Profiles

Gunnar

Gunnar Svensson

Head of Department

View page in English
Arbetar vid Institutionen för material- och miljökemi
Telefon 08-16 45 05
E-post gunnar.svensson@mmk.su.se
Besöksadress Svante Arrhenius väg 16 C
Rum C 414
Postadress Institutionen för material- och miljökemi 106 91 Stockholm

Om mig

Se engelska hemsidan.

Undervisning

Se engelska hemsidan

Forskning

Se engelska hemsidan

Publikationer

I urval från Stockholms universitets publikationsdatabas
  • 2017. Dariusz Wardecki (et al.). Crystal Growth & Design 17 (3), 1285-1292

    The crystal structure of copper hexacyanoferrate (CuHCF), K2x/3Cu[Fe-(CN)(6)](2/3)center dot nH(2)O, with nominal compositions x = 0.0 and x = 1.0 was studied by neutron powder diffraction (NPD) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The compound crystallizes in space group Fm (3) over barm, with a = 10.1036(11) angstrom and a = 10.0588(5) angstrom for x = 0.0 and x = 1.0, respectively. Difference Fourier maps for x = 0.0 show that the coordinated water molecules are positioned at a site 1921 close to vacant N positions in the -Fe-C-N-Cu- framework, while additional zeolitic water molecules are distributed over three sites (8c, 32f, and 48g) in the -Fe-C-N-Cu- framework cavities. The refined water content for x = 0.0 is 16.8(8) per unit cell, in agreement with the ideal 16 (n = 4). For x = 1.0, the refinement suggests that 2.6 K atoms per unit cell (x = 0.98) are distributed only over the sites 8c and 32f in the cavities, and 13.9(7) water per unit cell are distributed over all the four positions. The EXAFS data for Fe, Cu, and K K-edges are in agreement with the NPD data, supporting a structure model with a linear -Fe-C-N-Cu- framework and K+ ions in the cavities.

  • 2016. Dickson O. Ojwang (et al.). Inorganic Chemistry 55 (12), 5924-5934

    Copper hexacyanoferrate, Cu-II[Fe-III(CN)(6)](2/3)center dot nH(2)O, was synthesized, and varied amounts of IC ions were inserted via reduction by K2S2O3 (aq). Ideally, the reaction can be written as Cu-II[Fe-III(CN)(6)](2/3)-nH(2)O + 2x/3K(+) + 2x/3e(-)K(+) <-> K-2x/3 Cu-II[Fe-x(II).Fe-1-x(II),(CN)(6)](2/3)-nH(2)O. Infrared, Raman, and Mossbauer spectroscopy studies show that Fe-II is continuously reduced to Fell with increasing x, accompanied by a decrease of the a-axis of the cubic Fn (3) over barm unit cell. Elemental analysis of K by inductively coupled plasma shows that the insertion only begins when a significant fraction similar to 10% of the Fe-III, has already been reduced. Thermogravimetric analysis shows a fast exchange of water with ambient atmosphere and a total weight loss of similar to 26 wt % upon heating to 180 degrees C, above which the structure starts to decompose. The crystal structures of Cu-III[Fe-III(CN)(6)](2/3)center dot nH(2)O and K2/3Cu[Fe(CN)(6)](2/3)center dot nH(2)O were refined using synchrotron X-ray powder diffraction data. In both, one-third of the Fe(CN)(6) groups are vacant, and the octahedron around Cull is completed by water molecules. In the two structures, difference Fourier maps reveal three additional zeolitic water sites (8c, 32f, and 48g) in the center of the cavities formed by the-Cu-N-C-Fe- framework. The K-containing compound shows an increased electron density at two of these sites (32f and 48g), indicating them to be the preferred positions for the K+ ions.

  • 2016. Lunjie Zeng (et al.). Scientific Reports 6

    Al/AlOx/Al Josephson junctions are the building blocks of a wide range of superconducting quantum devices that are key elements for quantum computers, extremely sensitive magnetometers and radiation detectors. The properties of the junctions and the superconducting quantum devices are determined by the atomic structure of the tunnel barrier. The nanoscale dimension and disordered nature of the barrier oxide have been challenges for the direct experimental investigation of the atomic structure of the tunnel barrier. Here we show that the miniaturized dimension of the barrier and the interfacial interaction between crystalline Al and amorphous AlOx give rise to oxygen deficiency at the metal/oxide interfaces. In the interior of the barrier, the oxide resembles the atomic structure of bulk aluminium oxide. Atomic defects such as oxygen vacancies at the interfaces can be the origin of the two-level systems and contribute to decoherence and noise in superconducting quantum circuits.

  • 2015. Louise Samain (et al.). Journal of Solid State Chemistry 227, 45-54

    Ruddlesden-Popper n=2 member phases Sr3-xYxFe1.25Ni0.75O7-delta, 0 <= x <= 0.75, have been investigated by X-ray and neutron powder diffraction, thermogravimetry and Mossbauer spectroscopy. Both samples as-prepared at 1300 degrees C under N-2(g) flow and samples subsequently air-annealed at 900 degrees C were studied. The as-prepared x=0.75 phase is highly oxygen deficient with delta=1, the O1 atom site being vacant, and the Fe3+/Ni2+ ions having a square pyramidal coordination. For as-prepared phases with lower x values, the Mossbauer spectral data are in good agreement with the presence of both 5- and 4-coordinated Fe3+ ions, implying in addition a partial occupancy of the O3 atom sites that form the basal plane of the square pyramid. The air-annealed x=0.75 sample has a delta value of 0.61(1) and the structure has Fe/Ni ions in both square pyramids and octahedra. Mossbauer spectroscopy shows the phase to contain only Fe3+, implying that all Ni is present as Ni3+. Air-annealed phases with lower x values are found to contain both Fe3+ and Fe4+. For both the as-prepared and the air-annealed samples, the Y3+ cations are found to be mainly located in the perovskite block. The high-temperature thermal expansion of as-prepared and air-annealed x=0.75 phases were investigated by high-temperature X-ray diffraction and dilatometry and the linear thermal expansion coefficient determined to be 14.4 ppm K-1. Electrical conductivity measurements showed that the air-annealed samples have higher conductivity than the as-prepared ones.

  • 2014. Jordi Jacas Biendicho (et al.). Journal of Power Sources 248, 900-904

    A novel neutron diffraction cell has been constructed to allow in-situ studies of the structural changes in materials of relevance to battery applications during charge/discharge cycling. The new design is based on the coin cell geometry, but has larger dimensions compared to typical commercial batteries in order to maximize the amount of electrode material and thus, collect diffraction data of good statistical quality within the shortest possible time. An important aspect of the design is its modular nature, allowing flexibility in both the materials studied and the battery configuration. This paper reports electrochemical tests using a Nickel-metal-hydride battery (Ni-MH), which show that the cell is able to deliver 90% of its theoretical capacity when using deuterated components. Neutron diffraction studies performed on the Polaris diffractometer using nickel metal and a hydrogen-absorbing alloy (MH) clearly show observable changes in the neutron diffraction patterns as a function of the discharge state. Due to the high quality of the diffraction patterns collected in-situ (i.e. good peak-to-background ratio), phase analysis and peak indexing can be performed successfully using data collected in around 30 min. In addition to this, structural parameters for the beta-phase (charged) MH electrode obtained by Rietveld refinement are presented.

Visa alla publikationer av Gunnar Svensson vid Stockholms universitet

Senast uppdaterad: 5 juli 2017

Bokmärk och dela Tipsa