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Abstract

I use Swedish registry data to estimate the distribution of lifetime

earnings returns to college, and to what extent returns vary with ob-

served and unobserved characteristics. Access to high-quality ability

measures also allows me to examine heterogeneity with respect to

cognitive and noncognitive ability. A local IV technique is applied

to recover marginal and average treatment effects in the presence of

selection on gains. The findings support the notion of self-selection,

but mainly on observable characteristics. Moreover, returns vary

substantially with respect to both cognitive and noncognitive ability,

thus supporting the idea of important complementarities between

formal schooling and informal skills.
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Introduction

Research on the returns to education is a classical part of economics. With

a primary focus on standard omitted-variable problems, a large amount of

estimates have been produced using instrumental variable (IV) methods (see

Card, 1999). In a recent paper, however, Carneiro et al. (2011) document

that returns vary and that individuals select into schooling based on their

idiosyncratic gains. With such selection on gains, standard IV identifies local

average treatment effects (LATE) of potentially low external relevance (Angrist

and Imbens, 1995).1 But a potential resolution is provided by the marginal

treatment effect (MTE) approach, a method that falls somewhere in the middle

of the two extremes of reduced form and structural methods (Heckman and

Vytlacil, 1999, 2001, 2005). Using the structure of the Roy model, this approach

allows for heterogeneity in the response to treatment, and estimation of the

distribution of treatment effects using semiparametric methods. Knowledge of

the distribution of effects in turn allows for estimation of a range of summary

treatment effects of interest.

While there is growing interest in this approach, existing applications are

few and have despite heavy data requirements been limited to survey data.

This paper contributes to the MTE literature by estimating lifetime returns to

college in Sweden using a large registry-based data set. The paper has three

objectives: (i) to explore the applicability of the MTE approach and compare

with standard methods; (ii) to provide the first estimates of lifetime returns to

college in Sweden while taking self selection into account; and (iii) to assess the

degree of heterogeneity in returns and the relative importance of heterogeneity

that is observable and unobservable to the researcher. In particular, I will make

use of high-quality data on cognitive and noncognitive abilities to analyze their

influence on returns.2

Such evidence may shed new light on several broader questions. To evaluate

the effects of educational policy, for instance, it is essential to know both who

gains from schooling and how much they gain. An example is the debate on the

1The external relevance of the LATE depends on context and instruments: in some cases it
can be very hard to interpret, in other cases it is more straightforward (e.g., if a certain reform
constitutes the instrument and the effect of the reform is of primary interest).

2There is an important conceptual difference between “abilities”, “skills” and, e.g., “test
scores”. While I use the terms abilities and skills interchangeably, I recognize that my measures
are only assessments (or proxies) of actual ability (or skills). When I describe the data below I
will, however, argue that these proxies are of unusually high reliability.
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optimal size of the college sector, for which it is necessary to concentrate on

the distribution of returns. Exposing such heterogeneity may also deepen the

understanding of earnings inequality in general. A related question is if the

rise in the college premium since the 1980s (Autor et al., 2008) primarily reflects

a general shift in the demand for college-educated workers, or rather changes

in the degree of “school-skill complementarity”, i.e., an increased demand

for college-educated workers equipped with certain skills that are produced

independent of college (Blackburn and Neumark, 1993; Taber, 2001).

Whereas recent work (e.g. Carneiro et al., 2011) has focused heavily on

unobservable heterogeneity, I also address the role of heterogeneity with respect

to observable characteristics. I devote special attention to two high-quality

measures of cognitive and noncognitive ability that are based on high-stake

tests from the mandatory enlistment to the Swedish military. I examine if these

abilities influence returns and assess their relative importance, thus casting new

light on the complementarity of formal education and different skill types.

The study thus relates to the ongoing debate on the role of cognitive and

noncognitive ability for educational and labor market outcomes. The notion of

ability has recently shifted from a simple concept primarily related to IQ, such

as in the single-skill signaling model (Arrow, 1973) and the g factor (Herrnstein

and Murray, 1994), to a multidimensional view that especially recognizes

the importance of noncognitive or "soft" skills. A large literature concerns

the reduced-form earnings returns to various skill measures: some focus on

cognitive skills or IQ (e.g., Murnane et al., 1995; Zax and Rees, 2002); some on

noncognitive and personality traits (e.g., Nyhus and Pons, 2005; Mueller and

Plug, 2006); and others consider both types of skills jointly (e.g., Heineck and

Anger, 2010; Lindqvist and Vestman, 2011).

But these studies rarely address how such skills transmit into earnings

and wages – in particular via endogenous schooling choices. For example, do

those with high IQ earn more because of their IQ as such, or because high IQ

makes educational investments less costly or more beneficial, thus indirectly

causing increased earnings? Some evidence suggests that returns to education

vary with respect to cognitive ability. In two recent Swedish studies, Nordin

(2008) and Öckert (2012) estimate heterogeneous returns relying on selection-on-

observables assumptions. The former finds that the return to a year of schooling

increases at a diminishing rate by level of cognitive ability, the latter that the

return to college is increasing with respect to secondary school GPA. Carneiro
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and Lee (2009) estimate returns to college within the MTE framework using the

National Longitudinal Survey of Youth (NLSY) and find that cognitive skills

are positively related to the return, and at an increasing rate. Heckman et

al. (2006a) is a rare exception that considers multiple skills jointly. Using a

factor structure model, they find that both cognitive and noncognitive skills are

important in explaining several economic and non-economic outcomes within

different schooling groups.

A key difference in this paper is that I apply a semiparametric approach,

with less restrictive parametric assumptions. The main merit, however, is the

data. While most related studies rely on NLSY data, this paper is based on rich

administrative data that cover a large and representative sample of the Swedish

male population. The size of the data set provides more flexibility compared to

previous studies. I use measures of close to full lifetime earnings, minimizing

the influence of life-cycle effects in my estimates (Bhuller et al., 2011). Apart

from enabling me to estimate actual lifetime returns, this aspect of the data also

allows me to explore how estimates vary with the age at which earnings are

observed by the researcher. My ability measures are collected at a uniform age

prior to college, thus offsetting concerns about endogeneity in malleable ability

measures (Hansen et al., 2004). Moreover, my measure of noncognitive ability

is unusual in that it is an overall judgement of psychological capability that

stems from interviews with certified psychologists. This is in contrast with most

related work, which typically relies on combinations of different self-reported

answers about one’s personality.

As instruments for college attendance, I use distance to the closest university

and short-run fluctuations in unemployment and average earnings in the munic-

ipality of residence at the end of high school. I estimate the average treatment

effect of a year of college to be a 4.5 percent increase in lifetime earnings, which

is not very different from what is provided by OLS and standard IV. My findings

are consistent with Carneiro et al. (2011) in that agents select into college based

on individual gains. The positive selection is manifested in that the difference

between the average treatment effect on the treated and the untreated is consis-

tently positive and statistically significant across specifications. While evidence

on unobserved heterogeneity is weak, observed characteristics are shown to

capture a large part of the total heterogeneity that drives self-selection. Finally,

the heterogeneity with respect to both cognitive and noncognitive ability is

substantial, and of comparable magnitude. Those in the bottom of the respective
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ability distributions have strongly negative returns, while those in the top earn

returns that are about twice as high as the average return. My findings thus

corroborate the idea of school-skill complementarities on the labor market.

The rest of this paper is structured as follows. Section 1 provides a brief

theoretical illustration of the college decision. In Section 2, I show how the

generalized Roy model is used to define the MTE, and briefly discuss identifica-

tion and estimation. I describe the data in Section 3 and present the results in

Section 4. I conclude by discussing some implications of my findings.

1 Theoretical Illustration

The decision rule in the Roy model can be seen as a reduced form of a more

elaborate theoretical model. To fix ideas, I will illustrate the college decision

with a discrete-choice model that builds on those in Keane and Wolpin (2001)

and Keane (2002). I extend the model by introducing heterogeneity so that

distinct ability or skill types are allowed to affect the costs and benefits of

acquiring college education. In addition to the assumptions in Keane (2002),

I therefore assume that agents are endowed with a set of abilities A that can

impact on both the indirect time costs and the direct utility (or consumption

value) of going to college, as well as college and non-college earnings.3 The

wage rate in period 1 is w1(A). In the following periods, the wage rate is

w2(A) + β(A) if the agent attended school, and w2(A) otherwise.

