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Abstract

A sampling design with unequal probabilities, called q-sampling, is intro-
duced. It is shown that q-sampling is in fact, a sampling design and its asso-
ciated inclusion probabilities are presented. The design is proposed to be cou-
pled with the well known Horvitz-Thompson estimator or the proposed, and
also unbiased, q-estimator. An approximate expression for the variance and a
variance estimator for the strategy (q-sampling–q-estimator) are proposed. Per-
formance of q-sampling is studied using a Monte-Carlo simulation study and is
compared with three well known designs: simple random sampling, systematic
sampling and Pareto sampling. The main conclusions are that, when coupled
with the Horvitz-Thompson estimator, q-sampling behaves similar to simple
random sampling. On the other hand, when coupled with the q-estimator, q-
sampling lies in between simple random sampling and Pareto sampling.

Keywords: Sampling with unequal probabilities; Pareto sampling; systematic
sampling; q-sampling; Monte-Carlo simulation.
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Introduction

In a general setting of survey sampling we are interested in the population total of
a variable y of the N elements that constitute the population of interest, i.e. we are
interested in

ty =
∑
U

yk

where yk is the value of the variable of interest for the k-th element in the population,
U .

In order to obtain an estimate of ty a sample, s, is selected from U under a given
design, p(·). Then, the observations of y for the elements in s are collected and an
estimate is calculated by using a given estimator Q(S). The combination of a sampling
design and an estimator is called strategy.

It is known that when auxiliary variables are available, they can be used in the
design, in the estimator or in both. In particular, when an auxiliary variable x that
is approximately proportional to y is known for every element in U , it can be used in
the design in order to reduce the variance of the estimator.

There are many designs that allow to select a sample with probabilities propor-
tional to the size variable x. Among them, we can find random-size with replacement
(e.g. Poisson with replacement), random-size without-replacement (e.g. Poisson sam-
pling), fixed-size with-replacement (e.g. pps sampling) and fixed-size without replace-
ment (e.g. πps sampling) designs. It is expected that the reduction in variance due
to the use of the auxiliary variable is greater for the latter, but, on the other hand,
some difficulties arise when selecting a sample under this approach.

It is important to note that the proportionality can be relative to different mea-
sures, for example, the inclusion probabilities (if we are interested in using the Horvitz-
Thompson estimator) or the selection probability in each drawing (if we are interested
in using the Hansen-Hurwitz estimator).

The problem of selecting a sample with selection probabilities strictly proportional
to x has already been solved. On the other hand, to select a sample with inclusion
probabilities strictly proportional to x has not been an easy task, especially if we
take into account that a simple selection algorithm is strongly desirable and that
we are usually interested in samples of size greater than two. Furthermore, if the
Horvitz-Thompson estimator is to be used, it is also desirable that all the second-
order inclusion probabilities be greater than zero, easy to calculate and the inclusion
covariances should be smaller than zero.

Many available methods fulfill some, but not all, of the conditions above. For
example, Brewer’s method is defined for samples of size n = 2; Sunter’s scheme
is only “approximately”proportional; and Pareto sampling is assymptotically a πps
design, but for small samples the results are only approximations.

Based on the above discussion, the main objective of this thesis is to propose a sam-
pling design that uses an auxiliary variable to select a fixed-size without-replacement
sample for any sample size n (0 < n < N). The main advantage of this design with
respect to other methods is that the r-th (0 < r ≤ n) order inclusion probabilities are
positive and easily calculated. However, the design also has disadvantages that will
be pointed out later.

A second objective of the thesis is to couple the proposed design with the Horvitz-
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Thompson estimator (π-estimator):

t̂π =
∑
s

yk
πk

where πk is the inclusion probability of the k-th element.
It is known that if the π-values were strictly proportional to y, then, the variance

of the π-estimator would be zero. Here arises the main disadvantage of the proposed
design: it doesn’t allow for selecting a (strict) πps for x variables that are severely
right-skewed. As a consequence, the third objective of the thesis is to propose an
estimator that is unbiased under the proposed design and has no restrictions regarding
the distribution of the auxiliary variable x.

In the first section of the thesis some basic concepts will be defined. Also some
examples of estimator and sampling designs will be presented. In the second section,
the proposed design will be defined and it will be shown that it is, in fact, a sampling
design. Also, an expression for the r-th order inclusion probabilities will be shown and
an algorithm of selection will be given. In the final part of the section some examples
will be developed. In the third section the strategy composed of the proposed design
and the π-estimator will be discussed. In the fourth section the strategy composed of
the proposed design and the proposed estimator will be discussed. A comparison of
the two strategies developed in sections three and four, together with other strategies
will be carried out in the fifth section.

