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It has been known since 1920 ([6], [2]) that the the axiom of choice played a crucial role in the
proof of the following form of Lowenheim-Skolem theorem:

Theorem 1. LS(Rg): Every model M of a first order theory T with countable signature has an
elementary submodel N which is at most countable.

As noted by Skolem himself, the condition that the countable model for T' be an elementary
submodel of M made an apparently essential use of the axiom of choice, by relying on the so
called Skolem functions, which can be found in the modern standard proofs of the theorem. A
careful examination of the proof shows that the axiom of dependent choice is sufficient already
(see [3]) and in fact it happens to be equivalent to it, as shown in the following!:

Theorem 2. LS(Rg) is equivalent to the Aziom of Dependent Choice.

Proof. Let S be a nonempty set with a binary relation R such that for every x € S, the set
{y € S | xRy} is nonempty. Consider the theory T' over the language £ = {R} that contains
a binary relation symbol, and whose only non logical axiom is Vx3yR(x,y); then S is a model
for T" with the obvious interpretation of the relation symbol. Since T has a countable signature,
by LS(Xg) it contains a countable submodel N, and hence, there is a bijection between the
underlying set NV of A and either the set of natural numbers or some finite ordinal. If f is such
a bijection, we can now recursively define a sequence by putting o = f~}(min{f(n) | n € N})
and z,, = f~Y(min{f(n) | n € N Az,_1Rn}). O

LS(Xg) can be generalized to theories over signatures that have arbitrary cardinalities. This
leads us to the following:

Theorem 3. Let LS(k) be the statement: “Fvery model M of a first order theory T whose
signature has cardinality  has an elementary submodel N whose universe has cardinality less
or equal than k7. We have:

1. The assertion: “LS(k) holds for every infinite cardinal k7 is equivalent, over ZF, to the
Axiom of Choice (AC).

2. The assertion: “LS(k) holds for every infinite aleph k” is equivalent, over ZF, to the
Aziom of Choice for well orderable families of nonempty sets (ACwo ).

Proof. 1. It suffices to prove that the assertion implies AC. By (1) in the theorem of [7], it is
enough to prove that if a sentence ¢ has a model M of cardinality &, it also has a model of
cardinality p for every Ng < p < k. Consider the language that contains symbols from ¢ as
well as ¢ many constant symbols ¢;, and the theory T consisting of the sentence ¢ together
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with the sentences ¢; # ¢; for i # j. Since 8y < p and there are only a finite number
of symbols in ¢, the new signature has cardinality u. Also, since u < k, M contains pu
many different elements and hence can be turned into a model of T by using these as the
interpretations of the constant symbols. By the assertion, M has an elementary submodel
of T of cardinality at most i, and hence of cardinality exactly p (since it must contain at
least u different elements). Since this submodel is also a model of ¢, the proof is complete.

2. To prove that ACy o implies the assertion, note that the usual proof of Léwenheim-Skolem
theorem can be adapted to prove LS(k), provided that x is well-orderable and that we
have the Axiom of Choice for families of  sets (ACy) and the Axiom of Dependent Choice
(DC). But these requirements are fulfilled since ACw o implies DC' (see theorem 8.2,
pp. 121 of [4]). Let us now prove the converse, i.e., that the assertion implies ACyy 0.
Let x be any aleph, and consider a set of x unary relation symbols R; and the theory
consisting of the sentences JxR;(x) for each i. Given a family of x nonempty sets U,
their union U;c,U; can be turned into a model for that theory under the interpretation
Ri(z) < =z € U;. By the assertion, there is an elementary submodel whose cardinality
is at most  (in particular, it is well-orderable). Hence, a choice function for he family is
given by considering, for each i, the least element z in the submodel that satisfies R;(z).
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