For a given ability realization A = a, the value function conditional on

college attendance is

VS | a =max
{h,b}

u [y1 + b + hw1(a)− t, L − h − s(a)]+

ϕ(a) + ρ−1u [w2(a) + β(a)− rb, 1] , (1)

and the value function for not attending is

3The assumptions imply that agents: are infinitely lived in discrete time; decide whether to
attend college in period 1 to a direct cost (e.g., tuition, transaction or moving costs) denoted
t; face a discount factor ρ and interest rate r; can borrow or save b in period 1 with annuity
payments rb from period 2 and onwards; devote time to work h and can work while in college;
receive an exogenous parental transfer y1 in period 1; receive non-monetary utility from college
denoted ϕ(�); receive utility from consumption c and leisure l through a concave utility function
denoted u(c, l) with L ≥ l ≥ 0; and inelastically supply one unit of labor after period 1.
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V0 | a = max
{h,b}

u [y1 + b + w1(a), L − h] + ρ−1u [w2(a)− rb, 1] . (2)

Utility maximization gives

u1(c1, l1) = rρ−1u1(c2, l2) (3)

w1(a)u1(c1, l1) = u2(c1, l1), (4)

as first-order conditions for inter- and intratemporal optimality, respectively,

given interior solutions. A first-order Taylor expansion of VS around V0 at the

point of indifference, combined with the two first-order conditions, gives the

(approximate) decision rule to attend college if and only if

λ−1
1 ϕ(a) + r−1β(a) ≥ w1(a)s(a) + t, (5)

where λ1 = u1(c1, l1). This has several implications. First, parental transfers

y1 affect the decision only through the marginal utility of consumption. If

there is no non-monetary utility from schooling, parental transfers do not affect

the schooling decision.4 If ϕ(a) > 0, then larger parental transfers increase

attendance rates by decreasing the marginal utility of consumption and thereby

increasing ϕ(a)/λ1.5 Second, the higher the interest rate as well as the direct

and time costs of getting a degree, the lower is attendance.

The focus of this paper is on the role of individual abilities. For simplicity,

consider a = a as a unidimensional ability realization such as a standard notion

of cognitive ability. Differentiating the decision rule with respect to a gives:

ϕ
′
(a)/λ1 + ϕ(a)λ

′

1λ−2
1 + r−1β

′
(a) ≥ w

′

1(a)s(a) + w1(a)s
′
(a). (6)

Ability thus affects the decision rule through several mechanisms: (i) through

the non-monetary utility (or consumption value) of college ϕ
′
(a); (ii) indirectly

through the effect of w1(a) on the marginal utility of consumption; (iii) through

the monetary return β(a); (iv) through the time cost of acquiring schooling

s(a); and (v), since s(a) implies foregone earnings, through the opportunity

cost w1(a). For example, assume that ability increases the non-monetary utility

4This changes if agents are credit constrained (Keane, 2002). This dimension has been
frequently studied in the US perspective, but is not explicitly addressed here as absence of
tuition fees suggests it is less important in Sweden.

5This is a well-know result and also pointed out in Keane (2002).
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of college, as well as both first- and second-period earnings (i.e., absolute

advantage), and that it lowers the time cost. In this case the only mechanism

that works against attending college is w
′

1(a)s(a), i.e., first-period earnings at

given time cost. If non-college earnings differ little by ability so that w
′

1(a) is

small or even negative (i.e., comparative advantage), then the effect of ability

on attendance is unambiguously positive. Given positive partial ability effects,

the first two terms in (6) imply that increased ability both increases ϕ(a), thus

inducing more consumption of schooling, and lowers λ1, which indirectly

encourages the individual to consume even more schooling through ϕ(a). The

term r−1β
′
(a) is the effect of ability on the long-run earnings return to college,

which I will examine in detail in the empirical part below.

2 Econometric Model

Empirical work on the returns to schooling traditionally seeks to estimate

variations of the equation

Y = α + βS + X′δ + ε, (7)

where Y denotes earnings, X a vector of covariates, ε the error term, and S can

be years of schooling, a vector of schooling levels, or an indicator variable of,

e.g., college education. While standard omitted-variable bias (S correlated with

ε) has typically received most attention, the issue of heterogeneous “sorting on

gains” (S correlated with β) has recenly been gaining attention. Heckman et al.

(2006b) distinguish between non-essential and essential sources of heterogeneity,

where the former implies sorting by observable and the latter by unobservable

characteristics. Although standard IV may in principle take the former into

account, the latter will typically cause the LATE to diverge from average and

marginal treatment effects.6

To move beyond the LATE, Heckman and Vytlacil (1999, 2001, 2005) general-

ize the MTE first introduced by Björklund and Moffitt (1987). Their approach

has two cornerstones: (i) a choice-theoretic structure, based on the Roy model,

that defines each individual’s margin of indifference towards selecting into

6Under observable heterogeneity, IV may recover average and marginal treatment effects
provided that the functional forms of the regression equations are sufficiently flexible so that the
LATE coincides with these parameters. This would, for example, include interactions between
“sorting variables” and the endogenous treatment variable.
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treatment, and (ii) local IV (LIV) estimation of marginal treatment effects.

The Generalized Roy Model

The generalized Roy model offers a choice structure for policy analysis in which

agents self select into treatment based on their expected gains.7 The decision

rule in the binary version of the model can be seen as the reduced form of a

model of college choice such as the one in Section 1.

Let S be a binary choice indicator with S = 1 if the agent selects into treatment

and S = 0 if not. Moreover, let the potential outcomes in the two states be

Yj = µj(X,A) + Uj, for j = 0,1 (8)

where X is a set of observed regressors, A is a set of observed ability measures,

µj are unknown functions, and Uj are unobserved random variables that need

not be orthogonal to X and A. By inserting (8) for both states into a standard

switching regression, the observed outcome can be written

Y = µ0(X,A) + S [µ1(X,A)− µ0(X,A) + U1 − U0] + U0. (9)

The individual benefit of treatment is the difference between potential outcomes

Y1 − Y0 = µ1(X,A) − µ0(X,A) + U1 − U0. Thus, the average treatment effect

conditional on X = x is given by ATE(x) = µ1(x) − µ0(x), and the average

ability-specific treatment effect conditional on X = x and A = a is ATE(x,a) =

µ1(x,a)− µ0(x,a). Moreover, conditioning on S = 1 or S = 0 defines the average

treatment effect of the treated (ATT) and of the untreated (ATU), respectively.8

Let IS denote the net benefit of selecting into college. An individual’s

decision rule can then be written as a standard latent-variable model of observed

and unobserved components:

IS = µS(Z)− V, (10)

where the individual selects into college (S = 1) if IS ≥ 0, and otherwise not (S =

0). Z is observed and may include some or all of (X,A), but also components

7The original version of the model is due to Roy (1951). Although different in style and
notation, the essence of the model is similar to the one in Willis and Rosen (1979).

8We have ATT(x) = ATE(x)+ E(U1 −U0 | S = 1,X = x) and ATU(x) = ATE(x)+ E(U1 −U0 |
S = 0,X = x), and, for the ability-specific effects, ATT(x,a) = ATE(x,a) + E(U1 − U0 | S =
1,X = x,A = a) and ATU(x,a) = ATE(x,a) + E(U1 − U0 | S = 0,X = x,A = a).
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Z\(X,A) that are excluded from (X,A). V is unobserved and represents a

latent resistance to select into college. Moreover, assume that V is continuous

with a strictly increasing cumulative distribution FV , and that (U0, U1, V) are

conditionally independent of Z. Z\(X,A) thus work as exogenous cost-shifters

that affect the outcome only through the college decision.

Finally, let the propensity score P(z)≡ Pr(S = 1 | Z = z) = FV [µS(z)] denote

the conditional probability of attending college. Define US = FV(V) such that

US represents the quantiles of V and is uniformly distributed. The latent index

can be rewritten using FV(µS(Z)) = P(Z) so that S = 1 if P(Z) > US. Thus,

P(Z) and US represent the observed and unobserved inducement to college:

the higher is P(Z), the more inducement from the observables Z; the lower

is US, the more unobserved inducement. For a high US it thus takes a high

inducement from Z to attend college. If P(Z) = US, the individual is indifferent

to attending.

Estimating the Marginal Treatment Effect

The marginal treatment effect (MTE) is defined by

MTE(x,a,uS) ≡ E(Y1 − Y0 | X = x,A = a,US = uS)

= µ1(x,a)− µ0(x,a) + E [U1 − U0 | US = uS] , (11)

and can be identified across the support of US. Identification is provided by

local perturbations of the propensity score induced by Z\(X,A) at quantile uS.

