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a b s t r a c t

The variance effective population size (NeV ) is a key concept in population biology, because it quantifies
the microevolutionary process of random genetic drift, and understanding the characteristics of NeV is
thus of central importance. Current formulas forNeV for populationswith overlapping generationsweight
age classes according to their reproductive values (i.e. reflecting the contribution of genes from separate
age classes to the population growth) to obtain a correct measure of genetic drift when computing the
variance of the allele frequency change over time. In this paper,we examine the effect of applying different
weights to the age classes using a novel analytical approach for exploring NeV . We consider a haploid
organism with overlapping generations and populations of increasing, declining, or constant expected
size and stochastic variation with respect to the number of individuals in the separate age classes. We
define NeV , as a function of how the age classes are weighted, and of the span between the two points in
time,whenmeasuring allele frequency change.With thismodel, time profiles forNeV can be calculated for
populations with various life histories and with fluctuations in life history composition, using different
weighting schemes. We examine analytically and by simulations when NeV , using a weighting scheme
with respect to reproductive contribution of separate age classes, accurately reflect the variance of the
allele frequency change due to genetic drift over time. We show that the discrepancy of NeV , calculated
with reproductive values as weights, compared to when individuals are weighted equally, tends to a
constant when the time span between the two measurements increases. This constant is zero only for
a population with a constant expected population size. Our results confirm that the effect of ignoring
overlapping generations, when empirically assessing NeV from allele frequency shifts, gets smaller as the
time interval between samples increases. Our model has empirical applications including assessment of
(i) time intervals necessary to permit ignoring the effect of overlapping generations for NeV estimation by
means of the temporalmethod, and (ii) effects of life tablemanipulation onNeV over varying time periods.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The concept of effective population size (Ne) was introduced
by Wright (1931) and is of key importance in population biology.
Wright defined Ne as ‘‘the number of breeding individuals in an
idealized population that would show the same amount of dis-
persion of allele frequencies under random genetic drift or the
same amount of inbreeding as the population under considera-
tion’’. Several closely related variants have since then been devel-
oped and studied, such as the variance, inbreeding, coalescence,
and eigenvalue effective population size (Crow and Denniston,
1988; Wang and Caballero, 1999; Waples, 2002; Ewens, 2004;
Sagitov and Jagers, 2005; Sjödin et al., 2005; Charlesworth, 2009;
Hössjer, 2011). Important applications of Ne include for instance
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understanding of microevolutionary dynamics (Ewens, 2004),
determining minimum viable populations in conservation biol-
ogy (Franklin, 1980; Allendorf and Ryman, 2002; Jamieson and Al-
lendorf, 2012), and designing and monitoring artificial breeding
programs (Lande and Barrowclough, 1987).

In this paper, we focus on the variance effective population size
(NeV ), which is the size of an ideal, Wright–Fisher model, (Wright,
1931) population with the same variance of allele frequency
change of a neutral gene, as the studied population. For a
haploid Wright–Fisher population of size NeV with an initial allele
frequency p, this variance is p(1−p)(1− (1−1/NeV )t) after t time
steps (Nei, 1975, Section 5.1.2). Deviations from ideal conditions,
such as separate sexes of unequal ratio, varying population size
or other than binomial distribution of progeny will affect the
variance of the allele frequency change. Further, introducing age
structured populations will complicate the calculation of NeV . In
one sense it is most natural to assign the same weight to each

http://dx.doi.org/10.1016/j.tpb.2013.09.014
http://www.elsevier.com/locate/tpb
http://www.elsevier.com/locate/tpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tpb.2013.09.014&domain=pdf
mailto:fredriko@math.su.se
http://dx.doi.org/10.1016/j.tpb.2013.09.014


92 F. Olsson et al. / Theoretical Population Biology 90 (2013) 91–103
Table 1
List of notation used in the paper.

Notation Definition

bi Mean number of offspring for an individual in age class i
li Probability that an individual survives to age class i
si Probability that an individual in age class i survives to age class i + 1
G t Projection matrix of vital rates for Z
H t Projection matrix of vital rates for Y
g Expected projection matrix
δt Matrix of serially uncorrelated demographic noise for Z-process
λ Multiplicative growth rate and largest eigenvalue of g
u Vector of the approximate equilibrium age distribution for Z , Y and N
v Vector proportional to the reproductive values
c Arbitrary vector of age class weights normalized such that cu = 1
pct The population allele frequency at time t when age classes are weighted with c
N t Vector containing number of individuals in all age classes
Nc
t Population size when age classes are weighted by c

Z t Vector containing number of individuals with the specified allele in all age classes
Z c
t Number of individuals with the specified allele when age classes are weighted by c

Y t Vector containing number of individuals without the specified allele in all age classes
Y c
t Number of individuals without the specified allele when age classes are weighted by c

ϵt Vector of deviations from the asymptotic proportions u of the number of alleles in each age class
τ Time between measurements when applying the temporal method for assessing NeV . One time unit represents the age difference of two

successive age classes
NeV Variance effective population size
σ 2
d,c (τ ) Demographic variance measured over τ time steps when c is used as the weight vector

Nc
eV ,t (τ ) Variance effective population size measured over τ time steps when c is used as the weight vector

T Generation time i.e. mean age of parents of newborns
V Covariance matrix which quantifies deviations of the allele frequencies in age classes from numbers proportional to u
∆c (τ ) Relative discrepancy of Nc

eV ,t (τ ) compared to Nv
eV ,t (τ ).
individual as this gives the actual allele frequencies. However,
with such uniform weights the variance of the allele frequency
change will initially fluctuate, and only after a number of time
steps will these fluctuations settle so that the variance increases
at a steady rate as for the Wright–Fisher model (Hill, 1979).
From an evolutionary perspective these initial fluctuationswill not
represent true genetic drift; rather, allele frequency change will be
largely an effect of the age structure (Jorde and Ryman, 1995).

Expressions for the variance effective population size for hap-
loids with overlapping generations have previously been derived
assuming fixed number of individuals in each age class (Felsen-
stein, 1971; Hill, 1972, 1979). Engen et al. (2005a) analyzed pop-
ulations with fluctuating population size based on asymptotics
for large populations and diffusion approximations (Tuljapurkar,
1982; Lande andOrzack, 1988; Lande et al., 2003). All thesemodels
aim to eliminate the initial fluctuations and describe the asymp-
totic variance of allele frequency change by considering the vari-
ance between two points in time. Instead of using uniformweights
where all individuals areweighted equally, these formulas are only
valid when each individual is weighted according to its age class
reproductive value (Fisher, 1958).

