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It has been known since 1920 ([6], [2]) that the the axiom of choice played a crucial rôle in the
proof of the following form of Löwenheim-Skolem theorem:

Theorem 1. LS(ℵ0): Every model M of a first order theory T with countable signature has an
elementary submodel N which is at most countable.

As noted by Skolem himself, the condition that the countable model for T be an elementary
submodel of M made an apparently essential use of the axiom of choice, by relying on the so
called Skolem functions, which can be found in the modern standard proofs of the theorem. A
careful examination of the proof shows that the axiom of dependent choice is sufficient already
(see [3]) and in fact it happens to be equivalent to it, as shown in the following1:

Theorem 2. LS(ℵ0) is equivalent to the Axiom of Dependent Choice.

Proof. Let S be a nonempty set with a binary relation R such that for every x ∈ S, the set
{y ∈ S | xRy} is nonempty. Consider the theory T over the language L = {R} that contains
a binary relation symbol, and whose only non logical axiom is ∀x∃yR(x, y); then S is a model
for T with the obvious interpretation of the relation symbol. Since T has a countable signature,
by LS(ℵ0) it contains a countable submodel N , and hence, there is a bijection between the
underlying set N of N and either the set of natural numbers or some finite ordinal. If f is such
a bijection, we can now recursively define a sequence by putting x0 = f−1(min{f(n) | n ∈ N})
and xn = f−1(min{f(n) | n ∈ N ∧ xn−1Rn}).

LS(ℵ0) can be generalized to theories over signatures that have arbitrary cardinalities. This
leads us to the following:

Theorem 3. Let LS(κ) be the statement: “Every model M of a first order theory T whose
signature has cardinality κ has an elementary submodel N whose universe has cardinality less
or equal than κ”. We have:

1. The assertion: “LS(κ) holds for every infinite cardinal κ” is equivalent, over ZF , to the
Axiom of Choice (AC).

2. The assertion: “LS(κ) holds for every infinite aleph κ” is equivalent, over ZF , to the
Axiom of Choice for well orderable families of nonempty sets (ACWO).

Proof. 1. It suffices to prove that the assertion implies AC. By (1) in the theorem of [7], it is
enough to prove that if a sentence φ has a modelM of cardinality κ, it also has a model of
cardinality µ for every ℵ0 ≤ µ ≤ κ. Consider the language that contains symbols from φ as
well as µ many constant symbols ci, and the theory T consisting of the sentence φ together
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with the sentences ci 6= cj for i 6= j. Since ℵ0 ≤ µ and there are only a finite number
of symbols in φ, the new signature has cardinality µ. Also, since µ ≤ κ, M contains µ
many different elements and hence can be turned into a model of T by using these as the
interpretations of the constant symbols. By the assertion,M has an elementary submodel
of T of cardinality at most µ, and hence of cardinality exactly µ (since it must contain at
least µ different elements). Since this submodel is also a model of φ, the proof is complete.

2. To prove that ACWO implies the assertion, note that the usual proof of Löwenheim-Skolem
theorem can be adapted to prove LS(κ), provided that κ is well-orderable and that we
have the Axiom of Choice for families of κ sets (ACκ) and the Axiom of Dependent Choice
(DC). But these requirements are fulfilled since ACWO implies DC (see theorem 8.2,
pp. 121 of [4]). Let us now prove the converse, i.e., that the assertion implies ACWO.
Let κ be any aleph, and consider a set of κ unary relation symbols Ri and the theory
consisting of the sentences ∃xRi(x) for each i. Given a family of κ nonempty sets Ui,
their union ∪i∈κUi can be turned into a model for that theory under the interpretation
Ri(x) ⇐⇒ x ∈ Ui. By the assertion, there is an elementary submodel whose cardinality
is at most κ (in particular, it is well-orderable). Hence, a choice function for he family is
given by considering, for each i, the least element x in the submodel that satisfies Ri(x).
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