Persons with high P(Z) identify the return for those with high US, and vice

versa. Local perturbations at high (low) P(Z) induce persons with high (low)

US to change treatment status. If the treatment effect is homogeneous with

respect to US, then the MTE as a function of US is flat. If the MTE correlates

with US conditional on (X,A), then there is unobserved heterogeneity.

A key virtue of the MTE approach is that summary parameters – e.g., the

ATE, ATT, ATU and LATE – can be recovered using estimates of the MTE and

appropriate weights (Heckman et al., 2006b). An average MTE at each level of US

can be obtained by integrating over (X,A) conditional on US = uS. Integrating

over US yields the unconditional ATE. The same procedure, conditioning on

S = 1 or S = 0, gives the unconditional ATT and ATU, respectively.

The ability-specific ATE can be obtained by integrating over X and US while

conditioning on A = a, such that ATE(a) = EX,US|A=a [MTE(x,a,uS)] traces out
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the ATE at a given value of A. However, the interpretation of ATE(a) as the

contribution of ability to the treatment effect will be confounded if there are

heterogeneous treatment effects with respect to variables in X that correlate

with A. An alternative is instead to impose a separable version of equation

(9) with µ0(X,A) = Xδ0 + Aγ0 and µ1(X,A) = Xδ1 + Aγ1. The ability-specific

treatment effect is then given by γ1 − γ0.

Heckman and Vytlacil (1999, 2001, 2005) propose a semiparametric estimator

for the MTE. Their approach relies on that the expected value of Y depends on

P(Z), so that P(Z) serves as a local IV (LIV):

∆LIV(x,a,uS) =
∂E(Y | X = x,A = a, P(Z) = p)

∂p
|p=uS

= MTE(x,a,uS). (12)

The LIV approach thus involves the estimation of the partial derivative of

the conditional expectation of Y with respect to p. In the empirical analysis I

will impose separability, so that the expected value in (12) can be written

E(Y | X = x,A = a, P(Z) = p) = xδ0 + aγ0 + p [x(δ1 − δ0) + a(γ1 − γ0)] + K(p),

(13)

where K(p) = E(U1 − U0 | S = 1, P(Z) = p). Thus, the expected outcome de-

pends on three components: non-college earnings, a treatment effect attributed

to observed characteristics, and K(p), representing an effect attributed to unob-

served characteristics. Using equations (12) and (13), the estimator becomes

MTE(x,a,uS) = x′(δ1 − δ0) + a′(γ1 − γ0) +
∂K(p)

∂p
|p=uS

. (14)

In order to compute the MTE, I thus need to estimate (δ1 − δ0), (γ1 − γ0)

and ∂K(p)/∂p.9 I first estimate the college choice using a probit to obtain

estimates of P(Z). I then estimate the coefficients in equation (13) using a

semiparametric version of double residual regression. Specifically, I estimate

separate local linear regressions of each of the regressors and the outcome

on the predicted propensity score, and retrieve their respective residuals.10

9The implementation follows the guidelines for LIV estimation (“Semiparametric Method 1”)
presented in Heckman et al. (2006b), and in more detail, at: http://jenni.uchicago.edu/underiv.

10Notice that, if nX + nA denotes the total number of variables in (X,A), this step involves
the estimation of in total 2 × (nX + nA) + 1 regressions. This is since equation (13) also contains
interaction terms between each of the variables in (X,A) and the propensity score. The local
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Estimates of δ0, γ0, (δ1 − δ0), and (γ1 − γ0) are then obtained by regressing

the residual associated with the outcome on the residuals associated with the

variables in (X,A). Given these estimates, ∂K(p)/∂p can be estimated using

standard nonparametric techniques.11 Finally, the LIV estimate of MTE(x,a,uS)

is computed by plugging in these estimates into equation (14). I obtain estimates

of the summary treatment effects by applying weights computed from the data

(see Appendix A.1).

An alternative to the semiparametric approach is to impose parametric

assumptions on the unobservables and derive the expression for the MTE. This

approach, relying on joint estimation of the choice and outcome equations as an

endogenous switching regression, is more in line with the work of Willis and

Rosen (1979) and Björklund and Moffitt (1987). Similar to above, the parametric

MTE estimates can be combined with weights to compute summary treatment

effects. As a comparison to the semiparametric approach, I will also report

estimates from a parametric version of the model, assuming joint normality of

(U0,U1,V). In this case,

MTE(x,a,uS) = x′(δ1 − δ0) + a′(γ1 − γ0)− (σ1V − σ2V)Φ
−1(uS), (15)

where E(U1 − U0 | US = uS) = −(σ1V − σ2V)Φ
−1(uS) and has a variance that is

normalized to one.12 I estimate the parameters δ1, δ0, γ1, γ0, σ1V , σ2V and their

standard errors by maximum likelihood and plug them into equation (15) to

obtain estimates of MTE(x,a,uS).

3 Data and Sample Restrictions

My data are based on a random draw of 35 percent of all Swedish men born 1951-

57. The estimation sample is obtained by merging several registers, including

data on earnings, ability assessments, educational attainment, personal and

linear regressions are estimated for the set of values of p that is contained in the support of
P(Z). I use gaussian kernels and select the bandwidth that minimizes the mean leave-out
square prediction error when excluding one percent of the sample at a time. This provides an
estimated optimal bandwidth of 0.16.

11This term is also estimated using local linear regression, gaussian kernels, and an estimated
optimal bandwidth of 0.15.

12Moreover, σ1V = Cov(U1,V), σ0V = Cov(U0,V), and Φ−1(·) is the inverse of the standard
normal cumulative distribution function.
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local labor market characteristics, and data on family members. The analysis is

restricted to men since the ability data come from the military draft.

Measure of Lifetime Earnings. I use individual data on annual labor

earnings from tax-declaration files for the years 1968-2007. These data come

with a number of advantages: they are almost entirely free from attrition and

reporting errors; pertain to all jobs; and are not censored. I approximate log

lifetime earnings by the log of mean (non-missing) earnings over ages 25-50.13

In estimation of the returns to education in general, and when based on an

explicit decision model in particular, the relevant outcome (or maximand in

the model) is the stream of earnings across the lifetime. In contrast, it has been

common in the literature to use single-year or short-run measures, often from

around age 30. Yet, if the age-earnings relationship is systematically related

to components in the earnings equation, the interpretation of such estimates

will be restricted to the age-specific earnings distribution.14 Since I use earnings

data that span over 26 years, such issues will not be of concern here.

Measures of Cognitive and Noncognitive Ability. An attractive feature

of the data set is that it includes information from the mandatory military

enlistment’s tests of cognitive and noncognitive ability. The enlistment typically

takes place at age 18 and includes two days of physical, intellectual, and

psychological tests and evaluations.15

The measure of cognitive ability is based on scores on a test of general

intelligence that has been conducted since the 1940s. The test consists of four

13The actual measure is “Inkomst av tjänst” in Swedish, which includes labor earnings
and labor-related benefits but not income from self employment. Using the slightly different
measure “Arbetsinkomst”, which includes income from self employment, yields very similar
results. I trim annual earnings below 10 000 SEK (just over $1000) and discount to present
values at age 20 using an annual rate of 0.02.

14Empirically, heterogeneous earnings profiles will cause non-classical measurement error
when short-run earnings measures are used as proxies for lifetime earnings, giving rise to a so
called “life-cycle bias” (Haider and Solon, 2006). That such life-cycle effects can be quantitatively
important has been shown in recent studies (e.g., Nybom and Stuhler, 2011; Bhuller et al., 2011).
Using measures from early age appears especially precarious when estimating the returns to
college. College graduates may then only recently have entered the labor market, reflected in
relatively low earnings as of higher rates of on-the-job investments and job switching.

15For the cohorts born 1951-57, only a tiny fraction were exempted from the enlistment,
mainly due to disability. Although the test scores are drawn from a similar age for all, concerns
about joint causality of schooling, latent skills, and test performance (see Hansen et al., 2004)
leads me to restrict the sample to individuals with similar educational attainment at the age
of enlistment by excluding high school dropouts. I examine the sensitivity of the results by
dropping this restriction in Section 4.
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subtests of logical, verbal, and spatial ability, as well as technical comprehension,

each graded on a discrete scale from 1 to 9. These scores are then transformed

to a discrete general variable between 1 and 9 that follows a Stanine scale.16

The measure of noncognitive ability stems from interview-based evaluations

made by certified psychologists. In the interview, the enlistee’s psychological

profile and capacity to fulfill the requirements of military duty are evaluated.

Central to this is the ability to cope with stress and contribute to group cohesion.