In this paper we derive a general expression for NeV as a
function of how individuals are weighted. As opposed to previous
work we show that the allele frequency change can be written
as a sum of two terms, one due to genetic drift and one due
to random variation of the demographic distribution of allele
frequencies. Only the genetic drift has previously been treated
since the other term vanisheswhen reproductiveweights are used.
We consider the variance of the allele frequency change between
two measurements separated by an arbitrary time span. We also
allow the total population size, as well as the sizes of the age
classes, to fluctuate. Hence, NeV can be plotted analytically as a
function of the length of the time interval between the two points
of allele frequency assessment, the weighting scheme and the
population growth scenario. We study NeV with uniform as well as
reproductive weights and examine how well these two weighting
schemes coincide.

Our theoretical exploration of NeV is of relevance for empirical
situations; the most common method of assessing rate of genetic
drift in natural populations is by estimating NeV from temporal
changes of allele frequencies (Waples, 1989; Wang and Whitlock,
2003). Since most natural populations have overlapping genera-
tions, it is important to investigate the behavior of the temporal
method under such conditions.

The paper is structured as follows: In the first section we define
the population genetic model and describe the temporal dynamics
of the system. Next, we consider the amount of allele frequency
change between two consecutive points in time and provide
expressions for NeV and the demographic variance (Engen et al.,
2005b), which quantifies random variation among individuals
in reproduction and survival. Then we generalize these ideas
by considering the allele frequency change between two time
points separated by several time steps, and give generalized
expressions for the demographic variance and NeV . In Section 5 we
perform a simulation study in order to check the accuracy of these
expressions. In Section 6 we present formulas for calculating the
discrepancy of the asymptotic NeV for reproductive and uniform
(or other) weights. Mathematical derivations are collected in
Appendices A–G, and Table 1 summarizes the most important
notation.

2. Population genetic model

Consider a population of haploid individuals divided into n age
classes and assume that a certain selectively neutral biallelic gene
(locus) is segregating in the population. The age distribution of
the individuals with one of the alleles at time t is described us-
ing the column vector Zt = (Zt,0, . . . , Zt,n−1)

′ where Zt,i is the
total number of copies of the allele within age class i and ′ de-
notes matrix transposition. The age distribution of the individu-
als without the specified allele at time t is described using the
vector Yt = (Yt,0, . . . , Yt,n−1)

′ where Yt,i is the total number of
copies of the non-specified allelewithin age class i. Hence, the total
population is described by the vector Nt = (Nt,0, . . . ,Nt,n−1)

′
=

(Zt,0 + Yt,0, . . . , Zt,n−1 + Yt,n−1)
′ where Nt,i is the number of indi-

viduals in age class i at time t .
Each individual in generation t and age class i independently

gives birth to a number of progeny with mean bi and variance σ 2
i ,
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and with probability si it survives to the next age class. Moreover,
we allow for a correlation ρi between the number of progeny and
survival of a parent.

The timedynamics of both alleles is describedusingmatrix pop-
ulation models (cf. Caswell, 2001). Since we assume a selectively
neutral gene and since the individuals are haploid, the dynamics
of both alleles’ subpopulations can be described by the matrix re-
cursion formulas

Zt+1 = GtZt ,
Yt+1 = HtYt ,

where Gt = (Gt,ij) and Ht = (Ht,ij) are n×n projection matrices of
vital rates, whose nonzero components are listed in (A.1) and (A.2)
in Appendix A. Write

Gt = g + δt ,
Ht = g + dt ,

(1)

where g = E(Gt) = E(Ht) = (gij) is the expected projection or
Leslie matrix (Leslie, 1945), with nonzero elements g0i = bi and
gi+1,i = si along the first row and subdiagonal respectively. The
zero mean matrices δt = (δt,ij) and dt = (dt,ij) represent serially
uncorrelated demographic noise.

From g , a number of important quantities can be derived. The
multiplicative growth rate of the population is the largest eigen-
value of g whichwedenoteλ. It follows from the Perron–Frobenius
Theorem that g has a unique largest and real-valued eigenvalue
since g has non-negative entries and is irreducible and aperiodic.
The reproductive values v = (v0, . . . , vn−1), which quantify the
expected contribution to population growth of all age classes, are
proportional to the left eigenvector corresponding to eigenvalue
λ. The right eigenvector u = (u0, . . . , un−1)

′ corresponding to λ is
proportional to the approximate equilibrium age distribution. For
convenience, u and v are normalized so that
n−1
i=0

ui = 1

and

n−1
i=0

viui = 1 (2)

hold. The latter normalization implies that on average, the num-
ber of descendants of an age class i individual τ time points later is
λτvi, provided τ is large enough. Explicit formulas for both u and v
are given in Appendix B.

Let c = (c0, . . . , cn−1) be an arbitrary vector of weights satisfy-
ing cu = 1 and let Z c

t = cZt be the weighted sum of the compo-
nents of Zt . Then, Z1

t = 1Zt =
n−1

i=0 Zt,i denotes the total number
of individuals with the specified allele at time t , where 1 is a row
vector of ones, and N1

t = 1Nt =
n−1

i=0 Nt,i denotes the total popu-
lation size at time t . With a large population and small variances of
the vital rates in (1), it follows that the age distribution of both the
total population and the allele subpopulation reach the approxi-
mate equilibrium limit u = (u0, . . . , un−1)

′ after some iterations,
so that

Zt ≈ Z1
t u,

Nt ≈ N1
t u,

(3)

and

Zt+1 ≈ λZt ,
Nt+1 ≈ λNt .

(4)

For further calculations, we need to provide a more detailed
description of the absolute frequencies of the two alleles than
provided by (3). It will be convenient to divide the processes Zt
and Yt into two parts. Let

Zt = Ztu + ϵt ,
Yt = Ytu + εt ,

(5)

where ϵt is the deviation from the asymptotic proportions u of
individuals with the specified allele in each age class, Zt = Zv

t =

vZt is the number of individuals with the specified allele when
age classes are weighted by v and in analogous way, εt and Yt are
defined.

3. Effective population size

In order to derive an expression for the variance effective popu-
lation size we need to quantify the change in allele frequencies for
alleles measured at two consecutive time points. First, define the
allele frequency of the population

pct =
Z c
t

Nc
t

=
cZt

cNt
,

as a weighted average of the allele frequencies of the age classes.
Then, let the variance of the allele frequency change E((pct+1 −

pct )
2
|Nc

t , p
c
t ) equal the variance of allele frequency change for a

Wright–Fishermodel pct (1−pct )(1−(1−1/Nc
eV ,t)

1/T ). The fraction
1/T corresponds to one time step where T is defined as the mean
age of parents of newborns when a multiplicative growth rate of
the drift is assumed (Luikart et al., 1999; Engen et al., 2005a). We
have that

1
Nc

eV
= 1 −


1 −

E((pct+1 − pct )
2
|Nc

t , p
c
t )

pct (1 − pct )

T

≈
TE((pct+1 − pct )

2
|Nc

t , p
c
t )

pct (1 − pct )
. (6)

Based on Taylor expansions, valid for low levels of stochasticity in
vital rates, we show that

E

(pct+1 − pct )

2
|Nc

t , p
c
t


≈

σ 2
d,cp

c
t (1 − pct )

