a dispersal density

d(y) =
∑

r∈Zd

1
(2π)d/2σ d

exp

(
−

∑d
l=1(yl + rl)

2

2σ 2

)
, y ∈ [0, 1]d,

with variance σ 2 in each direction before projection onto [0, 1]d. In this case

m̂r = exp

(
−π2σ 2

d∑

l=1

r2
l

)
.

9 Numerical Algorithm and Results

The numerical algorithm for computing Fappr
ST , Nappr

eV and ρappr = (ρ
appr
j ) can be

summarized as follows:

1. INPUT PARAMETERS: s = (s1, . . . , sd), m = (m j), N and Ne.
2. COMPUTE m̂ = (m̂r) as the d-dimensional discrete Fourier transform of m.
3. COMPUTE Ŝ = (Ŝr), with

Ŝr = 1{r �=0}

(
(2Ne)

−1 − (2Nc)
−1

) |m̂r|2 + (2Nc)
−1

1 − |m̂r|2 .

4. COMPUTE S = (S j) as the inverse d-dimensional discrete Fourier trans-
form of Ŝ.

5. COMPUTE v = (v j) from Eq. 39.
6. COMPUTE OUTPUT PARAMETERS Fappr

ST , Nappr
eV and ρappr from Eqs. 40, 41

and 42.

The algorithm for the mutation-migration-drift equilibrium approach is com-
pletely analogous, replacing S j by S̃ j.

Since the properties of Fappr
ST and Nappr

eV have been numerically studied in Hössjer
et al. (2013) and Hössjer and Ryman (2012), we mainly focus on autocorrelations
here. In Fig. 1 we plot the autocorrelation function for the circular stepping stone
model with s = 25 subpopulations, for various choices of m and p. In view of
Proposition 3, we can use the terminology of Slatkin and Arter (1991) and refer to
these plots as averaged correlograms. It is seen that ρ

appr
j for each fixed j depends

very little on m and p. An exception is migration probabilities m close to 1, when
ρ

appr
j exhibits an oscillatory behaviour as a function of j, with period 2. This is more

pronounced the closer to symmetric (p = 0.5) the migration scheme is.
Averaged correlograms are shown in Fig. 2 for the one-dimensional von Mises-

model with s = 25. It is seen that j → ρ
appr
j depends a lot on the concentration

parameter κ , but very little on m, Ne and Nc.
There are only two values of the autocorrelation function for the hierarchical is-

land model; the autocorrelation ρ
appr
w between subpopulations within the same group,

and the autocorrelation ρ
appr
b for subpopulations belonging to different groups.
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Fig. 1 Plots of autocorrelation ρ
appr
j versus j for the one-dimensional (circular) stepping stone model

and four different migration rates m, with s = 25, Ne = Nc = 50, p = 0.1 (asterisks), p = 0.3 (circles)
and p = 0.5 (squares)

Figure 3 displays both of these quantities as well as the fixation index Fappr
ST for a grid

of 5 × 5 subpopulations. On the x-axis of each plot is p, the probability of migrating
to a subpopulation within the same group. The within autocorrelations increase with

Fig. 2 Plots of autocorrelation ρ
appr
j versus j for the one-dimensional von Mises model with s = 25

and four different combinations of the migration rate m, the local effective population size Ne and the
local census population size Nc. The concentration parameter κ equals 0 (squares = island model), 2
(asterisks), 5 (plus signs) and 50 (circles, close to circular stepping stone).
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Fig. 3 Plots of fixation index Fappr
ST (solid), autocorrelation ρ

appr
w within the same (dashed) and ρ

appr
b

between different (dash-dotted) groups of subpopulations, for the hierarchical island model, with
s1 = s2 = 5 and various combinations of m, Nc and Ne. The probability p of migrating to the same
group varies between 0 and 1. The island model corresponds to ρ

appr
w = ρ

appr
b and p = (s1 − 1)/s =

4/24 = 1/6

Fig. 4 Plots of autocorrelation ρ
appr
j and fixation index Fappr

ST (lower right) as function of the migra-
tion rate m for a two-dimensional (torus) stepping stone model with s1 = s2 = 5 and Ne = Nc = 50.
The migration probabilities are either symmetric (p j = 0.25 for all j ∈ {(−1, 0), (0, 1), (0,−1), (0, 1)},
solid), or non-symmetric (p j = 0.45 for j ∈ {(0, 1), (1, 0)}, p j = 0.05 for j ∈ {(0,−1), (−1, 0)}, dash-
dotted)
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Fig. 5 Plots of autocorrelation ρ
appr
j versus j/s for the one-dimensional von Mises model when

Ne,tot = sNe = 5000, Nc = ∞, m = 1 and κ = 5. The four plots correspond to s = 10 (circles), s = 20
(asterisks), s = 50 (squares) and s = 300 (solid)

p, whereas the between autocorrelations decrease with p. The migration probability
m affects the fixation index a lot, but hardly at all the autocorrelations.