Other valued traits include willingness to assume responsibility, independence,

emotional stability, outgoing character, persistence, and ability to take initiatives.

Motivation for joining the military is not considered. The interview is semi-

structured in the sense that the psychologist follows a manual that states topics

to discuss and how to grade answers. Scores are given on four subscales and as

an overall assessment that follows a Stanine scale between 1 and 9.

This variable is valuable in two ways: it provides a general “omnibus”

measure of noncognitive ability and it is based on a psychologist’s experience

from a personal encounter with the individual, which is likely to capture more

aspects of a personality than what can be deduced from survey questionnaires.

Data on Education and Background Characteristics. The education regis-

ter provides data on highest level of education, in what year it was achieved,

and from what type of study program.17 I observe educational attainment at

ages 33-39 and let the college dummy equal one if one has a minimum of three

years of college studies.18 I also obtain various data on personal and family

characteristics. The censuses provide data on birth date, country of birth, and

geographical residence. I use a multigenerational register to identify (biological)

family members and obtain data on number of siblings, father’s and mother’s

years of schooling, and father’s earnings.

16Carlstedt (2000) discusses this test as well as the Swedish military’s history of psychometric
testing in detail. Carlstedt shows that the test is a good measure of general intelligence, in
contrast with tests measuring the more malleable concept of crystallized intelligence. For a
good summary of the military enlistment data, see also Lindqvist and Vestman (2011).

17In the 1970s, when most sample subjects made their college choices, admission to higher
education was largely unrestricted. Most programs were open to anyone with a high school
degree and many faculties had no formal application procedure. There were also no tuition
fees and the system of student aid was generous (see Erikson and Jonsson, 1993).

18In Section 4, I analyze the sensitivity of the results by using a less strict definition of the
college variable (at least one semester). Throughout I also use a measure of years of schooling
to rescale estimates to annualized values.
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Instrumental Variables. As instruments for college attendance, I use dis-

tance to the closest university and short-run fluctuations in unemployment and

average earnings in the municipality of residence at the end of high school. The

distance instrument was first used by Card (1995) and has later been frequently

applied, for example in LIV applications such as Carneiro et al. (2011).19 I con-

struct a continuous measure of typical travel distance by car between the local

municipality in which the individual resided in 1965 and the closest university.

Earlier work has instead typically used either indicators for whether a college

is located in one’s county or, in the continuous case, more crude measures such

as “as the crow flies” generated from geographical coordinates.20

The exogeneity of distance instruments has been questioned in studies based

on both US (Cameron and Taber, 2004) and Swedish data (Kjellstrom and

Regner, 1999). As recommended in these studies, it is thus crucial that I can

condition on measures of ability and family background.

I also include as instruments short-run fluctuations in the local labor market

at the end of high school, conditioned on permanent local labor market condi-

tions.21 While both current and permanent labor market conditions are in the

individual’s information set at the time of the college decision, current condi-

tions do not contain any additional information about the future conditioned on

the permanent component. If this argument holds, then such innovations in the

local labor markets can be excluded from the outcome equation. As measures

of current conditions, I use the unemployment rate and average earnings in the

municipality of residence at age 20. As permanent measures, I use municipal

averages of unemployment and earnings over the years 1968-1988.22

Model Specification and Sample Statistics. The linear-in-parameter rep-

resentations of (X,A) include linear and quadratic terms of cognitive and

19Other papers that have used variations of this instrument include Kling (2001), Currie and
Moretti (2003), Cameron and Taber (2004), and Carneiro and Lee (2009).

20In 1965 there were 998 municipalities in my sample. I consider six university cities:
Stockholm, Uppsala, Gothenburg, Lund, Umeå, and Linköping. Up until the late 1970s, nearly
all Swedish college students studied in one of these cities. Distances are calculated using the
website eniro.se, which is similar to Google Maps.

21Previous papers that have used such instruments include Cameron and Heckman (1998),
Cameron and Taber (2004), Carneiro and Lee (2009), and Carneiro et al. (2011). As Cameron
and Taber (2004) argue, the impact on schooling is theoretically ambiguous: better labor market
conditions increase the opportunity cost of schooling, but also increase the resources of credit
constrained households which may promote educational investment.

22In effect, I use “non-employment”, i.e., one minus the employment rate in the local working-
age population, as my measure of unemployment.
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noncognitive ability measures (A), mother’s and father’s years of schooling,

father’s log earnings, number of siblings, permanent local earnings and unem-

ployment, as well as region and cohort dummies (X). The exclusion restrictions

in Z\(X,A) are linear and quadratic terms in local short-run earnings and

unemployment, and a cubic polynomial of the distance measure. Following

Carneiro et al. (2011), I interact the instruments with linear terms in cognitive

and noncognitive skills, mother’s years of schooling, and number of siblings, as

well as region dummies.23 The sample statistics are presented in Table 1.

4 Empirical Results

The main objective of this paper is to examine the heterogeneity in returns to

college using the MTE approach. However, it is informative to first consider the

standard estimation methods.

Results using Conventional Methods

A natural point of departure is to consider standard OLS. I estimate different

versions of eq. (7), with controls either only entering independently, or also

interacted with the college dummy. To illustrate the role of abilities and se-

lection, the models are estimated both assuming that the ability measures are

unobserved and observed (i.e., excluded and included from the set of controls).

The results are reported in Table 2.

The lifetime return to a year of college is estimated to be around 6 percent

when not controlling for observed abilities (columns 1-2). The estimate falls

to about 4.8 percent when these are included as controls, which illustrates the

potential (positive) ability bias in OLS estimates. Allowing for interactions

between the controls and the college dummy decreases the main estimate

further, and the heterogeneity with respect to the two ability measures appears

quite substantial and of similar magnitude (columns 4-5). The estimates imply

that a one standard deviation increase in cognitive or noncognitive ability

23In Section 4, I test the sensitivity of the results by using only linear terms of the instruments,
as well as no interactions. As a further test, I exclude current labor market conditions from
the set of instruments. Moreover, it has been common in previous applications to include
variables in the outcome equation that are not in the selection equation, e.g. experience and
local earnings and unemployment at prime age. As such variables are likely post-determined, I
avoid doing so in the main analysis. However, I will present estimates from such specifications
in the sensitivity analysis.
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increases the return to a year of college by around 1 percentage point. Even

these naive estimates thus suggest that there may be considerable variation in

individual returns.

As opposed to OLS, standard IV estimates a causal effect without assuming

equal potential outcomes for treated and untreated individuals. I report IV

estimates for different sets of instruments in Table 3. Observed heterogeneity

is taken into account by including a full set of interaction effects. There is

considerable variation in the estimated LATEs across different instruments and

first-stage models (linear or probit). Since different instruments identify LATEs

for different subpopulations, such variation is expected in the presence of self

selection on heterogeneous returns. Nevertheless, when I use P(Z) with the full

set of instruments, the estimate is in the lower range and close to both the OLS

estimate and the semiparametric estimate of the ATE (see below). Even though

this is noteworthy, it is not in itself a rejection of the self-selection hypothesis.

Results using a Normal Selection Model

The traditional approach to estimate the model in Section 2 is to specify a para-

metric joint distribution for the error terms. Björklund and Moffitt (1987), for

example, estimate the MTE assuming that the error terms are jointly normally

distributed. Although my main focus is on the semiparametric approach, results

based on a normal selection model are useful for purposes of comparison.

Figure 1 shows parametric estimates of the MTE by levels of US, conditioned

on mean values of (X,A). The MTE is declining and precisely estimated. A

simple test of selection on unobserved gains is a test of whether the slope of

the MTE is zero. For the normal selection model this implies testing whether

σ1V − σ2V = 0 in eq. (15). I estimate that σ1V − σ2V = −0.0171 with a standard

error of 0.0057 (obtained using the delta method). The hypothesis that the

slope of the MTE is zero is thus rejected at conventional significance levels,

supporting the idea that individuals select into college based on idiosyncratic

gains. As a comparison, Carneiro et al. (2011) estimate that σ1V − σ2V =−0.2388

with a standard error of 0.0982. Thus, the degree of unobserved heterogeneity

therefore appears to be much larger in the US.

However, Figure 1 only provides an overview picture of unobserved hetero-

geneity. The graph shows the average return at each quantile of US, while, in

general, there will be a distribution of returns centered around each quantile. If
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I also account for observed heterogeneity, i.e., the variation in X and A and their

impact on the MTE through X′(δ1 − δ0) + A′(γ1 − γ0), then the magnitude of

total heterogeneity is more pronounced. Across all individuals, the heterogene-

ity associated with observed characteristics gives a variation in returns between

-0.0858 and 0.2120.