Nc
t

, (7)

where

σ 2
d,c = λ−2(Z c

t )
−1E((Z c

t+1 − λZ c
t )

2
|Z c

t )

≈ λ−2ZtE((cδtu)2|Zt) + λ−2Z−1
t E((c(g − λI)ϵt)2|Zt) (8)

is the demographic variance and I is the identity matrix of order
n. The first equality of (8) is a definition (see Appendix C), and
the approximation in the second step is motivated in Appendix D.
Eq. (8) reveals that themagnitude of allele frequency change in the
whole population, as quantified by σ 2

d,c , can be decomposed into
two parts. The first term corresponds to the genetic drift of the
whole population and the second term reflects random variation
of the demographic distribution (between age classes) of allele fre-
quencies. Insertion of (7) into (6) yields

Nc
eV ,t =

Nc
t

Tσ 2
d,c

. (9)

In order to get a more explicit expression for σ 2
d,c , it is conve-

nient to introduce the matrix

Cj = ZtjCov

δtj

, (10)

where δtj is column j of δt with nonzero elements δtj0 and δt,j+1,j.
Reproduction is assumed to be independent between age classes,
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so that the columns δt0, . . . , δt,n−1 of δt are independent random
vectors. Then

6 =

n−1
j=0

ujCj ≈ ZtCov(δtu) (11)

where the last approximation is exact when Ztj = Ztuj for j =

0, . . . , n − 1. We show in Appendix D that (8) can be rewritten as

σ 2
d,c ≈ λ−2c6c ′

+ c(gλ−1
− I)V (gλ−1

− I)′c ′, (12)

where V , which is described in Appendices D and F, is a covariance
matrix that approximates Cov(ϵt |Zt)/Zt and quantifies, for each of
the two alleles, deviations of the age class distribution from u. The
first part of (12) depends on demographic parameters only at time
t . However, since V is a convergent sum of terms which depends
on the past, the second part requires that the demographic param-
eters have been constant prior to time t . In practice, this means
that using (9) for prediction of the effective populations size im-
poses the condition that the demographic parameters prior time
point t have been constant.

By weighting individuals according to their age class reproduc-
tive value the last term in (8) and (12) equals zero. Hence, in this
case no assumption on the demographic parameters prior to time
t needs to be made. In Appendix E we also show that, for these
weights, we end upwith the same expression for the demographic
variance as in Engen et al. (2005a).

4. Effective population size over longer time intervals

In this sectionwe derive an expression for the variance effective
population size based on the change in allele frequencies between
time t and t + τ . Let σ 2

d,c(τ ) be the demographic variance when
looking τ time steps ahead in time. We show that

σ 2
d,c(τ ) =

1
λ2τZ c

t
E

(Z c

t+τ − λτZ c
t )

2
|Z c

t


≈ λ−τ−1c


τ−1
r=0

λ−rg r6(g r)′


c ′

+ c(gτλ−τ
− I)V (gτλ−τ

− I)′c ′ (13)

and

E

(pct+τ − pct )

2
|pct ,N

c
t


≈

σ 2
d,c(τ )pct (1 − pct )

Nc
t

. (14)

The first equality of (13) is a definition (see Appendix C), and the
approximation in the second step is motivated in Appendix D. As
in (8), the allele frequency change can be decomposed into one
genetic drift part and another part that reflects random variation
between age classes in terms of allele frequencies. Generalizing (6),
wehave that the reciprocal of the variance effective population size
equals

1
Nc

eV (τ )
= 1 −


1 −

E((pct+τ − pct )
2
|Nc

t , p
c
t )

pct (1 − pct )

T/τ

≈
TE((pct+τ − pct )

2
|pct ,N

c
t )

τpct (1 − pct )
(15)

as a function of τ . For a large population, by combining (13)–(15),
we have that

1
Nc

eV ,t(τ )
≈

T
τ


1
Nc

t
λ−τ−1c


τ−1
r=0

λ−rg r6(g r)′


c ′

+
1
Nc

t
c(gτλ−τ

− 1)V (gτλ−τ
− 1)′c ′


. (16)
If we let c = v, the second term in (16) vanishes and the reciprocal
of the variance effective population size (16) simplifies consider-
ably, to

1
NeV ,t(τ )

≈
T
τ

λ−2v6v ′

τ−1
r=0

1
Nv

t λr
. (17)

The variance effective population size, based on the genetic drift
between time t and t + τ , is then the harmonic mean of the ef-
fective population sizes Nv

t λr/(λ−2v6v ′) at time t + r where r =

0, . . . , τ − 1, multiplied by a factor that depends on the genera-
tion time T . Our expression (17) is similar to the expression for the
effective population size, both with a deterministic varying popu-
lation (Crow and Kimura, 1970, Eq. 7.6.3.34) and with a stochastic
varying population (Engen et al., 2005a, Eq. 14).

A more intuitive reason for why the second term of (16)
vanishes for reproductive weights v, is that the deviations ϵt and
εt from the age proportions u, are both orthogonal to v. Therefore,
for reproductive weights, the system can be analyzed as if age
proportions u were fixed, see Appendix D.

As in the previous section, if c ≠ v, the effective population
size at time t will depend on the demographic history before t .
Hence, prediction of the effective population size according to
(16) requires constant demographic parameters prior time t for all
weights except for c = v.

5. Simulations

Waples and Yokota (2007) performed extensive simulations in
order to study the bias of the standard temporal method estimate
of the effective population size when violating the assumption of
non-overlapping generations. Their conclusionwas that in order to
obtain an unbiased estimate of the effective population size under
such conditions, the allele frequencies in each age class should be
weighted by the corresponding reproductive value in agreement
with the proposal of Felsenstein (1971). It has also been observed
that the bias for the unweighted estimate is reduced when the
time betweenmeasurements is increased (Jorde and Ryman, 1995;
Waples and Yokota, 2007).

In this section, we present results of computer simulations of
the allele frequency change used to validate the formula for the ef-
fective population size (15). Following Waples and Yokota (2007),
we choose to model three species with different survival sched-
ules, humans (Felsenstein, 1971), white-crowned sparrows (Baker
et al., 1981), and barnacles (Connell, 1970). For each species, we
modified the published data by multiplying the expected number
of births in each age class by a constant in order to adjust λ and
obtain a stable, a growing, and a decreasing growth scenario. For
the barnacle data, we increased the survival probability by a factor
10 compared to the published data to obtain values comparable to
those of Waples and Yokota (2007). In our simulations we did not
include the last age class in the published data for humans, because
that age class consists of old individuals that do not reproduce. The
exclusion of this age class does not affect the effective population
size when c = v since its reproductive number equals zero.

We assume that the number of progeny is Poisson distributed
for all scenarios, hence σ 2

i = bi, and that covariance between sur-
vival and number of progeny is zero, i.e. ρi = 0. Time is measured
in years for sparrows and barnacles, and in 5-year periods for hu-
mans in agreement with the published data. We also assume that
individuals are haploid although the published data refers to the
female part of the populations. The life history parameters used in
the simulations are presented in Table 2.

