peer-reviewed scientific journal publications
21 Chen, D., et al., 2020. Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus B: Chemical and Physical Meteorology: 72, 1, 1–13. https://doi.org/10.1080/16000889.2020.1794236
20 Edgar, K. M., Bohaty, S. M., Coxall, H. K., Bown, P. R., Batenburg, S. J., Lear, C. H., and Pearson, P. N., 2020. New composite bio- and isotope stratigraphies spanning the Middle Eocene Climatic Optimum at tropical ODP Site 865 in the Pacific Ocean. J. Micropalaeontol.: v. 39, no. 2, p. 117–138. https://doi.org/10.5194/jm-39-117-2020.
19 McNeill, L., Dugan, B., Petronotis, K., Milliken, K., Francis, J., and the Expedition 362 Scientists (incl. Backman, J.), 2020. Late Miocene wood recovered in Bengal-Nicobar submarine fan sediments by IODP Expediiton 362. Scientific Drilling: 27, 49–52. https:// doi.org/10.5194/sd-27-49-2020
18 Kharbush, J.J., Close, H.G., Van Mooy, B.A.S., Arnosti, C., Smittenberg, R.H., Le Moigne, F.A.C., Mollenhauer, G., Scholz-Böttcher, B., Obreht, I., Koch, B.P., Becker, K.W., Iversen, M.H., and Mohr, W., 2020. Particulate Organic Carbon Deconstructed: Molecular and Chemical Composition of Particulate Organic Carbon in the Ocean. Front. Mar. Sci. 7:518. doi: 10.3389/fmars.2020.00518
17 Sjöberg, S., Stairs, C., Allard, B., Hallberg, R., Homa, F., Martin, T., Etterna, T.J.G., and Dupraz, C.,2020. Bubble biofilm: Bacterial colonization of air-air interface. Biofilm: 2. https://doi.org/10.1016/j.bioflm.2020.100030
16 Pérez, L. F., Jakobsson, M., Funck, T., Andresen, K. J, Nielsen, T., O'Regan, M., and Mørk, F., 2020. Late Quaternary sedimentary processes in the central Arctic Ocean inferred from geophysical mapping. Geomorphology: 107309, doi: https://doi.org/10.1016/j.geomorph.2020.107309.
15 Muschitiello, F., O'Regan, M., Martens, J., West, G., Gustafsson, Ö. and Jakobsson, M., 2020. A new 30 000-year chronology for rapidly deposited sediments on the Lomonosov Ridge using bulk radiocarbon dating and probabilistic stratigraphic alignment. Geochronology, 2(1), 81–91. doi:10.5194/gchron-2-81-2020.
14 Jakobsson, M., 2020. Tracking the rapid pace of a retreating ice sheet. Science, 368(6494), 939–940. doi:10.1126/science.abc3583.
13 Tollefsen, E., B-Z, T., Mörth, C-M., Brüchert, V., Lee, C. & Skelton, A., 2020. Ikaite nucleation at 35°C challenges the use of glendonite as a paleotemperature indicator. Scientific Reports. http://doi.org/10.1038/s41598-020-64751-5
12 Thornton, B.F., 2020. Orderly as a swarm of bees. Nat Rev Chem. https://doi.org/10.1038/s41570-020-0188-x
11 Berchet, A., Pison, I., Crill, P.M., Thornton, B.F., Bousquet, P., Thonat, T., Hocking, T., Thanwerdas, J., Paris, J-D. and Saunois, M., 2020. Using ship-borne observations of methane isotopic ratio in the Arctic Ocean to understand methane sources in the Arctic. Atmos. Chem. Phys., 20, 3987–3998, https://doi.org/10.5194/acp-20-3987-2020
10 Jansen, J., Thornton, B.F., Cortés, A., Snöälv, J., Wik, M., MacIntyre, S., and Crill, P.M., 2020. Drivers of diffusive CH4 emissions from shallow subarctic lakes on daily to multi-year timescales. Biogeosciences, 17, 1911–1932, https://doi.org/10.5194/bg-17-1911-2020
9 Schenk, F., Bennike, O., Väliranta, M., Avery, R., Björck, S., and Wohlfarth, B., 2020. Floral evidence for high summer temperatures in southern Scandinavia during 15–11 cal ka BP. Quaternary Science Reviews: 233, 106243. https://www.sciencedirect.com/science/article/pii/S027737912030024X?via%3Dihub
8 Thornton, B. F., Prytherch, J., Andersson, K. , Brooks, I. M. , Salisbury, D. , Tjernström, M. , and Crill, P. M., 2020. Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions. Science Advances: 6 (5), 7934.  doi:10.1126/sciadv.aay7934.