Table 4 (column 1) reports estimates of summary treatment effects based on

the parametric MTE estimates and appropriate weights. The estimated ATE

implies a return to one year of college of about 3.4 percent. The correspond-

ing estimates for the ATT and ATU are approximately 4.7 and 3.0 percent,

respectively. Table 4 also shows tests of equality between ATT and ATE, ATT

and ATU, and ATE and ATU, serving as broad tests for self selection on total

heterogeneity. All tests reject equality and support the notion that individuals

select into college based on idiosyncratic gains. But these results rest on the

potentially restrictive normality assumption, and it is thus not clear how reliable

they are.

Results Using Local Instrumental Variables

A more flexible approach for estimating the MTE is to use Local IV. LIV es-

timates E(Y | X = x, A = a, P(Z) = p) semiparametrically and then computes

its derivative with respect to p, as in eq. (12). If (X,A) is not independent of

(U0,U1,V), a necessary and very demanding condition is that P has full support

at each value of (X,A). But for each combination of (X,A), variation in P only

identifies the MTE across small intervals of V. To reduce the dimensionality

of (X,A), I therefore use an index of X′(δ1 − δ0) + A′(γ1 − γ0) and condition

on the partitions of this index.24 The support of P for each value of the index

is nevertheless not large enough. If I instead follow Carneiro et al. (2011) and

invoke the assumption that (X,A) is independent of (U0,U1,V), then each of the

intervals from the conditional identification can be put together so that the MTE

can be identified over almost the entire support of V. It is thus only necessary

to examine the marginal support of P(Z) as opposed to the support of P(Z)

conditional on (X,A). This assumption also legitimizes the use of interactions

between Z and components of (X,A) as instruments in the choice equation.

I estimate P(Z) in a probit model and present estimated average marginal

24I follow Basu et al. (2007) and condition on demideciles (i.e., 20 uniformly distributed
groups) of the scalar index X′(δ1 − δ0) + A′(γ1 − γ0). The results are robust to conditioning on
finer partitions of the index (e.g., 50 or 100 uniformly distributed groups).
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derivatives in Table 5. The average effect of the distance instrument on college

attendance is negative and highly significant. The average effect of local unem-

ployment at age 20 is also negative and significant, whereas local earnings at

age 20 is a weaker predictor of college attendance. The instruments are jointly

strong predictors of college attendance, as are mother’s and father’s years of

schooling, father’s earnings, noncognitive ability, and, in particular, the measure

of cognitive ability. In fact, cognitive ability is in terms of average derivatives

almost six times stronger than noncognitive ability as a predictor of going to

college.

Figure 2 shows the (unconditional) support of the estimated P(Z). There is a

lack of support only in the top percentile, whereas the support in the lower part

of the interval virtually reaches zero.25 Given the estimates of P(Z), the next

step is to estimate the components of equation (14) and compute the MTEs.

Figure 3 shows how the MTE depends on US, with 90 percent confidence

intervals computed using the bootstrap.26 The MTE estimates are evaluated

at mean values of (X,A). Two main results emerge. First, the variation in

unobserved heterogeneity is in terms of point estimates small. The difference

between the sections of US with the highest and the lowest MTEs corresponds

only to about 3 percentage points in the returns to a year of college. The overall

picture of the MTE across the US interval suggests an almost flat MTE and thus

little unobserved heterogeneity. Second, the little indicative evidence on self

selection on unobserved gains is mixed. For values of US up until about 0.5,

the MTE declines in US (i.e., positive selection). Note that a large majority of

observations are located here, thus causing the declining MTE for the parametric

model shown in Figure 1. For higher values of US the semiparametric MTE is

actually even increasing (i.e., negative selection), although the estimates are too

imprecise. This shows that the normal selection model can provide an incorrect

representation of unobserved heterogeneity. While the overall picture is thus

somewhat mixed, the evidence on self selection on unobserved gains is clearly

much weaker for Sweden than what is reported for the US in Carneiro et al.

(2011).

25The common support is the intersection of the support of P(Z | S = 0) and the support
of P(Z | S = 1). I trim observations for which the estimated P(Z) is either lower than the
minimum, or higher than the maximum value of P(Z) for which there is common support.

26Estimating a similar model, Heckman et al. (1997) show that the bootstrap provides a
better approximation to the true standard errors than asymptotic standard errors. Throughout
the paper I use 100 bootstrap replications and, in each iteration of the bootstrap, P(Z) is
re-estimated to account for the fact that P(Z) is itself an estimated object.

17



A simple test of selection on unobserved gains consists of comparing the

average MTE across equally spaced adjacent intervals along the support of US,

i.e., LATEs defined over different subpopulations (see Heckman et al., 2010).27

Table 6 reports the outcome of the test. Even though the test rejects equality of

LATEs for low values of US where precision is higher, I cannot reject the joint

hypothesis that all adjacent LATEs are equal. While this result is insensitive

to choice of bandwidth, the exact shape of the MTE is not. Moving from the

estimated optimal bandwidth of 0.15 to lower values strenghtens the (weak)

tendency of a U-shaped MTE in Figure 3.

Lastly, I turn to my estimates of the ATE, ATT, and ATU. Since I do not

have strictly full support on P, these parameters cannot be estimated in exact

accordance with their definitions. I can, however, compute approximations of

these parameters, denoted ÃTE, ÃTT, and ÃTU, for which I rescale the weights

to integrate to one over the common support.

Table 4 (column 2) reports the estimates together with a set of simple tests

for self selection on total heterogeneity. The semiparametric estimate of the

ÃTE suggests a return to one year of college of about 4.5 percent. As expected,

the estimated ÃTT is larger and ÃTU smaller, although the differences are

relatively small. Nevertheless, these differences are all statistically significant,

thus indicating sorting into college based on total heterogeneity. It is those who

actually have selected into college that, on average, also have the highest returns.

What is more surprising is that the returns for those who have chosen not to

go to college are still significantly positive. This is in contrast with Carneiro et

al. (2011), who report an ÃTU that is close to zero. Finally, it is worthwhile to

compare with the estimates from the normal selection model (column 1). The

normal model captures the full support of US and the resluting estimates are

on average somewhat lower. But the pattern in terms of the differences across

ATE, ATT, and ATU is very similar. As unobserved heterogeneity seems to be

of relatively little importance in my data, I now turn to examine the role of

observed heterogeneity, and in particular ability-specific heterogeneity.

27The test is based on 100 bootstrap replications of the MTE, evaluated at mean values of
X and A. I take the average of the MTE in equally spaced intervals along the support of US

and compute the statistics T =| LATEj − LATEj+1 | (i.e., the absolute value of the difference

between two adjacent LATEs j and j+1) and Tb =| (LATEj
b − LATEj+1

b )− (LATEj − LATEj+1) |,

where LATEj
b is the bth bootstrap replication of LATEj. The statistics for the joint test are C =

∑
J−1
j=1 (LATEj − LATEj+1)2 and Cb = ∑

J−1
j=1

[
(LATEj

b − LATEj+1
b )− (LATEj − LATEj+1)

]2
. The

p-value is the proportion of bootstrap replications for which Tb > T (or Cb > C for the joint test).
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Evidence on Observable and Ability Heterogeneity

Figure 4 shows the component of the MTE that is attributable to total observed

heterogeneity along the scalar index X′(δ1 − δ0) + A′(γ1 − γ0). First, note that

this curve is not comparable to Figure 3, which plotted the MTE across the

distribution of US. US is an unobserved variable, while the scalar index on the

x-axis in Figure 4 is itself estimated. However, both are components of expected

returns and may therefore affect selection into college. Figure 4 implies that the

variation in observed heterogeneity is quite substantial, and the slope of the

curve indicates that observed characteristics impact on returns across the entire

distribution. The point estimates suggest that those with the most favorable

observed characteristics (i.e., that complement formal college education the

most) on average have a return that is about 20 percentage points higher than

those with the least favorable characteristics. In reality, the heterogeneity is even

larger since there is also considerable variation within the groups on the x-axis.

An important question is whether observed heterogeneity matters more than

unobserved heterogeneity. My results suggest that it does. A simple illustration

can be provided by comparing the variation in returns attributed to the scalar

index X′(δ1 − δ0) + A′(γ1 − γ0) on the one hand and the unobserved factor

US on the other hand. My estimates imply that the variance of the former is

about 50 times larger than the latter. Intuitively, this is sensitive to choice of

bandwidths. When moving from the estimated optimal bandwidth of 0.15 to

0.10 or even 0.05, the relative importance of unobserved heterogeneity increases.