For each species and scenario, we simulate 120 time steps and
repeat the procedure 10000 times. In each time step, we simulate
the number of progeny and survival of each individual according
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Table 2
Life table data for three different scenarios of humans, sparrows and barnacles where bi is the mean number of progeny for an individual in age class i, li =

i−1
j=0 sj is the

probability for an individual to survive to age class i and si the probability that an individual in age class i survives to age class i + 1. The expected growth rate λ is given for
the different scenarios and N0 is the population size at time 0 when the allele frequency is measured for the first time. Each age class represents 5 years for humans and 1
year for barnacles and sparrows. Hence, the generation time in years for humans is 5T .

Age class Human Sparrow Barnacle
Stable Growing Decreasing Stable Growing Decreasing Stable Growing Decreasing

li bi bi bi li bi bi bi li bi bi bi

0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0
1 0.97891 0 0 0 0.167 3.018 3.142 2.8278 0.00062 358.6 362.2 340.7
2 0.97754 0.0172 0.0208 0.0149 0.083 3.202 3.333 2.9997 0.00034 678.2 685.0 644.4
3 0.97486 0.2905 0.3515 0.2511 0.048 3.416 3.556 3.2004 0.00020 904.2 913.4 859.3
4 0.97179 0.3435 0.4157 0.2969 0.012 3.602 3.750 3.3750 0.00016 989.9 1000 940.7
5 0.96841 0.2150 0.2602 0.1859 0.006 3.842 4.000 3.6000 0.00011 989.9 1000 940.7
6 0.96841 0.1138 0.1377 0.0984 – – – – 0.00007 989.9 1000 940.7
7 0.96382 0.0448 0.0542 0.0387 – – – – 0.00002 989.9 1000 940.7
8 0.95662 0.0057 0.0069 0.0049 – – – – 0.00002 989.9 1000 940.7
T 5.26 5.21 5.30 2.82 2.80 2.84 4.07 4.06 4.11
λ 1 1.0371 0.9728 1 1.0144 0.9772 1 1.0025 0.9876
N0 874 10000 106
to the data in Table 2. Since we want the process to have reached
its quasi equilibrium distribution around u by the time of the first
measurement, we require a burn in period. It has previously been
shown that the equilibrium distribution is reached within a few
generations (Jorde and Ryman, 1995; Waples and Yokota, 2007).
This agrees with our experience and we consider the first 20 time
steps as a burn in time for all three species. In every simulation,
the species is initiated at time −20 with allele frequencies in each
age class equal to 0.5, i.e. Z−20 = Y−20 = 0.5N−20u rounded
to the closest integer. In order to have the same total population
size at time 0, we normalize the number of individuals in all age
classes by multiplying N0 with a constant γ so that N0 equals the
corresponding pre-specified value in Table 2. Since we want γ to
be as close to 1 as possible, we let N−20 = λ−20N0.

Beginning at time step 0, we calculate the allele frequency
at every time step in two ways, by weighting the age classes
with the vector v and with the vector 1. From time step 1 we
estimate the standardized allele frequency variance for every time
step using a modified version of the estimate presented by Nei
and Tajima (1981). We measure all individuals and estimate the
standardized allele frequency change variance F c(τ ) = E((pct+τ −

pct )
2
|Nc

t , p
c
t )/(p

c
t (1 − pct )) with

F̂ c(τ ) =

a
i=1

(pc0(i) − pcτ (i))
2

a
i=1

pc0(i)(1 − pc0(i))
, (18)

where i is the order number of each simulation and a is the
number of repeated simulations. The estimate F̂ c(τ ) in (18) is
a weighted average of the standardized allele frequency change
variance for all repeated simulations. In this way, repetitions with
allele frequencies close to 0.5 are given highest weight, similarly
as in Jorde and Ryman (2007). To estimate the variance population
size we use

N̂c
eV ,t(τ ) =

τ

T F̂ c(τ )
. (19)

We assume that thewhole population ismeasured at time points 0
and τ . Therefore, (19) is an estimator of (15) based on Monte Carlo
approximations of the allele frequency change.

The results of the simulations, and comparisonswith calculated
values for the variance effective population size according to
(15), are shown in Fig. 1. Although we use a large population
assumption, we see that the values calculated from (15) are close
to the simulated ones, calculated from (19) in all figures except
for the growing scenario for barnacles, where the simulated values
differ from the calculated ones when τ is large. However, repeated
simulations with more samples resulted in a better fit. Hence the
discrepancy is mainly due to random effects in the simulations. In
all cases we also notice that when τ is large the weighting scheme
becomes less important.

In order to validate our approximations when the reproductive
variances differ from the Poisson model, we performed a simula-
tion with the parameters from the stable scenario for sparrows in
Table 2. To obtain a different variance structure, we let the number
of offspring for breeding individuals be distributed according to a
negative binomial distribution with mean bi and variance bi + β ,
where β varies from 0.1 to 50, and estimate NeV when τ = 1. The
result of the simulation is shown in Fig. 2. As expected, NeV de-
creases when the offspring distribution variance increases, and the
simulated values agree with those calculated from (9).

6. Asymptotics of the variance effective population size

In the previous sectionwe saw that the variance effective popu-
lation size calculatedwith reproductive values asweights, for large
τ seems to predict the asymptotic values of NeV calculated with
uniform weights. The same pattern appeared in the simulations
by Jorde and Ryman (1995) and Waples and Yokota (2007). In-
creased time betweenmeasurements in the temporal method was
one of their proposals to minimize the influence of the initial fluc-
tuations due to the age structure when estimating NeV .

In this section, we study how NeV for a general scheme of
weights behaves asymptotically as τ becomes large. Since we do
not allow for new mutations in our model we assume a quasi
equilibrium (Darroch and Seneta, 1965; Hössjer and Ryman, 2013;
Collet et al., 2013), that is, we condition on that no allele gets fixed
in the population. This conditioning corresponds to assumptions
that underlie amultilocus estimate ofNeV based on allele frequency
change from a number of markers, whose alleles have not yet been
fixed.

Let

∆c(τ ) =
Nc

eV ,t(τ ) − Nv
eV ,t(τ )

Nv
eV ,t(τ )

, (20)

be the relative discrepancy of Nc
eV ,t(τ ) compared to Nv

eV ,t(τ ). It
turns out that the limit of the relative discrepancy for large τ
depends on the growth rate and three cases, λ = 1, λ > 1 and
λ < 1, have to be analyzed separately.