7 Hogan, K. A., Jakobsson, M., Mayer, L., Reilly, B. T., Jennings, A. E., Stoner, J. S., Nielsen, T., Andresen, K. J., Nørmark, E., Heirman, K. A., Kamla, E., Jerram, K., Stranne, C., and Mix, A., 2020. Glacial sedimentation, fluxes and erosion rates associated with ice retreat in Petermann Fjord and Nares Strait, north-west Greenland. The Cryosphere:14, 1,  261–286. https://doi.org/10.5194/tc-14-261-2020
6 Boskabadi, A., Pitcairn, I.K., Leybourne, M.I., Teagle, D.A.H., Cooper, M.J., Hadizadeh, H., Bezenjani, R.N., and Bagherzadeh, R.M., 2020. Carbonation of ophiolitic ultramafic rocks: Listvenite formation in the Late Cretaceous ophiolites of eastern Iran. Lithos: 352–353, 105307. https://doi.org/10.1016/j.lithos.2019.105307
5 López-Costas, O., Kylander, M., Mattielli, N., Álvarez-Fernández, N., Pérez-Rodríguez, M., Mighall, T., Bindler, R., and Martínez Cortizas, A., 2020. Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. Science of The Total Environment: 710, 136319. https://doi.org/10.1016/j.scitotenv.2019.136319
4 Jakobsson, M., O’Regan, M., Mörth, C.-M., Stranne, C., Weidner, E., Hansson, J., Gyllencreutz, R., Humborg, C., Elfwing, T., Norkko, A., Norkko, J., Nilsson, B., and Sjöström, A., 2020. Potential links between Baltic Sea submarine terraces and groundwater seeping. Earth Surface Dynamics: 8, 1–15. Doi: https://www.earth-surf-dynam.net/8/1/2020/
3 Hirst, C., Andersson, P.S., Kooijman, E., Schmitt, M., Kutscher, L., Maximov, T., Mört, C-M., and Porcelli, D., 2020. Iron isotopes reveal the sources of Fe-bearing particles and colloids in the Lena River basin. Geochimica et Cosmochimica Acta: 269, 678–692. https://doi.org/10.1016/j.gca.2019.11.004
2 Gdaniec, S., Roy-Barman, M., Levier, M., Valk, O., van der Loeff, M.R., Foliot, L., Dapoigny, A., Missiaen, L., Mörth, C-M., and Andersson, P.S., 2020. 231Pa and 230Th in the Arctic Ocean: Implications for boundary scavenging and 231Pa230Th fractionation in the Eurasian Basin. Chemical Geology: 532, 119380. https://doi.org/10.1016/j.chemgeo.2019.119380
1 Ali, R.A.M., Pitcairn, I.K., Maurice, A.E., Azer, M.K., Bakhit, B. R. Mohamed, and Shahien, G., 2020. Petrology and geochemistry of ophiolitic ultramafic rocks and chromitites across the Eastern Desert of Egypt: Insights into the composition and nature of a Neoproterozoic mantle and implication for the evolution of SSZ system. Precambrian Research: 337, 105565. https://doi.org/10.1016/j.precamres.2019.105565