Yet, even for a bandwidth of 0.05 the variance in returns attributed to observed

characteristics is about four times larger than that attributed to the unobserved

factor.

Figures 5a and 5b show the ATE conditional on the measures of cognitive and

noncognitive ability, respectively. There is a strong relationship between both

measures and the estimated ATE. Moreover, both the pattern and the magnitude

of the heterogeneity are roughly similar for the two measures, although the

negative effects at the low end are more pronounced for cognitive ability. In

contrast, the positive complementarity with college education at the top end, as

suggested by the point estimates, is larger for noncognitive ability. Belonging

to the top category in the cognitive (noncognitive) ability-distribution implies

a return to a year of college that is around 2.5 percentage points (around 5.5

percentage points) higher than the average.

A potential explanation to the high resemblance across the two measures
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would be that they are highly correlated. This correlation is about 0.19 in my

sample, suggesting that this could only be a partial explanation. Moreover, it

is possible that the ability measures are correlated with other control variables

that impact on observed heterogeneity. In Table 7 (column 2), I therefore

report the (semiparametric) estimates of observed heterogeneity with respect

to the ability measures from the outcome equation. Despite the fact that these

estimates are thus conditional on observed heterogeneity from other covariates,

they imply a pattern similar to the comparison of the conditional ATEs.28

The estimates, presented as average derivatives, imply that an increase of

one standard deviation in either cognitive or noncognitive ability on average

increases the return to one year of college by around 2.2 percentage points. The

return to a typical college period of 4-5 years would thus on average increase

by around 10 percentage points as an individual is shifted up one standard

deviation in either of the ability distributions. These estimates are larger than

the comparable OLS estimates in Table 2, but similar in terms of the relative

importance of the two measures. In total this adds up to quite robust evidence

on positive complementarities between informal skills and formal education,

and that noncognitive skills appear to matter as much for the payoff from going

to college as cognitive skills.

Moreover, the estimates in Table 7 (column 1) imply relatively modest

direct effects from the ability measures in the outcome equation (note that the

estimates in this column are not annualized). While the positive direct effects

suggest that both high cognitive and noncognitive ability entail an absolute

advantage on the labor market, the degree of absolute advantage in terms of

the ratio between the direct and indirect effects seems somewhat weaker for

noncognitive ability. Instead, the indirect effect via schooling is in relative terms

more important for noncognitive ability, although the difference is not large.

The resemblance between the estimates in Table 7 (column 2) and the con-

ditional ATEs is not surprising. First, the impact on observed heterogeneity

from other covariates is small compared to the impact from the measures of

cognitive and noncognitive ability.29 Most observed heterogeneity thus seems

28Note that these estimates are not conditional on unobserved heterogeneity as they rely
on the auxiliary assumption that the observed and unobserved heterogeneity components are
uncorrelated. The previously discussed estimates of unobserved heterogeneity are derived
conditional on estimated observed heterogeneity, and I can thus not control for unobserved
heterogeneity when I estimate observed heterogeneity.

29The estimates of observed heterogeneity with respect to other control variables are not
shown here, but are available upon request.
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to be captured by these two variables. Second, the previous evidence did not

suggest any large effects related to unobserved heterogeneity. What is maybe

more surprising is that the heterogeneity with respect to noncognitive ability is

so large, and roughly comparable to the one with respect to cognitive ability.

The choice-equation estimates implied that cognitive ability is a much stronger

predictor of selection into college than noncognitive ability. If selection were

purely driven by expected monetary benefits, then the two ability measures

should have a more equal predictive power of college attendance. However, the

model of college choice in Section 1 illustrates some potential explanations for

why this need not be the case. For example, cognitive ability might impact on

the cost of going to college more than noncognitive ability, either in terms of

time costs (yielding more leisure) or psychic costs (less headache) for a given

achievement. It could also be due to heterogeneity in the valuation of college as

a consumption good; the level of cognitive ability might influence the direct util-

ity derived from going to college more positively than the level of noncognitive

ability. Such explanations could all contribute to the result that cognitive ability

seems to trigger selection into college much more strongly than noncognitive

ability, despite having roughly similar effects on monetary returns.30

Sensitivity Analyses and Life-Cycle Effects

A simple way to analyze the robustness of my estimates is to examine how ÃTE,

ÃTT, and ÃTU vary across specifications. In addition, I report a straightforward

test of selection on returns: a test of the null that ÃTT = ÃTU, i.e., whether the

average person attending college has the same return as the average person not

attending. Results are reported in panels A, B and C of Table 8.

First, the results in panel A concern choice of sample and specification of

the outcome equation. I excluded from my baseline sample everyone without

a high school degree. This is in line with Willis and Rosen (1979), whereas

Carneiro et al. (2011) include dropouts. Column 2 in panel A indicates that the

main estimates as well as estimated heterogeneity (ÃTT − ÃTU) stay virtually

unchanged when including dropouts. The model that I use has the limitation

that it restricts the college variable to be binary. An intuitive critique of estimates

of heterogeneous returns is that different people might choose different types of

30There are of course other potential explanations that go beyond this simple model, e.g.,
differences in preferences such as discount factors (as emphasized by Willis and Rosen, 1979) or
risk attitudes, and differential forecasting errors.
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college in terms of quality or field of study. One could, in principle, extend the

method used in this paper to multiple schooling types, but that would require

distinct instruments for each schooling transition (Heckman et al., 2006b). To

explore this limitation, I report estimates with indicators for a set of prestigeous

fields of study (STEM, law, business, IT) included in the outcome equation. The

resulting estimates in column 3 are clearly lower, which might be because these

indicators are pre-determined and not exogenous. However, the estimate of

heterogeneity is similar.

A way of improving precision is to include other types of additional controls

in the outcome equation, again assuming they are exogenous. Column 4 shows

estimates from using local unemployment and earnings at about age 35 as such

additional controls (i.e., similar to Carneiro et al., 2011). The estimates in column

4 are somewhat smaller than the baseline, while estimated heterogeneity is

marginally larger.

Second, the results in panel B concern the specification of the choice equa-

tion. Column 1 shows that the estimates are relatively unaffected by using “any

college” (minimum one semester) as the college indicator. Columns 2-4 show

alternative specifications of the instruments. Using only linear terms in Z (col-

umn 2) produces larger estimates, while excluding interactions with Z (column

3) produces somewhat smaller estimates and larger standard errors. One might

worry that the local labor market instruments affect selection into college by

shifting expected returns, despite the fact that I only use the innovations in

these variables in Z. The estimates in column 4, for which only the distance

variable is included in Z, are somewhat smaller than the baseline. However,

estimated heterogeneity is remarkably similar to the baseline across all the

different specifications of the choice equation.

Finally, in panel C I exploit the nearly career-long earnings data to examine

how the estimates vary across different definitions of the outcome variable. I

first use an imputed wage measure as the outcome in order to examine the

role of labor supply (column 1).31 The estimates are somewhat larger in size,

while standard errors and estimated heterogeneity are clearly lower. This may

suggest that labor supply plays a role for evidence on selection on returns, as

measured by annual earnings. Columns 2-4 show evidence on life-cycle effects

31I follow the procedure of Antelius and Björklund (2000) who show that left truncating these
data, so that low earnings observations and likely part-time workers are excluded, gives similar
estimates of the returns to schooling as when using wage measures. I thus use average annual
earnings conditional on having annual earnings above 75 000 SEK (about $10000).
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in the estimates. In column 2, average earnings across ages 26-30 are used as the

outcome and the resulting estimates are now negative. This is not surprising

as many at this age might either still be in school or just recent entrants on

the labor market. If earnings are instead observed in their late 30s (column 3)

the estimates are similar to the baseline. In contrast, if earnings are observed

in their late 40s (column 4), the estimated effects are considerably larger than

the baseline. Estimated heterogeneity is larger than the baseline for earnings

observed at the earlier ages and smaller for older ages, thus indicating that

heterogeneity is decreasing in age of observed earnings. This analysis highlights

that heterogeneity in earnings profiles makes it very easy to under- or overstate

lifetime returns depending on at what age the outcome variable is observed.

One remedy is to use long-run averages of earnings whenever possible, and to

avoid using short-run measures from ages when current earnings approximate

lifetime earnings poorly.

