Stockholm university logo, link to start page
Gå till denna sida på svenska webben

Graph theory

In this course you will become familiar with the concepts of graph theory and learn to make mathematically rigorous arguments about graphs.

Basic concepts of graph theory: degree, distance, diameter, matching etc. Theory for matchings, in particular for bipartite graphs. Structure theorems about 2- and 3- connected components of graphs, also Mader's and Menger's Theorems. Theory about minors, planarity. Colouring of various kinds, Perfect graphs, Hadwiger's conjecture, random graphs and the probabilistic method.

This course replaces MM8011 Combinatorics III.

This course is given jointly with KTH, and information about schedule, course literature etc. can be found on KTH's pages - see links below.

  • Course structure

    The course consists of one element.

    Teaching format

    Instruction is given in the form of lectures and exercises.


    The course is assessed through written and oral examination.


    A list of examiners can be found on

    Exam information

  • Schedule

    The schedule will be available no later than one month before the start of the course. We do not recommend print-outs as changes can occur. At the start of the course, your department will advise where you can find your schedule during the course.

    Schedule for SF2740 at KTH

    Note that semesters do not always start on the same day at Stockholm University and KTH, so this course may begin before the official first day of the semester at Stockholm University.

  • Course literature

    Note that the course literature can be changed up to two months before the start of the course.

    See course information for SF2740 at KTH

  • More information

    New student
    During your studies

    Note that if you have applied to and are admitted to this course, you register for the course at Stockholm University, not KTH.

    Course web

    The course web should be linked from this page before the start of the semester:

    Open course pages at KTH

    If you are admitted to this course at Stockholm University this does not make you a KTH student and will not receive a KTH student account, but the course web should still be available without such an account.

  • Contact