Heinrich Dircksen

Heinrich Dircksen


Visa sidan på svenska
Works at Department of Zoology
Telephone 08-16 40 76
Visiting address Svante Arrheniusväg 18 B
Room D 443
Postal address Zoologiska institutionen: Funktionell zoomorfologi 106 91 Stockholm

About me

I am interested in neuropeptides and endocrine regulations in insects and crustaceans. Especially in Drosophila melanogaster and Daphnia species, I am studying anatomy, molecular/genomic biology, biochemistry and physiology of their (neuro)endocrine systems.

See e.g. project: Neuropeptides and endocrine regulations in the water flea Daphnia


A selection from Stockholm University publication database
  • 2020. Martha A. Polanska (et al.). Cell and Tissue Research

    Terrestrial hermit crabs of the genus Coenobita display strong behavioral responses to volatile odors and are attracted by chemical cues of various potential food sources. Several aspects of their sense of aerial olfaction have been explored in recent years including behavioral aspects and structure of their peripheral and central olfactory pathway. Here, we use classical histological methods and immunohistochemistry against the neuropeptides orcokinin and allatostatin as well as synaptic proteins and serotonin to provide insights into the functional organization of their primary olfactory centers in the brain, the paired olfactory lobes. Our results show that orcokinin is present in the axons of olfactory sensory neurons, which target the olfactory lobe. Orcokinin is also present in a population of local olfactory interneurons, which may relay lateral inhibition across the array of olfactory glomeruli within the lobes. Extensive lateral connections of the glomeruli were also visualized using the histological silver impregnation method according to Holmes-Blest. This technique also revealed the structural organization of the output pathway of the olfactory system, the olfactory projection neurons, the axons of which target the lateral protocerebrum. Within the lobes, the course of their axons seems to be reorganized in an axon-sorting zone before they exit the system. Together with previous results, we combine our findings into a model on the functional organization of the olfactory system in these animals.

  • 2019. Jason Hill (et al.). Science Advances 5 (6)

    Chromosome evolution presents an enigma in the mega-diverse Lepidoptera. Most species exhibit constrained chromosome evolution with nearly identical haploid chromosome counts and chromosome-level gene collinearity among species more than 140 million years divergent. However, a few species possess radically inflated chromosomal counts due to extensive fission and fusion events. To address this enigma of constraint in the face of an exceptional ability to change, we investigated an unprecedented reorganization of the standard lepidopteran chromosome structure in the green-veined white butterfly (Pieris napi). We find that gene content in P. napi has been extensively rearranged in large collinear blocks, which until now have been masked by a haploid chromosome number close to the lepidopteran average. We observe that ancient chromosome ends have been maintained and collinear blocks are enriched for functionally related genes suggesting both a mechanism and a possible role for selection in determining the boundaries of these genome-wide rearrangements.

  • 2019. Peter Klepsatel (et al.). Journal of Experimental Biology 222 (10)

    Whether the character of developmental plasticity is adaptive or non-adaptive has often been a matter of controversy. Although thermal developmental plasticity has been studied in Drosophila for several traits, it is not entirely clear how it affects reproductive fitness. We, therefore, investigated how developmental temperature affects reproductive performance (early fecundity and egg-to-adult viability) of wild-caught Drosophila melanogaster. We have tested competing hypotheses on the character of developmental thermal plasticity using a full factorial design with three developmental and adulthood temperatures within the natural thermal range of this species. To account for potential intraspecific differences, we examined flies from tropical (India) and temperate (Slovakia) climate zones. Our results show that flies from both populations raised at intermediate developmental temperature (25°C) have comparable or higher early fecundity and fertility at all tested adulthood temperatures, while lower (17°C) or higher developmental temperatures (29°C) did not entail any advantage under the tested thermal regimes. Importantly, the superior thermal performance of flies raised at 25°C is apparent even after taking two traits positively associated with reproductive output into account – body size and ovariole number. Thus, in Drosophila melanogaster, development at a given temperature does not necessarily provide any advantage at this thermal environment in terms of reproductive fitness. Our findings strongly support the optimal developmental temperature hypothesis which claims that at different thermal environments the highest fitness is achieved when an organism is raised at its optimal developmental temperature.