1 Theoretical framework

This section is divided into three parts. Basic concepts, like sampling design and esti-
mator, will be presented on the first part. In the second part the Horvitz-Thompson
and the Hansen-Hurwitz estimators are defined. The third part will be devoted to
presenting different sampling designs that use auxiliary information.

The definitions in the next section are based on those presented in Särndal et.
al. (1992). Therefore, the reader is referred to that source for a more comprehensive
description of the concepts. Also, the notation used here follows that used in Särndal
et. al. (1992).

1.1 Basic concepts

Let U be a population composed of N elements labeled {1, 2, · · · , N}, yk and xk the
values, associated with the k-th element, of a variable of interest and an auxiliary
variable, respectively. The y-values are assumed to be unknown prior to the sampling
and only those selected in the sample will be known. On the other hand the x-values
are assumed to be known beforehand for every element in the population.

A sampling frame that lists the N elements in U is assumed to be at hand. For-
mally sampling frame is defined as (Särndal et. al., 1992)

any material or device used to obtain observational access to the finite
population of interest. It must be possible with the aid of the frame to
(1) identify and select a sample in a way that respects a given probability
design and (2) establish contact with selected elements.
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We are interested in the population total of y, denoted by ty, i.e. we are interested
in

ty =
∑
U

yk

It can be seen that ty is known only through a complete enumeration of the y-
values. This procedure is often very expensive or hard to achieve. Therefore, we
usually observe only a subset of U and we use it to estimate the total of interest.
This subset is called a sample and will be denoted by s. A sample is any subset of U
(including the empty set and U itself) and it may include the same element more than
once. Two main aspects are to be considered regarding a sample: how it is selected
and how it will be used to obtain an estimate of the total. The former is related to
the concept of sampling design; the latter, to the concept of estimator.

Let Ω∗ be the set of subsets of U . A sampling design is any probability distribu-
tion over Ω∗ and will be denoted by p(s). In other words, a sampling design is the
probability assigned to each possible sample. As p(s) is a probability function over
Ω∗, it satisfies the following conditions∑

Ω∗

p(s) = 1 (1)

p(s) ≥ 0 for every s ∈ Ω∗ (2)

Note that Ω∗ is an infinite set. Usually a large number of elements (samples) in Ω∗

have probability equal to zero. The support of a sampling design is the set of samples
with probability strictly positive and will be denoted by Ω. So, conditions (1) and
(2) can be rewritten in terms of the support as∑

Ω

p(s) = 1 (3)

p(s) > 0 for every s ∈ Ω (4)

Once the sampling design is defined, one sample must be selected according to
the probabilities defined by the design. A simple method is to enumerate the support
and select a sample by generating a random number from a uniform distribution.
Unfortunately, although simple to explain, this method is usually impossible to carry
out because the cardinality of Ω is very large even for small populations; therefore,
methods that avoid the complete enumeration of the samples in the support but
respect the probabilities given by the design must be used. These methods are called
sample selection schemes.

Using a sample selection scheme one sample is selected, the y values for the ele-
ments in the sample are collected and an estimate for the total is obtained through
an estimator. An estimator is any real-valued function of the sample. Although any
statistic can be considered as an estimator, usually, the difference relies on the fact
that an estimator has certain desired properties regarding a given parameter. In our
case, the parameter of interest is the population total, ty.

1.2 Estimators

Two estimators of the total will be described in this subsection: i. the Horvitz-
Thompson estimator (Horvitz and Thompson, 1952), also called π-estimator that will
be denoted by t̂π; and ii. the Hansen-Hurwitz estimator (Hansen and Hurwitz, 1943)
that will be denoted by t̂pwr.
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1.2.1 The Horvitz-Thompson estimator

For any k in U , let Ik a function that indicates whether k is included in the sample
or not, i.e.

Ik =

{
1 k is included in the sample

0 k is not included in the sample

The expected value of the function Ik under the design p(·) is called the inclusion
probability of k and will be denoted by πk,

πk = Ep(Ik) =
∑

Ω

p(s)Ik

In other words, the inclusion probability of k is the probability that the k-th element
is actually selected in the sample.

The π-estimator is defined as

t̂π =
∑
s

yk
πk

(5)

It can be shown that t̂π is an unbiased estimator of the total,

Ep(t̂π) ≡
∑

Ω

p(s)t̂π = ty

Also, the value of the estimator varies according to the realized sample, so t̂π has
a variance. Before defining the variance, we need to define the second order inclusion
probabilities.