In Fig. 4 we plot the fixation index and autocorrelations for different lags j for the
torus stepping stone model when s1 = s2 = 5. As for the one-dimensional stepping

Fig. 6 Plots of autocorrelation ρ
appr
j as function of j for the one-dimensional (circular) stepping

stone model with m = p = 0.5 and Ne = Nc = 50. The four curves correspond to s = 10 (squares),
s = 30 (asterisks), s = 100 (plus signs), s = 300 (circles) and s = 1000 (diamonds)
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stone model, the autocorrelations depend very little on m and (pj; j ∈ N ) except for
large values of m, whereas the fixation index varies quite a lot with m.

Figure 5 depicts convergence to an isolation by distance model, as described in
Section 7.1. More specifically, the plots illustrate how the one-dimensional von Mises
models with κ = 5 converge to its continuous analogue in that the autocorrelations
ρ

appr
j approach ρappr(y) quite rapidly as s → ∞ and j/s → y,

Figure 6, on the other hand, illustrates the theory of Section 7.2 when d = 1, for
the symmetric circular stepping stone model. The autocorrelations ρ

appr
j converge to

1 when s → ∞ while j is kept fixed.

10 Discussion

In this paper we developed a general methodology for computing approximations of
autocorrelations, fixation indexes and variance effective population sizes under quasi
equilibrium. We considered a class of population genetic models with geographic
substructure for which migration is translationally invariant and developed a fast
algorithm based on Fourier transforms. This class of models includes, for instance,
circular and torus stepping stone models, von Mises models, hierarchical island mod-
els and Gaussian models. We also considered limits of continuous spatial location
and an infinite lattice of subpopulations. We established connections between our
framework and conditional kinship coefficients on one hand and Moran’s autocorre-
lation functions on the other. Finally, we proved new results for kinship coefficients
between subpopulations under mutation-migration-drift equilibrium, and showed
how they relate to the approximate quasi equilibrium formulas.

Spatial autocorrelation functions (or transformations thereof) can naturally be
estimated from data. Several authors have discussed the degree of information
contained in the autocorrelations, see for instance Slatkin and Arter (1991), Rousset
(1997, 2000) and Sokal et al. (1989, 1997). It follows from the results of Barbujani
(1987) and Hardy and Vekemans (1999), that the fixation index and spatial correla-
tion functions contain complementary information.

Theorem 1 is consistent with these findings, showing that both the fixation index
and autocorrelations are needed in order to compute all S = (S j; j ∈ G) uniquely.
This suggests that both should be used for improving estimates of genetic model
parameters. On the other hand, the conditional kinship coefficients contain no
additional information for the class of models studied in this paper, since

v j = Fappr
ST ρ

appr
j .

Our numerical results indicate that the autocorrelations are quite insensitive to
variations of the overall migration probability

m =
∑

j∈G\0

m j.

On the other hand, the averaged correlograms are useful in determining whether
migration is local or extends over larger regions. Our numerical results for the one-
dimensional von Mises model (cf. Fig. 2) reveal that the local behaviour of ρ

appr
j

around the origin contains substantially more information about the concentration
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parameter κ than does the genetic patch size, i.e. the Euclidean distance | j| when
ρ

appr
j is close to zero.

Several extensions of our work are possible. For instance, it is of interest to
study the quasi equilibrium behavior for different settings, for instance multilocus
autocorrelation functions defined between individuals rather than subpopulations
(Smouse and Peakall 1999), or local autocorrelations functions (Sokal et al. 1998).

Acknowledgements The author wants to express gratitude to Nils Ryman for fruitful discussions
and for providing valuable references. He also thanks an associate editor and a reviewer for
suggesting some improvements of the first submitted manuscript.