In Appendix G we show that when λ = 1, i.e. when the popu-
lation size is expected to be stable, the relative discrepancy

∆c(τ ) ≈
C
τ

, (21)
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Fig. 1. Plots of simulated and analytically derived values of the variance effective population size for the human data (left), sparrow data (center) and barnacle data (right),
for the stable scenario (top), growing scenario (middle), and decreasing scenario (bottom). Circles and squares represent values of the variance effective population size
based on simulations (Eq. (19)) when c = v and c = 1, respectively. The solid line is the variance effective population size (Eq. (16)) calculated with the parameters in
Table 2 with c = v and the dashed line the corresponding effective population size when c = 1. On the x-axis, time is measured in 5 year periods for humans, 1 year periods
for sparrows and barnacles, and the first sample was taken at time point 0. Note the varying scale on the y-axis.
Fig. 2. Plot of simulated and analytically derived values of the variance effective
population size for the stable sparrows data from Table 2 when the variance of
offspring per individual varies. The effective population size is calculated at time
point 1 where circles and squares represent the effective population size based on
simulations (Eq. (19)) when c = v and c = 1 respectively. The solid (dashed) line is
the variance effective population size (Eq. (16)) calculated with the parameters in
Table 2when c = v (c = 1). The number of offspring for the breeding age classes are
distributed according to a negative binomial distributionwithmean bi and variance
bi + β .

where C is a constant derived in Appendix G. Hence, the relative
discrepancy for any weight vector, compared to v, can be made
arbitrarily small by increasing the number of time steps between
the two measurements in the temporal method. In particular, this
means that using reproductive values as weights when calculating
NeV will accurately predict the asymptotic value of NeV calculated
with uniform weights. In Fig. 3, τ∆c(τ ), the relative discrepancy,
scaled by τ , and ∆c(τ ), are plotted for the stable scenarios of the
species in Table 2. The relative discrepancy scaled by τ illustrates
at which rate the discrepancy declines andwe see that it converges
Table 3
Time, in generations, for human, sparrow and barnacle life tables needed to obtain
a relative discrepancy (Eq. (20)) of α for c = 1. A positive direction of bias indicates
overestimation, and a negative direction indicates underestimation of NeV .

Species NoGen Direction of bias
α = 0.1 α = 0.05 α = 0.01

Human 3.04 6.08 30.4 Positive
Sparrow 3.14 6.28 31.4 Negative
Barnacle 2.18 4.36 21.8 Negative

to the asymptotic limit C . We also see that the relative discrepancy
converges to zero as expected.

The constant C can be used to calculate a minimal time interval
required for a certain level of tolerated relative discrepancy. For
instance, if a relative discrepancy (Eq. (21)) of α is tolerated,
the number of generations between measurements (NoGen) must
satisfy

NoGen ≥
C
αT

.

In Table 3, we see that the time, in generations, needed between
measurements for different values of α differs between humans,
sparrows and barnacles. It also shows that NeV can be both over-
and underestimated when a uniform weighting scheme is used.

When the population size is expected to grow, i.e. λ > 1, the
relative discrepancy converges to a constant as τ becomes large.
For populations with λ < 1, we have to assume a large initial
population so that the population survives a large number of time
steps, then the relative discrepancy tends to a constant as τ grows.
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Fig. 3. Plots of the scaled relative discrepancy (left) and the relative discrepancy (right) (Eq. (20)), represented by the solid lines, for the stable scenario for the species in
Table 2. The dashed lines are the asymptotic limits (Eq. (G.3)) which are zero for the right columns. On the x-axis, time is measured in 5 year periods for humans, 1 year
periods for sparrows and barnacles.
Both constants are derived in Appendix G. For both growing and
decreasing populations the relative discrepancy will be close to
zero when λ is close to one. In Fig. 4, the relative discrepancy is
plotted for the growing and decreasing scenarios for the species in
Table 2.

In Fig. 5, we have calculated the asymptotic limit of the relative
discrepancy ∆1(τ ), as τ becomes large, as a function of the growth
rate. Theparameters bi andσi for the stable scenario for sparrows in
Table 2 have been multiplied by constants ranging from 0.2 to 4 in
order to vary λ. For growth rates less than one, the relative discrep-
ancy is close to zero, but for populations with growth rate greater
than one, themagnitude of the discrepancy growswhenλ becomes
larger. Although these calculations are based on a single species’
demographic parameters, it is an indication that, for species with
λ > 1, weighting individuals according to their age classes’ repro-
ductive values does not always result in a good prediction of the
asymptotic value of NeV , calculated with uniform weights.

7. Discussion

In this paper we have extended previous approaches to derive
explicit approximations of NeV for two points in time separated
by arbitrary intervals, with a special focus on models for age-
structured populations of non-constant size. Previous expressions
for NeV have focused on the allele frequency change of the whole
population when age classes are weighted by their reproductive
values. However, uniform weights give the actual allele frequency
of the population and are therefore in some sense themost natural
to study. We have investigated when NeV for uniform weights
based on allele frequency changes over long time periods, can be
well approximated byNeV for reproductive weights based on allele
frequency changes over shorter time periods.

Our approach is similar to that of Nagylaki (1980) and Hössjer
and Ryman (2013), who studied allele frequency fluctuations in
time for sub-structured populations in which the subpopulation
sizes are constant, and migration more or less strong. Hössjer
and Ryman (2013) derived explicit approximations of NeV for two
consecutive points in time, and our current work represents an
extension to arbitrary time intervals of measurements for models
in which subpopulation sizes are allowed to fluctuate in time,
and these subpopulations represent age classes. However, these
stochastic fluctuations of age class sizes are relatively modest in
our model and they will have a minor impact on NeV , unless the
population is small.

We demonstrated that the allele frequency change can be
decomposed into a sum of two terms, of which the first reflects
the genetic drift of the whole population. This term has previously
been included inNeV calculations (Engen et al., 2005a). The second,
novel, term depends on allele frequency fluctuations between
age classes around a stable fix point, obtained as the leading
right eigenvector of the expected projection or Leslie matrix of
birth and survival rates, and it only vanishes when reproductive
weights are used. For other schemes, the relative importance of
these two sources of allele frequency change will depend on the
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Fig. 4. Plots of the relative discrepancy (Eq. (20)) for the growing scenario (left) and the decreasing scenario (right), represented by the solid lines, for the species in Table 2,
when weights c = 1 are used. The dashed lines are the asymptotic limits (Eqs. (G.4) and (G.5)) which are, for the growing (decreasing) scenario, −0.0273 (0.0750) for
humans, −0.0105 (−0.0034) for sparrows and −0.0030 (0.0043) for barnacles. On the x-axis, time is measured in 5 year periods for humans, 1 year periods for sparrows
and barnacles.
Fig. 5. The asymptotic limit (Eqs. (G.3)–(G.5)) as τ → ∞ for the relative
discrepancy of N1

eV (τ ), compared to Nv
eV (τ ), plotted as a function of λ, for the

sparrows data from Table 2. The growth rate λ has been varied by multiplying bi
and σi for the stable scenario by constants ranging from 0.2 to 4.

average growth rate of the population as well as the time between
measurements. This delicate balance between the two sources of
allele frequency change has several implications. First, the allele
frequency change over long time intervals will not depend on the
weighting scheme when the expected population size is constant,
and in particular the reproductive and uniform weights will give
the same result. The reason is that the second novel term will
have a negligible impact on the allele frequency change over long
time intervals, whereas the first dominating term will largely
be independent of the weighting scheme. Therefore, the actual
variance in allele frequency change over longer time periods is
accurately predicted by NeV using any kind of weighting scheme.

