Malin E. Kylander, Anna Plikk, Johan Rydberg, Ludvig Löwemark, J. Sakari Salonen, María Fernández-Fernández and Karin Helmens

QR Quaternary Research journal logo

Abstract
Biological proxies from the Sokli Eemian (Marine Isotope Stage 5e) paleolake sequence from northeast Finland have previously shown that, unlike many postglacial records from boreal sites, the lake becomes increasingly eutrophic over time. Here, principal components (PC) were extracted from a high resolution multi-element XRF core scanning dataset to describe minerogenic input from the wider catchment (PC1), the input of S, Fe, Mn, and Ca-rich detrital material from the surrounding Sokli Carbonatite Massif (PC2), and chemical weathering (PC3). Minerogenic inputs to the lake were elevated early in the record and during two abrupt cooling events when soils and vegetation in the catchment were poor. Chemical weathering in the catchment generally increased over time, coinciding with higher air temperatures, catchment productivity, and the presence of acidic conifer species. Abiotic edaphic processes play a key role in lake ontogeny at this site stemming from the base cation- and nutrient-rich bedrock, which supports lake alkalinity and productivity. The climate history at this site, and its integrated effects on the lake system, appear to override development processes and alters its long-term trajectory.

Link to the article