  • 2018. Megan Brooke-Jones, Martina Gáliková, Heinrich Dircksen. Toxins 10 (527)

    The non-proteinogenic amino acid beta-methyl-amino-l-alanine (BMAA) is a neurotoxin produced by cyanobacteria. BMAA accumulation in the brain of animals via biomagnification along the food web can contribute to the development of neurodegenerative diseases such as Amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC), the latter being associated with a loss of dopaminergic neurons. Daphnia magna is an important microcrustacean zooplankton species that plays a key role in aquatic food webs, and BMAA-producing cyanobacteria often form part of their diet. Here, we tested the effects of BMAA on putative neurodegeneration of newly identified specific dopaminergic neurons in the optic ganglia/brain complex of D. magna using quantitative tyrosine-hydroxylase immunohistochemistry and fluorescence cytometry. The dopaminergic system was analysed in fed and starved isogenic D. magna adults incubated under different BMAA concentrations over 4 days. Increased BMAA concentration showed significant decrease in the stainability of dopaminergic neurons of D. magna, with fed animals showing a more extreme loss. Furthermore, higher BMAA concentrations tended to increase offspring mortality during incubation. These results are indicative of ingested BMAA causing neurodegeneration of dopaminergic neurons in D. magna and adversely affecting reproduction. This may imply similar effects of BMAA on known human neurodegenerative diseases involving dopaminergic neurons.

  • 2018. Martina Gáliková, Heinrich Dircksen, Dick R. Nässel. PLOS Genetics

    Animals need to continuously adjust their water metabolism to the internal and external conditions. Homeostasis of body fluids thus requires tight regulation of water intake and excretion, and a balance between ingestion of water and solid food. Here, we investigated how these processes are coordinated in Drosophila melanogaster. We identified the first thirst-promoting and anti-diuretic hormone of Drosophila, encoded by the gene Ion transport peptide (ITP). This endocrine regulator belongs to the CHH (crustacean hyperglycemic hormone) family of peptide hormones. Using genetic gain- and loss-of-function experiments, we show that ITP signaling acts analogous to the human vasopressin and renin-angiotensin systems; expression of ITP is elevated by dehydration of the fly, and the peptide increases thirst while repressing excretion, promoting thus conservation of water resources. ITP responds to both osmotic and desiccation stress, and dysregulation of ITP signaling compromises the fly’s ability to cope with these stressors. In addition to the regulation of thirst and excretion, ITP also suppresses food intake. Altogether, our work identifies ITP as an important endocrine regulator of thirst and excretion, which integrates water homeostasis with feeding of Drosophila.

  • 2017. Yunfei Sun (et al.). Journal of Crustacean Biology 37 (5), 521-528

    Predators may be exposed to different prey types simultaneously, and so may select certainprey types over others. We examined prey selection, predation rate, and foraging behaviourof the swimming crab Portunus trituberculatus (Miers, 1876) provided with three types of clams, the Manila Ruditapes philippinarum (Adams & Reeve, 1850), bloody Scapharca subcrenata (Lischke,1896), and hard Meretrix meretrix (Linnaeus, 1758) clams in laboratory experiments. When provided will all three possible prey simultaneously, crabs exhibited higher preference for R. philippinarum over S. subcrenata and M. meretrix (Chesson’s selectivity index; P = 0.003). In the single-prey experiments, predation rates were signifcantly higher on R. philippinarum and S. subcrenata than on M. meretrix (P = 0.002). Video analysis revealed that prey type signifcantly affected both the proportion of time crabs spent on searching, and the probability of consumption upon capture. The proportion of time crabs spent on handling (P = 0.171), the encounter rate (P = 0.918), and the probability of capture upon encounter (P = 0.456), however, were not signifcantly affected by prey types. Handling time per prey was not signifcantly different among clam species. For the crab, prey proftability (energy intake perunit handling time) of R. philippinarum was similar to that of S. subcrenata, in both cases being signifcantly higher than that of M. meretrix (P ﹤ 0.001). The relative frequencies of changing from searching to handling were significantly higher for M. meretrix than for R. philippinarum and S. subcrenata (P = 0.007). These results suggest that the probability of consumption upon capture explained the observed selection by crabs. Furthermore, prey proftability, shell strength, and shell width, are important elements to affect prey selection of the crab.

  • 2016. Bruno Campos (et al.). Environmental Science and Technology 50 (11), 6000-6007

    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants. As endocrine disruptive contaminants in the environment, SSRIs affect reproduction in aquatic organisms. In the water flea Daphnia magna, SSRIs increase offspring production in a food ration-dependent manner. At limiting food conditions, females exposed to SSRIs produce more but smaller offspring, which is a maladaptive life-history strategy. We asked whether increased serotonin levels in newly identified serotonin-neurons in the Daphnia brain mediate these effects. We provide strong evidence that exogenous SSRI fluoxetine selectively increases serotonin-immunoreactivity in identified brain neurons under limiting food conditions thereby leading to maladaptive offspring production. Fluoxetine increases serotonin-immunoreactivity at low food conditions to similar maximal levels as observed under high food conditions and concomitantly enhances offspring production. Sublethal amounts of the neurotoxin 5,7-dihydroxytryptamine known to specifically ablate serotonin-neurons markedly decrease serotonin-immunoreactivity and offspring production, strongly supporting the effect to be serotonin-specific by reversing the reproductive phenotype attained under fluoxetine. Thus, SSRIs impair serotonin-regulation of reproductive investment in a planktonic key organism causing inappropriately increased reproduction with potentially severe ecological impact.