Appendix

Proof of Proposition 1 Equation 9 follows immediately from the definition of Vtjk.
In order to prove Eq. 10, we deduce from Eq. 7 that

E( ft, jk|Pt) = E(Ptj Ptk|Pt) + E
(
(1 − Ptj)(1 − Ptk)|Pt

)

= P2
t + (2Pt − 1)E(Ptj − Pt|Pt) + E((Ptj − Pt)(Ptk − Pt)|Pt)

+ (1 − Pt)
2 + (2Pt − 1)E(Ptk − Pt|Pt) + E((Ptj − Pt)(Ptk − Pt)|Pt)

= ft + (2Pt − 1)E(Ptj + Ptk − 2Pt|Pt) + 2E((Ptj − Pt)(Ptk − Pt)|Pt)

= ft + (2Pt − 1)E(Ptj + Ptk − 2Pt|Pt) + 2Pt(1 − Pt)Vtjk

and hence

Vtjk = E( ft, jk|Pt) − ft + (1 − 2Pt)E(Ptj + Ptk − 2Pt|Pt)

2Pt(1 − Pt)

= E( ft, jk|Pt) − ft + (1 − 2Pt)E(Ptj + Ptk − 2Pt|Pt)

1 − ft
.

When {Ptj; j ∈ G} are exchangeable, E(P0
tj|Pt) = E(Ptj − Pt|Pt) is independent of j.

Since

∑

j∈G
γ jE(P0

tj|Pt) = E

⎛

⎝
∑

j∈G
γ j P0

tj|Pt

⎞

⎠ = E(0|Pt) = 0,

E(P0
tj|Pt) = 0 must hold for all j, and so Eq. 11 follows from Eq. 10. ��

Rewriting Eq. 18 as an inf inite series. We can rewrite Eq. 18 as

V =
∞∑

l=0

Bl�̃(BT)l = Q

( ∞∑

l=0

�l
B Q−1�̃ Q−T(�T

B)l

)
QT , (73)

where

B = Q�B Q−1. (74)
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If B is symmetric, we can choose �B = diag(λ j; j ∈ G) to be diagonal in Eq. 74, with
the elements of G ordered so that the real-valued eigenvalues of B appear along the
diagonal in decreasing order

1 = λ0 > |λ1| ≥ . . . ≥ |λs−1| ≥ 0 (75)

with respect to their moduli. The first inequality in Eq. 75 is strict since B corresponds
to an irreducible Markov chain. In general, when B is not be symmetric, we can use
the Perron Frobenius Theorem (see for instance Cox and Miller 1965) and interpret
Eq. 74 as the Jordan canonical form of the non-negative matrix B, with �B an upper
triangular matrix of order s with the possibly complex valued eigenvalues along the
diagonal satisfying (75), with |λ j| the modulus of the complex number λ j. In any case,
the leftmost column of Q is proportional to a right eigenvector 1 of B, and the first
row of Q−1 is proportional to a left eigenvector γ of B, both with eigenvalue λ0 = 1.

Eigenvectors and eigenvalues of B, � and V . We first prove Eq. 34. Indeed, for any
multiindex k = (k1, . . . , kd) ∈ G,

(Bqr)k =
∑

j∈G Bkjqrj

=
∑

j∈G Mjkqrj

=
∑

j∈G mk− j exp
(

2π i
∑d

l=1
rl jl/sl

)
/
√

s

= qrk

∑
j∈G mk− j exp

(
2π i

∑d

l=1
rl( jl − kl)/sl

)

= m̂rqrk. (76)

Therefore Eq. 74 holds with Q having columns qr and �B diagonal with eigenvalues
λr = m̂r for all r ∈ G. It can be shown, analogously to Eq. 34, that

�qr = σ̂rqr (77)

and

Vqr = v̂rqr, (78)

for all r ∈ G, where σ̂r and v̂r are the Fourier coefficients of σ and v, defined
analogously to Eq. 35. Since σ− j = σ j and λ− j = λ j, it follows that σ̂r and v̂r are
both real-valued.

Proof of Theorem 1 In order to verify Eq. 39, we notice, since {qr}r∈G is an orthonor-
mal system of vectors with respect to the scalar product (33), that

v =
∑

r∈G
(v, qr)qr =

∑

r∈G
v̂rqr/

√
s, (79)
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and hence, taking the j:th coordinate of Eq. 79,

v j =
∑

r∈G v̂rqrj/
√

s

=
∑

r∈G v̂r exp
(

2π i
∑d

l=1
rl jl/sl

)
/s

=
∑

r∈G v̂r cos
(

2π
∑d

l=1
rl jl/sl

)
/s, (80)

where in the last step we used that v is symmetric and hence all v̂r real-valued. We
may also deduce Eq. 80 directly, without using Eq. 79, since it is the inverse discrete
Fourier transform of {v̂r}.