5 Conclusions

I applied the MTE approach of Heckman and Vytlacil (1999, 2001, 2005) to a large

registry-based data set of Swedish males. My analysis of the lifetime returns

to college revealed a relatively modest role for heterogeneity in general, and

for unobserved heterogeneity in particular, at least in comparison to previous

evidence (e.g., Carneiro et al., 2011). Yet, total heterogeneity (mainly via

observed characteristics) seems to be an important phenomenon, and this holds

across various specifications and sample definitions. It is unclear, however,

whether the divergence from previous evidence is due to differences in data

quality or contextual setting (Sweden vs. the US). A possible explanation for

both smaller returns and less heterogeneity could be a lower degree of selection

into college in Sweden and most notably a more compressed wage structure.

Recent quasi-experimental evidence also lends support to the finding of low

returns to college in Sweden (see Öckert, 2010).

Moreover, I provided new evidence on ability heterogeneity using measures

of cognitive and noncognitive ability from military enlistment tests. The results

implied that both cognitive and noncognitive ability have a large influence

on lifetime returns, thus indicating that “school-skill complementarities” (i.e.,

between formal schooling investments and independently produced abilities)

are important features of the labor market. Since the effect of noncognitive
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ability is about as large as that of cognitive ability, it is puzzling that the former

has much less influence on the probability of selecting into college. If selection

were purely driven by expected monetary returns, then the two ability types

should have a much more equal predictive power of college attendence. A

potential explanation is that cognitive ability also has a much stronger impact

on either the costs (e.g., time or psychic costs) or the consumption value of

going to school. An intriguing avenue for future research is thus to enable a

more causal interpretation of the cost side of such ability heterogeneity, for

example by introducing exogenous return-shifters in the Roy model.

Some lessons regarding the applicability of Local IV estimation of the MTE

can also be learned from my analysis. While a large sample size is clearly

helpful in the LIV setting, the existence of strong continuous instruments

remains crucial. Even though my large sample clearly produces more precise

estimates of treatment effect parameters compared to previous applications

based on survey data, the standard auxiliary assumptions are still needed. Most

MTE applications have to date been concerned with the effects of education.

Applications to other research questions and contexts are therefore desirable, as

is further development of estimation and identification. A recent example of

both is Brinch et al. (2012) who show that a linear MTE-curve can be estimated

using binary instruments, and apply these insights to the quantity-quality

tradeoff of children.

A main conclusion from my results is that there is only limited overall

evidence on unobserved heterogeneity. Still, there is some tendency of a U-

shaped, or at least L-shaped, pattern of the MTE, which is notable as it differs

from the monotonically decreasing curve reported in Carneiro et al. (2011).

One explanation to this pattern could simply be that the effect of unobserved

heterogeneity is more complex than what is commonly assumed. Several

sources could generate a non-monotonic MTE, including heterogeneity in time

or risk preferences, assymetric information about costs and benefits of college,

and differences in economic resources or access to credit. As Brinch et al. (2012)

demonstrate, a non-monotonic MTE can be derived from such underlying data,

for example represented by a mixture of multiple normal distributions. A

methodological implication is that a typical univariate normal selection model

will impose an incorrect representation of treatment effect heterogeneity, which

is also strongly confirmed in my analysis.
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6 Tables and Figures

Table 1 Summary Statistics by Treatment Group

S = 1 S = 0
Mean SD Mean SD

Log lifetime earnings 12.20 0.50 11.91 0.47
Cognitive test score 6.95 1.54 5.45 1.81
Noncognitive test score 5.93 1.85 5.30 1.76
Mother’s years of education 9.99 3.03 8.30 2.13
Number of siblings 1.84 1.17 2.09 1.45
Father’s years of education 11.44 3.63 9.01 2.72
Father’s log earnings 12.36 1.19 11.90 1.28
Local long-run earnings (SEK/100) 137.95 14.35 134.94 14.47
Local long-run unemployment 0.21 0.04 0.22 0.04
Distance to university (km/100) 0.91 0.99 1.09 1.06
Local short-run earnings (SEK/100) 132.35 19.09 131.85 19.23
Local short-run unemployment 0.26 0.07 0.26 0.07
Non-missing earnings observations 25.72 1.34 25.84 1.04
Years of education 15.90 1.16 11.60 0.90
Number of observations 23146 61043

Note: Lifetime earnings is computed as the average of all non-missing annual earnings
observations for ages 25-50. Father’s earnings are computed as the log of average annual
earnings for years 1968-1972. Local permanent labor market characteristics are computed as
averages across the years 1968-1990 by municipality of residence at age 20. The short-run
measures are for age 20. Unemployment is computed as one minus the local working-age
employment rate. Distance to university is measured as the closest route by car from the
municipality of residence in 1965 to the closest university city. Included in the set of controls
are also regional and birth-year dummies (not reported here).
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Table 2 OLS Estimates of the Return to a Year of College

OLS Coefficients
(1) (2) (3) (4) (5)

College dummy (S)
0.0602 0.0601 0.0479 0.0414 0.0417

(0.0009) (0.0010) (0.0009) (0.0011) (0.0011)

S*A (Cognitive)
. . . 0.0069 0.0064
. . . (0.0007) (0.0007)

S*A (Noncognitive)
. . . 0.0056 0.0049
. . . (0.0005) (0.0005)

Ability controls (A) . . x x x
Interactions S*A . . . x x
Interactions S*X . x . . x

Note: This table reports OLS estimates of the return to college. The controls (X) include region
and cohort dummies, and linear and quadratic terms of father’s and mother’s years of
schooling, father’s log earnings, number of siblings, local long-run unemployment and
earnings at age 20. Specifications (3)-(5) add linear and quadratic terms of cognitive and
noncognitive ability (i.e. A), (2) and (5) include interactions between S and all components of X,
and (4) and (5) include interactions between S and all components of A. The interaction terms
(S*A) are reported as average derivatives. I obtain annualized returns by dividing all estimates
by 4.3, which is the average difference in years of schooling for those with S = 1 and those with
S = 0. Standard errors (from 100 bootstrap replications) are in parentheses.

Table 3 IV Estimates of the Return to a Year of College

IV estimates for different sets of instruments
Distance to
university

Local
earnings

Local
unempl.

All

Standard 2SLS
0.0673 0.2003 0.1707 0.0805

(0.0404) (0.0425) (0.0358) (0.0228)

P(Z) as instr.
0.0319 0.0931 0.0773 0.0429
0.0241 0.0257 0.0235 0.0177

Note: This table reports IV estimates of the return to college for different sets of instruments:
distance to university at age 20 in column (1), local short-run earnings and unemployment in
(2) and (3), and all these instruments in (4). Row 1 reports two-stage least squares estimates,
row 2 estimates using P(Z) as instrument (probit first stage). All specifications include
second-stage interactions between predicted college and the components of X and A. I obtain
annualized returns by dividing all estimates by 4.3, which is the average difference in years of
schooling for those with S = 1 and those with S = 0. Bootstrapped standard errors are in
parentheses (100 replications).
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Table 4 Returns to a Year of College

Model Normal Semiparametric

ATE
0.0344 0.0454

(0.0024) (0.0172)

ATT
0.0466 0.0643

(0.0023) (0.0149)

ATU
0.0298 0.0381

(0.0025) (0.0182)

ATT - ATU
0.0169 0.0262

(0.0010) (0.0051)

ATT - ATE
0.0122 0.0190

(0.0007) (0.0037)

ATE - ATU
0.0046 0.0072

(0.0003) (0.0014)

Note: This table reports estimates of the average treatment effect (ATE), treatment effect on the
treated (ATT), and treatment effect on the untreated (ATU) from the normal model in equation

(15), and the semiparametric model. The latter are thus for ÃTE, ÃTT, and ÃTU, indicating
that they are sample specific parameters with weights integrating to one over the empirical
support of US. Rows 4-6 show the estimated differences between the treatment effect
parameters. All estimates are annualized, reflecting the average difference in years of schooling
for those with S = 1 and those with S = 0. Standard errors are obtained using the bootstrap (100
replications).
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Table 5 College Decision Model

Controls (A, X) Average derivative

Cognitive test score
0.0615

(0.0008)

Non-cognitive test score
0.0109

(0.0009)

Mother’s years of schooling
0.0154

(0.0008)

Number of siblings
-0.0112
(0.0014)

Father’s years of schooling
0.0166

(0.0006)

Father’s log earnings
0.0413

(0.0026)

Local long-run earnings
0.0015

(0.0010)

Local long-run unempl.
0.5959

(0.2268)
Instruments (Z)

Distance to university (km/100)
-0.0407
(0.0116)

Local short-run earnings
-0.0016
(0.0009)