Second, for populations in which the expected population size
grows or declines, the long term expression for the variance effec-
tive size will depend on the weighting scheme. Third, the variance
effective size will exhibit initial transient fluctuations as a func-
tion of the time between measurements. These initial fluctuations
are generally of no interest for age-structured models. However,
for spatial and other types of structured models, with a slower
migration rate, they describe the short term transient behavior of
NeV . Fourth, for reproductive weights, the long term genetic drift
can be predicted from the short term genetic drift over one single
time step, provided the expected population size is constant, since
the above mentioned initial fluctuations are essentially canceled
out. Finally, for other population growth scenarios, we present a
formula for the relative discrepancy between the long term NeV
based on reproductive and uniform (or some other) weighting
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scheme. It turns out that for populations with a close to constant
expected size, this discrepancy will be small. Using reproductive
weights will then give a good approximation of the genetic drift
and NeV .

Theoretical characterization of NeV such as our current work
is important for analyzing how various assumptions impact the
variance effective population size. For instance, our results enable
studies on how different demographic parameters affect NeV , and
this makes it possible to study how demographic manipulation
affectsNeV , for instance howharvest strategies focused on separate
age classes influence NeV . Such analyses are of high relevance
for fisheries, wildlife and conservation management (Ryman
et al., 1981; Allendorf et al., 2008; Sæther et al., 2009). Hence,
development of new formulas allowing relaxation from ideal
conditions is important in order to increase our understanding of
the mechanisms of NeV .

Our findings show that the estimate by the temporal method
strongly depends on how the age classes are weighted together
when estimating the allele frequency change. In case that life
tables (i.e. age-specific birth and survival rates) are not known,
and the population size is constant in time, the long term genetic
drift can be estimated by increasing the time span between
the measurements, as proposed by Jorde and Ryman (1995)
andWaples and Yokota (2007). On the other hand, if life tables are
known, unbiased estimates of the long term genetic drift can be
obtained over short time spans by using the reproductive weights,
since this will approximate the long term genetic drift well in
most cases. Other methods for calculating estimators of the long
term NeV using life tables have previously been presented by Jorde
and Ryman (1995, 1996) and Jorde (2012). However, when the
population size is expected to grow or decline, the discrepancy of
NeV for the different weighting schemes will increase.

With our method it is possible to explore for empirical situ-
ations how long time intervals are necessary between measure-
ments to be able to ignore the effects of overlapping generations
for various life tables. We see in Table 3 that the time needed be-
tween measurements for a specific level of relative discrepancy
differs between the species, and that NeV can be both over- and
underestimated (cf. Jorde and Ryman, 1995; Waples and Yokota,
2007). Waples and Yokota (2007) suggested a minimum of three
to five generations between the measurements in order to mini-
mize the bias. However, it is clear from Table 3 that such a rule of
thumb cannot be applied generally without considering the mag-
nitude of acceptable bias and the demographic characteristics of
the population under study.

When analyzing the temporal method analytically and by sim-
ulations in the present study, we have, for simplicity, assumed that
all individuals in all age classes of the population are measured
at both points in time. In empirical situations when only a frac-
tion of the population can be measured, one needs to adjust for
the additional sampling variation in order to reduce the bias of
the estimated variance effective population size. We intend to ad-
dress this issue in a follow-up paper, generalizing the estimation
method of Jorde and Ryman (2007) for demographically homoge-
neous populations to models with age-structure.
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Appendix A. Description of Gt , Ht , (10) and (11)

Each individual k ∈ {1, . . . ,Nti} in generation t and age class i
gives birth to Btik progeny with E(Btik) = bi and Var(Btik) = σ 2

i . Let
Itik be the indicator that individual k in age class i of generation t
survives to age i + 1 with ρi = Corr(Itik, Btik) and E(Itik) = si.

Assuming that individuals are numbered so that the first Ztj
have the specified allele, we find that the non-zero elements of the
projection matrix Gt are given by

Gt0j = Z−1
tj

Ztj
k=1

Btjk,

Gt,j+1,j = Z−1
tj

Ztj
k=1

Itjk, j = 0, . . . , n − 2,

(A.1)

and similarly the non-zero elements for Ht

Ht0j = Y−1
tj

Ztj+Ytj
k=Ztj+1

Btjk,

Ht,j+1,j = Y−1
tj

Ztj+Ytj
k=Ztj+1

Itjk, j = 0, . . . , n − 2.

(A.2)

To get an explicit expression for (10)we first notice that the column
vector δtj = Gtj − gj = (δt,ji) have two non-zero elements δtj0 =

Gt0j − bj and δt,j+1,j = Gt,j+1,j − sj. Since

Cj = Ztj Cov(δtj) = (Cj,i1 i2)
n−1
i1,i2=0

we see that (10) has non-zero elements

Cj00 = ZtjVar(Gt0j − bj)

= ZtjVar


Z−1
tj

Ztj
k=1

Btjk


= Var(Btjk)

= σ 2
j ,

Cj,j+1,j+1 = sj(1 − sj),

Cj,0,j+1 = Cj,j+1,0 = σj

sj(1 − sj)ρj.

Hence, 6 = (Σij) has non-zero elements along the diagonal and
first row and column, given by

Σ00 =

n−1
i=0

uiσ
2
i ,

Σi+1,i+1 = uisi(1 − si), i = 0, . . . , n − 2,
Σ0,i+1 = Σi+1,0 = uiσi


si(1 − si)ρi, i = 0, . . . , n − 2. �

(A.3)

Appendix B. Calculation of u, v and T

Although u and v can be derived as left and right eigenvectors of
g , following Engen et al. (2005a), it is also possible to derive more
explicit formulas. The elements of the stable age distribution, u, are
given by

ui =
liλ−i−1

n−1
j=0

ljλ−j−1

, (B.1)

where li =
i−1

j=0 sj is the probability that an individual survives to
age class i. The elements of the vector of reproductive values, v, are
given by

vi ∝
λi

li

n−1
j=i

ljbjλ−j−1, (B.2)
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where ∝ denotes proportionality. The vector v is normalized so
that vu = 1 holds. The generation time T is given by

T =

n−1
i=0

(i + 1)libiλ−i−1. �

Appendix C. Verifying (7) and (14)

By rewriting the difference in allele frequencies between time t
and t + τ we have that

pct+τ − pct =
Z c
t+τ

Z c
t+τ + Y c

t+τ

−
λτZ c

t

λτ (Z c
t + Y c

t )