The next step is to compute v̂r more explicitly as functions of m̂r and σ̂r. We notice
that Eq. 77 implies � = Q�� Q−1, with �� = diag(σ̂r). Since Eq. 19 simplifies to �̃ =
� − σ̂0q0qT

0 , we can write �̃ = Q��̃ Q−1, with ��̃ = diag(σ̂r1{r �=0}). Analogously, it
follows from Eq. 78 that V = Q�V Q−1, with �V = diag(v̂r). But Q−1 = QT , since
{qr} forms an orthonormal system of eigenvectors, so that Eq. 73 implies

V = Q

( ∞∑

l=0

�l
B��̃

(
�T

B

)l

)
Q−1 =: Q�V Q−1,

where �V = diag(v̂r) has elements

v̂r = 1{r �=0}
∞∑

l=0

m̂l
rσ̂r

¯̂ml
r = 1{r �=0}

σ̂r

1 − |m̂r|2 . (81)

On the other hand, taking the Fourier transform of Eq. 31 and using ̂(m− ∗ m)r =
|m̂r|2, we find that

σ̂r = (1 − v0)

{(
1

2Ne
− 1

2Nc

)
|m̂r|2 + 1

2Nc

}
(82)

for all r ∈ G. Inserting Eqs. 81 and 82 into Eq. 80, we get

v j = (1 − v0)S j. (83)

In particular, inserting j = 0 in Eq. 83, it follows that v0 = S0/(1 + S0). Resubstituting
this result back into Eq. 83, we obtain Eq. 39.

In order to prove Eq. 38, we write

σ j =
∑

r∈G
σ̂r cos

(
2π

d∑

l=1

rl jl/sl

)
/s (84)

as the inverse discrete Fourier transform of {σ̂r}, analogously to Eq. 80, and then
insert Eq. 82 into Eq. 84 and use Eq. 39 with j = 0.
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Equation 40 follows directly from Eqs. 22, 25 and 32, 42 from Eqs. 21 and 32.
Finally, for Eq. 41 we make use of Eqs. 5, 23, 25, 30 and 82 to deduce that

Nappr
eV = 1/

(
2γ�γ T)

= s2/
(

21�1T
)

= s/
(

2
∑

j∈G σ j

)

= s/(2σ̂0)

= s/
(

2
(
1 − Fappr

ST

) {(
1

2Ne
− 1

2Nc

)
|m̂0|2 + 1

2Nc

})

= sNe/
(
1 − Fappr

ST

)
,

where in the last step we used that m̂0 = ∑
j∈G m j = 1. ��

Proof of Proposition 3 Formula (45) follows from the definition of Vtik in Eq. 6, and
by rewriting Eq. 44 as

E(Itj|Pt)
∗ = s

∑
i,k∈G w jik

E((Pti−Pt)(Ptk−Pt)|Pt)
Pt(1−Pt)

∑
i,k∈G w jik

∑
l∈G

E((Ptl−Pt)2|Pt)
Pt(1−Pt)

.

We define Iappr
j by replacing Vtik and Vtll with Vik and Vll in the numerator and

denominator of Eq. 45 respectively. There are 2s terms in the numerator of Iappr
j with

w jik = 1, and for all of them Vik = v j since k − i = ± j and v j = v− j. (Unless j = − j,
then the number of terms is s.) Moreover, there are s terms in the denominator of
Iappr

j with Vll = v0. This yields

Iappr
j = s · 2s · v j

2s · s · v0
= v j

v0
= ρ

appr
j ,

thus proving Eq. 46. ��

Proof of Theorem 2 For simplicity of notation, we drop superscript eq and argu-
ment μ, and write f eq

jk (μ) = f jk, f eq
j (μ) = f j and f eq(μ) = f . Let γ1 = (1 − μ1)

2,
γ2 = (1 − μ2)

2 and γ = γ1γ2 = (1 − μ)2 be the probabilities that none of two genes
mutates during gamete formation, fertilization and the whole reproduction cycle
respectively.
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Consider two genes draw at random from subpopulations 0 and j, with replace-
ment if j = 0. Following Malécot (1950), we can set up equilibrium equations

f j = f0 j

= 1{ j�=0}γ2

(
∑

k �=l
B0k B jlγ1 fl−k+

∑
k

B0k B jk

(
γ1

2Ne
+ γ1

(
1 − 1

2Ne

) f0 − 1
2Nc

1 − 1
2Nc

))

+1{ j=0}
{

1
2Nc

+
(

1 − 1
2Nc

)
γ2

(∑
k �=l

B0k B0lγ1 fl−k

+
∑

k
B0k B0k

(
γ1

2Ne
+ γ1

(
1 − 1

2Ne

) f0 − 1
2Nc

1 − 1
2Nc

))}
(85)