  • 2016. Timm Kress, Steffen Harzsch, Heinrich Dircksen. Cell and Tissue Research 363 (3), 649-677

    We reveal the neuroanatomy of the optic ganglia and central brain in the water flea Daphnia magna by use of classical neuroanatomical techniques such as semi-thin sectioning and neuronal backfilling, as well as immunohistochemical markers for synapsins, various neuropeptides and the neurotransmitter histamine. We provide structural details of distinct neuropiles, tracts and commissures, many of which were previously undescribed. We analyse morphological details of most neuron types, which allow for unravelling the connectivities between various substructural parts of the optic ganglia and the central brain and of ascending and descending connections with the ventral nerve cord. We identify 5 allatostatin-A-like, 13 FMRFamide-like and 5 tachykinin-like neuropeptidergic neuron types and 6 histamine-immunoreactive neuron types. In addition, novel aspects of several known pigment-dispersing hormone-immunoreactive neurons are re-examined. We analyse primary and putative secondary olfactory pathways and neuronal elements of the water flea central complex, which displays both insect- and decapod crustacean-like features, such as the protocerebral bridge, central body and lateral accessory lobes. Phylogenetic aspects based upon structural comparisons are discussed as well as functional implications envisaging more specific future analyses of ecotoxicological and endocrine disrupting environmental chemicals.

  • 2015. Georg Mayer (et al.). Journal of Comparative Neurology 523 (13), 1865-1885

    Pigment-dispersing factor (PDF) denotes a conserved family of homologous neuropeptides present in several invertebrate groups, including mollusks, nematodes, insects and crustaceans (referred to here as pigment-dispersing hormone, PDH). Regarding their encoding genes (pdf, pdh), insects possess only one, nematodes two, and decapod crustaceans up to three, but their phylogenetic relationship is unknown. To shed light on the origin and diversification of pdf/pdh homologs in Panarthropoda (Onychophora + Tardigrada + Arthropoda) and other molting animals (Ecdysozoa), we analyzed the transcriptomes of five distantly related onychophorans and a representative tardigrade and searched for putative pdf homologs in publically available genomes of other protostomes. This revealed only one pdf homolog in several mollusk and annelid species, two in Onychophora, Priapulida and Nematoda, and three in Tardigrada. Phylogenetic analyses suggest that the last common ancestor of Panarthropoda possessed two pdf homologs, one of which was lost in the arthropod or arthropod/tardigrade lineage, followed by subsequent duplications of the remaining homolog in some taxa. Immunolocalization of PDF-like peptides in six onychophoran species, using a broadly reactive antibody that recognizes PDF/PDH peptides in numerous species, revealed an elaborate system of neurons and fibers in their central and peripheral nervous systems. Large varicose projections in the heart suggest that the PDF neuropeptides functioned as both circulating hormones and locally released transmitters in the last common ancestor of Onychophora and Arthropoda. The lack of PDF-like immunoreactive somata associated with the onychophoran optic ganglion conforms to the hypothesis that onychophoran eyes are homologous to the arthropod median ocelli.

  • 2014. Christiane Hermann-Luibl (et al.). Journal of Neuroscience 34 (29), 9522-9536

    The clock network of Drosophila melanogaster expresses various neuropeptides, but a function in clock-mediated behavioral control was so far only found for the neuropeptide pigment dispersing factor (PDF). Here, we propose a role in the control of behavioral rhythms for the ion transport peptide (ITP), which is expressed in the fifth small ventral lateral neuron, one dorsal lateral neuron, and in only a few nonclock cells in the brain. Immunocytochemical analyses revealed that ITP, like PDF, is most probably released in a rhythmic manner at projection terminals in the dorsal protocerebrum. This rhythm continues under constant dark conditions, indicating that ITP release is clock controlled. ITP expression is reduced in the hypomorph mutant ClkAR, suggesting that ITP expression is regulated by CLOCK. Using a genetically encoded RNAi construct, we knocked down ITP in the two clock cells and found that these flies show reduced evening activity and increased nocturnal activity. Overexpression of ITP with two independent timeless-GAL4 lines completely disrupted behavioral rhythms, but only slightly dampened PER cycling in important pacemaker neurons, suggesting a role for ITP in clock output pathways rather than in the communication within the clock network. Simultaneous knockdown (KD) of ITP and PDF made the flies hyperactive and almost completely arrhythmic under constant conditions. Under light-dark conditions, the double-KD combined the behavioral characteristics of the single-KD flies. In addition, it reduced the flies' sleep. We conclude that ITP and PDF are the clock's main output signals that cooperate in controlling the flies' activity rhythms.

Show all publications by Heinrich Dircksen at Stockholm University

Last updated: April 3, 2020

Bookmark and share Tell a friend