≈
1

λτ (Z c
t + Y c

t )
(Z c

t+τ − λτZ c
t )

−
Z c
t

λτ (Z c
t + Y c

t )2
(Z c

t+τ − λτZ c
t + Y c

t+τ − λτY c
t )

=
1 − pct
λτNc

t
(Z c

t+τ − λτZ c
t ) −

pct
λτNc

t
(Y c

t+τ − λτY c
t ),

where in the second step we made a first order Taylor expansion,
valid for large populations. We define the demographic variance

σ 2
d,c(τ ) =

1
λ2τZ c

t
E

(Z c

t+τ − λτZ c
t )

2
|Z c

t


, (C.1)

which is similar to the definition in Engen et al. (2005b). We
assume that the right hand side of (C.1) is independent of Z c

t , which
is a good approximation for large populations. Therefore, it follows
from (C.1) and symmetry of segregation of both alleles that

σ 2
d,c(τ ) =

1
λ2τZ c

t
E

(Z c

t+τ − λτZ c
t )

2
|Z c

t


=

1
λ2τY c

t
E

(Y c

t+τ − λτY c
t )2|Y c

t


.

Consequently, the expected allele frequency change from time t to
t + τ can be calculated as
E((pct+τ − pct )

2
|Nc

t , p
c
t ) = E((pct+τ − pct )

2
|Z c

t , Y
c
t )

≈
(1 − pct )

2

λ2τ (Nc
t )

2
E((Z c

t+τ − λτZ c
t )

2
|Z c

t )

+
(pct )

2

λ2τ (Nc
t )

2
E((Y c

t+τ − λτY c
t )2|Y c

t )

=
1

λ2τ (Nc
t )

2
((1 − pct )

2λ2τσ 2
d,c(τ )Z c

t

+ (pct )
2λ2τσ 2

d,c(τ )Y c
t )

=
σ 2
d,c(τ )

Nc
t

((1 − pct )
2pct + (1 − pct )(p

c
t )

2)

=
pct (1 − pct )σ

2
d,c(τ )

Nc
t

, (C.2)

in accordance with (14). In the second step of (C.2) we assumed
that the twoalleles segregate independently, so that the covariance
term vanishes. The reason is that we have a haploid population in
which individuals produce offspring independently of each other.
To verify (7) we let τ = 1 and proceed as above. �

Appendix D. Verifying (12) and (13)

Let λ0 (= λ), λ1, . . . , λn−1 be the (possibly complex valued)
eigenvalues of g , listed in descending order with respect to their
moduli, and let g = Q3Q−1 be its Jordan canonical form. The ma-
trix3 is upper triangular (see for instance Grimmett and Stirzaker,
2001) with λ0, . . . , λn−1 along the diagonal, so that u is the first
column of Q and v the first row of Q−1. In particular, when all λi
are distinct, 3 is diagonal, all columns of Q are right eigenvectors
of g and all rows of Q−1 left eigenvectors of g . Let Zt = Zv

t =

vZt , Yt = Y v
t = vYt and put

Zt = 51Zt + 52Zt = Ztu + ϵt , (D.1)

where ϵt represents random fluctuations of Zt around a vector pro-
portional to u. Similarly, write

Yt = 51Yt + 52Yt = Ytu + εt ,

for the vector corresponding to the non-specified allele. Here51 =

QI1Q−1, with I1 = diag(1, 0, . . . , 0), is the projection onto the
one-dimensional subspace U1 of Rn spanned by u, and 52 =

QI2Q−1, with I2 = diag(0, 1, . . . , 1), is the projection onto the
n − 1-dimensional subspace U2 of Rn spanned by the remaining
n − 1 columns of Q . Put also g̃ = 52g = Q 3̃Q−1, with 3̃ = I23
for the projection of g onto U2.

In order to obtain an explicit expression for the demographic
variance, we let

Vt =
E(ϵt(ϵt)

′
|Zt)

Zt
.

We first observe that

E(ϵt+1(ϵt+1)
′
|Zt)

Zt
=

Zt+1

Zt

E(ϵt+1(ϵt+1)
′
|Zt)

Zt+1

≈ λ
E(ϵt+1(ϵt+1)

′
|Zt+1)

Zt+1

= λVt+1. (D.2)

The second step of (D.2) relies on a large population assumption,
so that (4) is an accurate approximation, andmoreover, the genetic
drift is so small that changing conditioning from Zt to Zt+1 has little
effect on E(ϵt+1(ϵt+1)

′
|Zt). Then, using (D.1) we see that

ϵt+1 = 52Zt+1

= 52(gZt + δtZt)

= 52gZt + 52

n−1
i=0

δtiZti

≈ gϵt + 52Zt
n−1
i=0

δtiui.

Hence,

E(ϵt+1(ϵt+1)
′
|Zt)

Zt
≈ gVtg ′

+

n−1
i=0

52Ci(52)
′ui

= gVtg ′
+ 526(52)

′, (D.3)

where we used E(δt |ϵt) = 0, (10) and (11). Combining (D.2) and
(D.3) we get a recursion formula

Vt+1 = λ−1gVt(g)′ + λ−1526(52)
′,

for Vt , which converges to

V =

∞
k=0

λ−(k+1)52gk6(gk)′5′

2

= λ−1526(52)
′
+

∞
k=1

λ−(k+1)g̃k6(g̃k)′, (D.4)

as t → ∞, provided |λ1|
2/λ < 1, since |λ1| is the largest modulus

of the eigenvalues of g̃ . Hence, we have motivated that

Vt ≈ V . (D.5)
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We then use (D.1) to see that

Z c
t+τ − λτZ c

t = c
τ−1
s=0

(g + δt+s)(Ztu + ϵt) − λτ c(Ztu + ϵt)

≈ cZt
τ−1
s=0

λsgτ−s−1δt+su + c(gτ
− λτ I)ϵt . (D.6)

The first term on the right hand side of (D.6) reflects genetic drift
(δt , . . . , δt+τ ) over τ time steps and the second term random de-
mographic variation of allele frequencies between age classes (ϵt).
In view of (11), the first half of (13), (D.5), and an approximation
for large populations, whereby we can replace Z c

t by Zt , it follows
that the demographic variance can be approximated by

σ 2
d,c(τ ) ≈

1
λ2τZt

E

(Z c

t+τ − λτZ c
t )

2
|Zt


= λ−τ−1c


τ−1
r=0

λ−rg r6(g r)′


c ′

+ λ−2τ c(gτ
− λτ I)V (gτ

− λτ I)′c ′.

