Dari Kimanius

Dari Kimanius


Visa sidan på svenska
Works at Department of Biochemistry and Biophysics
Visiting address Tomtebodavägen 23
Postal address Institutionen för biokemi och biofysik 106 91 Stockholm


Research group: Erik Lindahl


A selection from Stockholm University publication database
  • 2016. Dari Kimanius (et al.). eLIFE 5

    By reaching near-atomic resolution for a wide range of specimens, single-particle cryo-EM structure determination is transforming structural biology. However, the necessary calculations come at large computational costs, which has introduced a bottleneck that is currently limiting throughput and the development of new methods. Here, we present an implementation of the RELION image processing software that uses graphics processors (GPUs) to address the most computationally intensive steps of its cryo-EM structure determination workflow. Both image classification and high-resolution refinement have been accelerated more than an order-of-magnitude, and template-based particle selection has been accelerated well over two orders-of-magnitude on desktop hardware. Memory requirements on GPUs have been reduced to fit widely available hardware, and we show that the use of single precision arithmetic does not adversely affect results. This enables high-resolution cryo-EM structure determination in a matter of days on a single workstation.

  • 2015. Dari Kimanius (et al.). Journal of Chemical Theory and Computation 11 (7), 3491-3498

    The small-angle X-ray scattering (SAXS) methodology enables structural characterization of biological macromolecules in solution. However, because SAXS provides low-dimensional information, several potential structural configurations can reproduce the experimental scattering profile, which severely complicates the structural refinement process. Here, we present a bias-exchange metadynamics refinement protocol that incorporates SAXS data as collective variables and therefore tags all possible configurations with their corresponding free energies, which allows identification of a unique structural solution. The method has been implemented in PLUMED and combined with the GROMACS simulation package, and as a proof of principle, we explore the Trp-cage protein folding landscape.

  • 2017. Alan Brown (et al.). Nature Structural & Molecular Biology 24 (10), 866-869

    Mammalian mitochondrial ribosomes (mitoribosomes) have less rRNA content and 36 additional proteins compared with the evolutionarily related bacterial ribosome. These differences make the assembly of mitoribosomes more complex than the assembly of bacterial ribosomes, but the molecular details of mitoribosomal biogenesis remain elusive. Here, we report the structures of two late-stage assembly intermediates of the human mitoribosomal large subunit (mt-LSU) isolated from a native pool within a human cell line and solved by cryo-EM to similar to 3-angstrom resolution. Comparison of the structures reveals insights into the timing of rRNA folding and protein incorporation during the final steps of ribosomal maturation and the evolutionary adaptations that are required to preserve biogenesis after the structural diversification of mitoribosomes. Furthermore, the structures redefine the ribosome silencing factor (RsfS) family as multifunctional biogenesis factors and identify two new assembly factors (L0R8F8 and mt-ACP) not previously implicated in mitoribosomal biogenesis.

Show all publications by Dari Kimanius at Stockholm University

Last updated: May 25, 2018

Bookmark and share Tell a friend