Local short-run unempl.
-0.6024
(0.1883)

Joint significance test of Z: p-value 0.0000

Note: The table reports average derivatives from the college choice equation (see Section 3 for
exact specification) obtained by computing, for each individual, the effect of increasing a
variable by one unit on the probability of enrolling in college, and then average across all
individuals. The model also includes region- and birth-year dummies (not reported here).
Standard errors are obtained using the bootstrap (100 replications).
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Table 6 Test for Equality of LATEs over Different Intervals

Range of LATEj (.10;.20) (.25;.35) (.40;.50) (.55;.65)
Range of LATEj+1 (.25;.35) (.40;.50) (.55;.65) (.70;.80)
LATEj-LATEj+1 0.0062 0.0068 0.0015 0.0077
p-value 0.03 0.10 0.80 0.32
Joint p-value 0.29

Note: This table reports a test of unobserved heterogeneity conducted by testing the equality of
LATEs in pairwise adjacent intervals of US. I construct intervals of US and average the MTE

within these intervals by computing E(Y1 − Y0 | X = x̄,U
Lj

S ≤ US ≤ U
Uj

S ), where U
Lj

S and U
Uj

S
are the lower and upper bounds of US in interval j. This gives the different LATEs and the null

of the tests are H0 : LATEj(U
Lj

S ,U
Uj

S )− LATEj+1(U
Lj+1
S ,U

Uj+1
S ) = 0. The bottom row reports the

outcome of the test that all adjacent LATEs are jointly equal. All tests take the multiple
estimation steps into account by using the bootstrap (100 replications).

Table 7 Average Derivatives for Abilities in the Outcome Equation

γ0 γ1 − γ0

Cognitive ability
0.0248 0.0128

(0.0050) (0.0044)

Noncognitive ability
0.0195 0.0117

(0.0019) (0.0012)

Note: This table reports average derivatives of the measures of cognitive and noncognitive
ability in the outcome equations for the semiparametric model. The procedure, along with
exact specifications of the full set of control variables (not reported here), are described in
Section 2. The average derivatives are obtained by computing for each individual the effect of
increasing a variable by one unit (keeping all the others constant) on log lifetime earnings and
then average across all individuals. One standard deviation of the cognitive or noncognitive
measure corresponds to about 1.8 units. Column 1 reports the main effects, whereas column 2
reports the interaction effects (i.e., observed heterogeneity). The estimates in column 2 (not in
column 1) are annualized, reflecting the average difference of 4.3 years of schooling for those
with S = 1 and those with S = 0. Standard errors are bootstrapped (100 replications).
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Table 8 Sensitivity Analyses and Life-Cycle Effects

(a) Different Samples and Specification of the Outcome Equation

Baseline
Including

high school
dropouts

Type of
college in

X \ Z

X \ Z as
Carneiro et
al. (2011)

ÃTE
0.0454 0.0424 0.0217 0.0290

(0.0172) (0.0192) (0.0163) (0.0162)

ÃTT
0.0643 0.0619 0.0431 0.0526

(0.0149) (0.0170) (0.0145) (0.0142)

ÃTU
0.0381 0.0351 0.0136 0.0201

(0.0182) (0.0202) (0.0171) (0.0171)

ÃTT − ÃTU
0.0262 0.0268 0.0295 0.0325

(0.0051) (0.0047) (0.0049) (0.0048)

(b) Specification of the Choice Equation

Any college
as treatment

Only linear
terms in Z

No
interactions

with Z

Only
distance in Z

ÃTE
0.0550 0.0639 0.0314 0.0292

(0.0171) (0.0190) (0.0249) (0.0232)

ÃTT
0.0732 0.0797 0.0517 0.0504

(0.0154) (0.0171) (0.0221) (0.0202)

ÃTU
0.0473 0.0579 0.0237 0.0211

(0.0180) (0.0199) (0.0261) (0.0245)

ÃTT − ÃTU
0.0259 0.0218 0.0280 0.0293

(0.0045) (0.0049) (0.0057) (0.0060)

(c) Definitions of the Outcome Variable and Life-Cycle Effects

Lifetime
wage ages

25-50

Average
earnings

ages 26-30

Average
earnings

ages 36-40

Average
earnings

ages 46-50

ÃTE
0.0664 -0.0386 0.0519 0.1195

(0.0112) (0.0194) (0.0214) (0.0229)

ÃTT
0.0740 -0.0102 0.0636 0.1285

(0.0097) (0.0176) (0.0189) (0.0202)

ÃTU
0.0635 -0.0495 0.0474 0.1160

(0.0118) (0.0202) (0.0225) (0.0241)

ÃTT − ÃTU
0.0106 0.0393 0.0162 0.0125

(0.0034) (0.0050) (0.0061) (0.0059)

Note: This table reports estimates of the return to a year of college for the semiparametric
model for various samples and specificiations. The estimates of the ATE, ATT, and ATU are
computed such that their weights integrate to one over the common support. The table also

reports a simple test of self selection: if ÃTT − ÃTU = 0. Panel A reports estimates for
different samples and specifications of the outcome equation, Panel B for different
specifications of the outcome equation, and Panel C for the definition of the outcome variable
and life-cycle effects. Standard errors are obtained using the bootstrap (100 replications).
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Figure 1 MTE by US Estimated from a Normal Selection Model
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Note: This figure shows point estimates and 90 percent confidence bands of the MTE from
the normal selection model in eq. 15 estimated by maximum likelihood. All estimates are
conditioned on mean values of X and A.

Figure 2 Support of P(Z) for untreated (S = 0) and treated (S = 1)
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Note: This figure shows the support of P(Z) for the treated and the untreated. P(Z) is the
probability of going to college estimated in a probit regression (see Table 5).
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Figure 3 MTE by US Estimated by Semiparametric LIV
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Note: This figure shows point estimates and 90 percent confidence bands of the MTE from
the semiparametric model in eq. 11. The model is estimated by the local linear regression
procedure described in Section 2. All estimates are conditioned on mean values of X and A.
Standard errors are bootstrapped (100 replications).

Figure 4 Average MTE by Total Observed Heterogeneity
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Note: This figure shows the average MTE with 90 percent confidence bands across the index of
observed heterogeneity. The index is computed by estimating X(δ1 − δ0) + A(γ1 − γ0) for each
individual and splitting the sample into 20 uniformly distributed groups. Standard errors are
bootstrapped (100 replications).
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Figure 5 Observed Ability Heterogeneity in the Return to a Year of College

(a) ATE by Cognitive Ability
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(b) ATE by Noncognitive Ability

−
.2

−
.1

0
.1

.2
A

T
E

(A
)

1 2 3 4 5 6 7 8 9
Level of noncognitive ability

Estimates 90% CI

Note: The figures show semiparametric estimates of average treatment effects (ATE) with 90
percent confidence bands conditional on levels of cognitive and noncognitive ability. Standard
errors are bootstrapped (100 replications).

38



Appendix

A.1 Definitions of Weights for ATE, ATT, ATU

Under the LIV approach (and the parametric), all treatment parameters of

concern can be identified by using weighted averages of MTE. Heckman et al.

(2006b) show that

ATE(x,a) = E [B | X = x,A = a] =
∫ 1

0
MTE(x,a,uS)wATE(x,a,uS)duS

ATT(x,a) = E [B | X = x,A = a,S = 1] =
∫ 1

0
MTE(x,a,uS)wATT(x,a,uS)duS

ATU(x,a) = E [B | X = x,A = a,S = 0] =
∫ 1

0
MTE(x,a,uS)wATU(x,a,uS)duS,

where the weights are

wATE(x,a,uS) = 1

wATT(x,a,uS) =

∫ 1
uS

f (P(Z) = P(z) | X = x,A = a)dP(z)

E [P(Z) | X = x,A = a]

wATU(x,a,uS) =

∫ uS

0 f (P(Z) = P(z) | X = x,A = a)dP(z)

E [1 − P(Z) | X = x,A = a]
,

and f is the density function of P(Z). By integrating the weighted estimates of

MTE(x,a,uS) over the joint distribution of (X,A) the estimates of MTE(uS) are

obtained. In practice, however, I do not condition on (X,A) nonparameterically.

Instead, I follow Basu et al. (2007) and others and condition on, and thus also

integrate over, demideciles of the (estimated) scalar index X(δ1 − δ0) + A(γ1 −

γ0). Lastly, integrating over P(z) gives the unconditional estimates of ATE, ATT

and ATU. The ability-specific ATEs are obtained by evaluating and comparing

the treatment parameters at different values of A = a.

39