To verify (12) we let τ = 1 and proceed as above. �

Appendix E. Using c = v in (12)

The demographic variance presented in Engen et al. (2005a) is
the same expression when we let c = v in (12). In order to show
this, we first let vE

= (vE
0 , . . . , v

E
n−1) be the reproductive values

used in Engen et al. (2005a) which are proportional to vi and equal
to the right hand side of (B.2), and therefore normalized so that
vE
0 = 1 instead of (2). Then, we rewrite the expression for the

demographic variance in Engen et al. (2005a) as

σ 2
d = λ−2

n−1
i=0

ui


∂λ

∂bi

1
ui

2

σ 2
i +


∂λ

∂si

1
ui

2

si(1 − si)

+ 2
∂λ

∂bi

1
ui

∂λ

∂si

1
ui
ci



= λ−2


v2
0

n−1
i=0

uiσ
2
i +

n−2
i=0

uisi(1 − si)v2
i+1

+

n−2
i=0

v0vi+12uiσi


si(1 − si)ρi


= λ−2v6v ′,

where in the last step we employed formula (A.3) for the nonzero
elements of 6 and in the second step we used (B.1), (B.2) and the
fact that

∂λ

∂bi

1
ui

=
liλ−i

T

n−1
j=0

ljλ−j−1

liλ−i−1

=

λvE
0

n−1
j=0

ljλ−j−1

T
= v0,

∂λ

∂si

1
ui

=
liλ−ivE

i+1

T

n−1
j=0

ljλ−j−1

liλ−i−1

=

λvE
i+1

n−1
j=0

ljλ−j−1

T
= vi+1.
In the last step we used that vi = vE
i λ
n−1

j=0 ljλ−j−1/T , which
follows from (2), the formula for vE

i on the right hand side of (B.2)
and the fact that

n−1
i=0 uiv

E
i = T/(λ

n−1
j=0 ljλ−j−1). �

Appendix F. Explicit expression for V

When 3 is diagonal, then g̃k
= Q 3̃

k
Q−1 and 3̃

k
= diag(0, λk

1,

. . . , λk
n−1) for k = 1, 2, 3, . . . , and hence the expression (D.4) for

V can be written as

V = Q (A ⊙ (Q−16(Q−1)′))Q ′,

where ⊙ denotes elementwise multiplication and the elements of
A = (Aij) are given by

Aij = λ−11{min(i,j)≥1}

∞
k=0

λk
i λ

k
j

λk

=
λ−11{min(i,j)≥1}

1 −
λiλj
λ

. �

Appendix G. Asymptotics of the variance effective population
size

We will make use of the approximation in the second step of
(15), and additionally assume that Nc

t ≈ Nv
t , which, in view of (3)

and the fact that cu = vu = 1, is accurate for large populations.
By inserting (14) into (15) it then follows that the demographic
variance appears in the denominator of Nc

eV (τ ) and it is the only
quantity in this equation that depends on the weighting scheme
c . Hence, in view of the two above mentioned approximations, we
can rewrite the relative discrepancy for Nc

eV ,t(τ ) as

∆c(τ ) =
−∆̃c(τ )

1 + ∆̃c(τ )
,

where

∆̃c(τ ) =
σ c
d (τ ) − σ v

d (τ )

σ v
d (τ )

is the relative discrepancy for the demographic variance when
using c instead of v. Hence, in the following derivation we use the
demographic variance to express the relative discrepancy for NeV .
First, the demographic variance is rewritten as

σ 2
d,c(τ ) = λ−τ−1

τ−1
r=0

λrv6v ′

+ λ−τ−1(c − v)
τ−1
r=0

g̃ r6v ′

+ λ−τ−1v6

τ−1
r=0

(g̃ r)′(c − v)′

+ λ−τ−1(c − v)
τ−1
r=0

λ−r g̃ r6(g̃ r)′(c − v)′

+ (c − v)V (c − v)′ + o(max(1, λ−τ )), (G.1)

which holds for any λ > 0, with the last term of smaller order than
max(1, λ−τ ) as τ → ∞. For the last term we used that

c(gτλ−τ
− I)V (gτλ−τ

− I)′c ′

= (c − v)(gτλ−τ
− I)V (gτλ−τ

− I)′(c − v)′

= (c − v)(g̃τλ−τ
− I)V (g̃τλ−τ

− I)′(c − v)′

= (c − v)V (c − v)′ + o(1).
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The asymptotics of the demographic variance depends on the
growth rate and the following analysis is divided into three cases.

Case 1: When λ = 1, (G.1) simplifies to

σ 2
d,c(τ ) = τv6v ′

+ (c − v)
τ−1
r=0

g̃ r6v ′
+ v6

τ−1
r=0

(g̃ r)′(c − v)′

+ (c − v)
τ−1
r=0

g̃ r6(g̃ r)′(c − v)′

+ (c − v)V (c − v)′ + o(1), (G.2)

hence, the demographic variance is dominated by the first term in
(G.2) and the relative discrepancy (20) is of order O(τ−1), since

lim
τ→∞

τ∆c(τ ) = − lim
τ→∞

τ ∆̃c(τ ) = C (G.3)

where

−C =
1

v6v ′


(c − v)

∞
r=0

g̃ r6v ′
+ v6

∞
r=0

(g̃ r)′(c − v)′

+ (c − v)
∞
r=0

g̃ r6(g̃ r)′(c − v)′ + (c − v)V (c − v)′


.

Case 2: When λ > 1, if we let τ → ∞ the first term in (G.1)
converges to (λ(λ − 1))−1v6v ′

+ o(1) and the next three sums
tend to zero, conditioned on |λ1|

2 < λ, hence

σ 2
dc(τ ) =

1
λ(λ − 1)

v6v ′
+ (c − v)V (c − v)′ + o(1)

as τ → ∞, so that for the relative discrepancy of the demographic
variance and the variance effective population size we have

lim
τ→∞

∆̃c(τ ) =
λ(λ − 1)
v6v ′

(c − v)V (c − v)′

and

lim
τ→∞

∆c(τ ) = −

λ(λ−1)
v6v′ (c − v)V (c − v)′

1 +
λ(λ−1)
v6v′ (c − v)V (c − v)′

. (G.4)

Since λ > 1, the right hand side of (G.4) is less or equal to zero.

Case 3: When λ < 1, (G.1) can be rewritten as

σ 2
d,c(τ ) =

1
(1 − λ)λ

λ−τ (1 + o(1))v6v ′

+
1
λ

1
λτ

(c − v)
τ−1
r=0

g̃ r6v ′
+

1
λ

1
λτ

v6

τ−1
r=0

(g̃ r)′(c − v)′

+
1
λ

1
λτ

(c − v)
τ−1
r=0

λ−r g̃ r6(g̃ r)′(c − v)′ + o(λ−τ ).

Hence, for the relative discrepancy of the demographic variance,
we have that

lim
τ→∞

∆̃c(τ ) =
1 − λ

v6v ′


(c − v)

∞
r=0

g̃ r6v ′
+ v6

∞
r=0

(g̃ r)′(c − v)′

+ (c − v)
∞
r=0

λ−r g̃ r6(g̃ r)′(c − v)′


= −

1 +
1

lim
τ→∞

∆c(τ )

−1

. � (G.5)
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