New article in Climate of the Past

Sea surface temperature evolution of the North Atlantic Ocean 34 million years ago as Antarctica glaciated-signals from ancient algae remains.

Śliwińska, K.K., Coxall, H.K., Hutchinson, D.K., Liebrand, D., Schouten, S., and de Boer, A.M., 2023. Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene transition. Clim. Past: 19, 123–140.

https://doi.org/10.5194/cp-19-123-2023

 

Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene transition

Abstract
A major step in the long-term Cenozoic evolution toward a glacially driven climate occurred at the Eocene–Oligocene transition (EOT), ∼34.44 to 33.65 million years ago (Ma). Evidence for high-latitude cooling and increased latitudinal temperature gradients across the EOT has been found in a range of marine and terrestrial environments. However, the timing and magnitude of temperature change in the North Atlantic remains highly unconstrained. Here, we use two independent organic geochemical palaeothermometers to reconstruct sea surface temperatures (SSTs) from the southern Labrador Sea (Ocean Drilling Program – ODP Site 647) across the EOT. The new SST records, now the most detailed for the North Atlantic through the 1 Myr leading up to the EOT onset, reveal a distinctive cooling step of ∼3 ∘C (from 27 to 24 ∘C), between 34.9 and 34.3 Ma, which is ∼500 kyr prior to Antarctic glaciation. This cooling step, when compared visually to other SST records, is asynchronous across Atlantic sites, signifying considerable spatiotemporal variability in regional SST evolution. However, overall, it fits within a phase of general SST cooling recorded across sites in the North Atlantic in the 5 Myr bracketing the EOT.

Such cooling might be unexpected in light of proxy and modelling studies suggesting the start-up of the Atlantic Meridional Overturning Circulation (AMOC) before the EOT, which should warm the North Atlantic. Results of an EOT modelling study (GFDL CM2.1) help reconcile this, finding that a reduction in atmospheric CO2 from 800 to 400 ppm may be enough to counter the warming from an AMOC start-up, here simulated through Arctic–Atlantic gateway closure. While the model simulations applied here are not yet in full equilibrium, and the experiments are idealised, the results, together with the proxy data, highlight the heterogeneity of basin-scale surface ocean responses to the EOT thermohaline changes, with sharp temperature contrasts expected across the northern North Atlantic as positions of the subtropical and subpolar gyre systems shift. Suggested future work includes increasing spatial coverage and resolution of regional SST proxy records across the North Atlantic to identify likely thermohaline fingerprints of the EOT AMOC start-up, as well as critical analysis of the causes of inter-model responses to help better understand the driving mechanisms.

Figure 1The late Eocene (magnetic polarity Chron 13; 33.705–33.157 Ma (GTS2012)) location of Site 647 (ODP Leg 105) and other sites studied for temperature proxies (pollen in ODP 913B, ODP 643, ODP 985: Eldrett et al., 2009; alkenones in DSDP 336, ODP 913B, and IODP U1404: Liu et al., 2009, 2018; glycerol dialkyl glycerol tetraethers (GDGTs) in Kysing-4: Śliwińska et al., 2019) referred to in the text. The palaeogeographic map is modified after Arthur et al. (1989), Piepjohn et al. (2016), Śliwińska et al. (2019), and references therein. Abbreviated oceanic features identified are the Feni Drift (FD) (Davies et al., 2001), Judd Falls Drift (JFD) (Hohbein et al., 2012), Greenland–Scotland Ridge (GSR), and Charlie–Gibbs Fracture Zone (CGFZ). The red and blue lines labelled as “extension of the warm water pool” and “extension of the cold water pool”, respectively, represent the positions of surface ocean gyre systems that expand with a late Eocene AMOC switched on in our model experiments.