In order to motivate Eq. 85, we start with the j �= 0 term. The probability is γ2 that
none of the two gametes in post-migration pools 0 and j mutates during fertilization.
Given this, the probability is B0k B jlγ1 that the parental genes of the two gametes
from post-migration pools 0 and j originate from subpopulations k and l, and that
none of them mutated during gamete formation. If k �= l, the two genes are drawn
independently from subpopulations k and l, so the probability for them to be IBD is
fl−k, by the equilibrium assumption. If k = l, the probability is γ1/(2Ne) that the two
parental gametes (which are different since the gamete pools are infinite) originate
from the same parental gene and that none of them mutated. The probability is
γ1(1 − 1/(2Ne)) that they originate from different parental genes and that none of
them of them mutates. Given this, the probability is

f0 − 1
2Nc

1 − 1
2Nc

, (86)

for the two parental genes to be IBD. The probability in Eq. 86 is the same as the
IBD probability of two genes that are drawn without replacement from the same
subpopulation.

When j = 0, both genes are drawn from the same subpopulation, the probability
is 1/(2Nc) for them to be the same, and the probability is 1 − 1/(2Nc) for them to be
different. In the latter case we argue as above when j = 0.

A little algebra shows that

1
2Ne

+
(

1 − 1
2Ne

) f0 − 1
2Nc

1 − 1
2Nc

= f0 +
1

2Ne
− 1

2Nc

1 − 1
2Nc

(1 − f0) =: f0 + α(1 − f0).

Hence we can rewrite Eq. 85 as

f j = γ
(∑

k,l
B0k B jl fl−k + α(1 − f0)

∑
k

B0k B jk

)
+ A1{ j=0}

2Nc

= γ
(
(m− ∗ m ∗ f ) j + α(1 − f0)(m− ∗ m) j

) + A1{ j=0}
2Nc

, (87)

with m− and m as defined in Section 5, f = ( f j; j ∈ G), and

A = 1 − γ
(
(m− ∗ m ∗ f )0 + α(1 − f0)(m− ∗ m)0

)
.
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Putting j = 0 in Eq. 87 and solving the resulting equation for A, we find that

f0 = (1 − A) + A
2Nc

⇔ A = 1 − f0

1 − 1
2Nc

. (88)

Taking the Fourier transform of both sides of Eq. 85, solving for f̂r and using the
definitions of α and A, we then obtain

f̂r =
γ |m̂r|2α(1 − f0) + A

2Nc

1 − γ |m̂r|2

= 1 − f0

1 − 1
2Nc

·
γ |m̂r|2

(
1

2Ne
− 1

2Nc

)
+ 1

2Nc

1 − γ |m̂r|2 (89)

for all r ∈ G. We then use Eq. 88 and take the inverse Fourier transform of Eq. 89 in
order to get an explicit expression

f j = 1 − f0

s
(

1 − 1
2Nc

)
∑

r∈G

γ |m̂r|2
(

1
2Ne

− 1
2Nc

)
+ 1

2Nc

1 − γ |m̂r|2 cos

(
2π

d∑

l=1

rl jl
sl

)
(90)

for the equilibrium kinship coefficient. By averaging Eq. 90 over j and using m̂r = 1,
we find that

f = 1
s

∑
j∈G f j

= 1 − f0

s
(

1 − 1
2Nc

) ·
γ

(
1

2Ne
− 1

2Nc

)
+ 1

2Nc

1 − γ
. (91)

When j = 0 is inserted into Eq. 90, we can first solve for f0 and then compute

1
1 − f0

= 1 + 1

s
(

1 − 1
2Nc

)
∑

r∈G

γ |m̂r|2
(

1
2Ne

− 1
2Nc

)
+ 1

2Nc

1 − γ |m̂r|2 cos

(
2π

d∑

l=1

rl jl
sl

)
. (92)

Combining Eqs. 90, 91 and 92 we arrive at

v
eq
j (μ) = f j − f

1 − f

=
1

s
(

1− 1
2Nc

)
∑

r∈G\0

γ |m̂r |2
(

1
2Ne

− 1
2Nc

)
+ 1

2Nc

1−γ |m̂r |2 cos
(

2π
∑d

l=1
rl jl
sl

)

1
1− f0

− 1
s
(

1− 1
2Nc

) · γ
(

1
2Ne

− 1
2Nc

)
+ 1

2Nc

1−γ

= S̃ j(μ)

1 + S̃0(μ)
, (93)
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where

S̃ j(μ) = 1

s
(

1 − 1
2Nc

)
∑

r∈G\0

γ |m̂r|2
(

1
2Ne

− 1
2Nc

)
+ 1

2Nc

1 − γ |m̂r|2 cos

(
2π

d∑

l=1

rl jl
sl

)
.

But Eq. 93 is identical to Eq.48. Formula (50) then follows easily by letting μ → 0.
��
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