Albert and Alfredo

Alfredo Ferella


View page in English
Arbetar vid Fysikum
Telefon 08-553 780 80
Besöksadress Roslagstullsbacken 21 A, plan 5
Rum C4:3071
Postadress Stockholms universitet, Fysikum 106 91 Stockholm


I urval från Stockholms universitets publikationsdatabas
  • 2017. E. Aprile (et al.). Physical Review D 96 (4)

    We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34 kg x 224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6-240) keV(nr). The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and set exclusion limits on this model as well.

  • 2017. E. Aprile (et al.). European Physical Journal C 77 (6)

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant Rn-222 background originating from radon emanation. After inserting an auxiliary 222Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the Rn-222 activity concentration inside the XENON100 detector.

  • 2017. E. Aprile (et al.). European Physical Journal C 77 (5)

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the beta-emitter Kr-85 which is present in the xenon. For XENON1T a concentration of natural krypton in xenon Kr-nat/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10(-15) mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 . 10(5) with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of natKr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.

  • 2017. E. Aprile (et al.). Physical Review D 95 (7)

    A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn-222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn-222. Using the delayed coincidence of Rn-220-Po-216, we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po-212, t(1/2) = (293.9 +/- (1.0)(stat) +/- (0.6)(sys)) ns.

  • 2017. E. Aprile (et al.). Physical Review Letters 118 (10)

    We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 431(-14)(+16) day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9 sigma; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8 sigma, from a previous analysis of a subset of this data, to 1.8 sigma with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7 sigma.

  • 2017. E. Aprile (et al.). Physical Review D 96 (2)

    We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 x 10(3) kg . days. XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe-129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe-129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3 x 10(-38) cm(2) at 100 GeV/c(2). This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.

  • 2017. E. Aprile (et al.). Journal of Cosmology and Astroparticle Physics (10)

    We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c(2) and 122.7 GeV/c(2) are excluded at 3.3 sigma and 9.3 sigma, respectively.

  • 2017. E. Aprile (et al.). Physical Review C 95 (2)

    Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For Xe-124 this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K shell of 124Xe using 7636 kg d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90% credibility limit on the half-life T-1/2 > 6.5 x 10(20) yr. We have also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and found a sensitivity of T-1/2 > 6.1 x 10(22) yr after an exposure of 2 t yr.

  • Artikel DARWIN
    2016. J. Aalbers (et al.). Journal of Cosmology and Astroparticle Physics (11)

    DARk matter WImp search with liquid xenoN (DARWIN(2)) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c(2), such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions,galactic axion-like particles and the neutrinoless double-beta decay of Xe-136, as well as measure the low-energy solar neutrino flux with <1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&D efforts.

  • 2016. E. Aprile (et al.). Physical Review D 94 (9)

    We perform a low-mass dark matter search using an exposure of 30 kg x yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV/c(2) above 1.4 x 10(-41) cm(2) at 90% confidence level.

  • 2016. E. Aprile (et al.). Journal of Cosmology and Astroparticle Physics (4)

    The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80+/-0.15) . 10(-4) (, mainly due to the decay of Rn-222 daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 +/- 0.1) (t.y)(-1) from radiogenic neutrons, (1.8+/-0.3) . 10(-2) (t.y)(-1) from coherent scattering of neutrinos, and less than 0.01 (t.y)(-1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Pro file Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency L-eff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 tonne fiducial volume, the sensitivity reaches a minimum cross section of 1.6 . 10(-47) cm(2) at m(chi) = 50 GeV/c(2).

  • 2016. E. Aprile (et al.). Physical Review D 94 (12)

    We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultralow electromagnetic background of the experiment, similar to 5 x 10(-3) events/(keV(ee) x kg x day)) before electronic recoil rejection, together with the increased exposure of 48 kg x yr, improves the sensitivity. A profile likelihood analysis using an energy range of (6.6-43.3) keV(nr) sets a limit on the elastic, spin-independent WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/c(2), with a minimum of 1.1 x 10(-45) cm(2) at 50 GeV/c(2) and 90% confidence level. We also report updated constraints on the elastic, spin-dependent WIMP-nucleon cross sections obtained with the same data. We set upper limits on the WIMP-neutron (proton) cross section with a minimum of 2.0 x 10(-40) cm(2) (52 x 10(-40) cm(2)) at a WIMP mass of 50 GeV/c(2), at 90% confidence level.

  • 2015. W. Creus (et al.). Journal of Instrumentation 10

    Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field.

Visa alla publikationer av Alfredo Ferella vid Stockholms universitet

Senast uppdaterad: 18 november 2017

Bokmärk och dela Tipsa