In the same sense that πk is the probability that the k-th element is selected in
the sample, the second order inclusion probability of k and l is the probability that
both elements, k and l, are selected simultaneously in the sample. This probability is
denoted by πkl and is formally defined as

πkl = Ep(IkIl) =
∑

Ω

p(s)IkIl (6)

Note that, by definition, πkk = πk. Higher order inclusion probabilities can be
defined in an analogous way: The r-th order inclusion probability of k1, k2, · · · , kr
is the probability that the elements k1, k2, · · · , kr are selected simultaneously in the
sample. This probability is denoted by πk1k2···kr and is formally defined as

πk1k2···kr =
∑

Ω

p(s)Ik1Ik2 · · · Ikr (7)

A design that satisfies

πk > 0 and πkl > 0 (k, l = 1, 2, · · · , N)

is called measurable.
Now that the second order inclusion probabilities have been defined, the expression

for the variance of the π-estimator can be presented:

Vp
(
t̂π
)
≡
∑

Ω

p(s)
(
t̂π − ty

)2
=
∑
U

∑
U

∆kl
yk
πk

yl
πl

(8)
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where ∆kl is the covariance between Ik and Il,

∆kl = πkl − πkπl

It can be seen that in order to calculate the variance of the π-estimator all the
y-values are required. But we only know the y-values of those elements included in
the sample, so Vp

(
t̂π
)

is also a parameter that must be estimated. If πkl > 0 for all
k, l ∈ U , the statistic

V̂p
(
t̂π
)

=
∑
s

∑
s

∆kl

πkl

yk
πk

yl
πl

(9)

is an unbiased estimator of Vp
(
t̂π
)
. An alternative expression for the variance of

the π-estimator for fixed-size designs is

Vp
(
t̂π
)
≡
∑

Ω

p(s)
(
t̂π − ty

)2
= −1

2

∑
U

∑
U

∆kl

(
yk
πk
− yl
πl

)2

(10)

Also, for fixed-size designs, an alternative estimator of the variance is

V̂p
(
t̂π
)

= −1

2

∑
s

∑
s

∆kl

πkl

(
yk
πk
− yl
πl

)2

(11)

If πkl > 0 for all k, l ∈ U , the estimator is unbiased; furthermore, if ∆kl < 0 for all
k, l ∈ U , it is nonnegative.

The double sum in the expressions for the variance, and its estimators, leads to
hard calculations due to the number of terms involved in it. Other, but biased,
estimators of the variance of the π-estimator have been proposed. Some of these do
not need the second order inclusion probabilities or the covariances.

It is important to note that if we could make the π-values exactly proportional
to the y-values (i.e. πk = αyk for all k ∈ U), the variance of the π-estimator would
be equal to zero. Unfortunately, even when the π-values are usually defined through
the design, the y-values remain unknown (only those selected in the sample will be
known), so it is impossible to obtain a strict proportionality. Even so, often there
is (at least) one variable that is available prior to the design stage and is correlated
with the variable of interest. This variable, which is required to be greater than zero
and known for every element in U , is often called an auxiliary variable and will be
denoted by x.

We would be interested in a design that assigns inclusion probabilities proportional
to the auxiliary variable, x, so that the variance of the π-estimator is reduced when
x and y are well correlated. Such designs are commonly known as πps designs. The
discussion of such designs will be relegated to Section 1.3.4.

1.2.2 The Hansen-Hurwitz estimator

Let p1, p2, · · · , pN be a set of known values associated with the elements in U such
that

pk > 0 for all k ∈ U and
∑
U

pk = 1

Consider the following sample selection scheme: One out of the N elements in U
is selected using the p-values as selection probabilities. Once the element has been
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selected it is placed back into the population. This experiment is repeated m times,
so that m elements are selected.

The above scheme generates a with-replacement design often denoted as pps-
sampling. This design will be discussed in Section 1.3.3.

For such a design, the estimator

t̂pwr =
1

m

m∑
i=1

yk
pk

(12)

is unbiased for the total, ty. This estimator will be called pwr-estimator.
Note that a different notation has been used in the sums for the π-estimator (5)

and the pwr-estimator (12). This fact can be explained as follows: two different
concepts of sample can be observed under a with-replacement design. One is the set
of m selected elements; this set includes each element as many times as it has been
selected and is called the ordered sample. The pwr-estimator uses this set in order to
obtain an estimate. A second concept is the set of different elements selected and is
called the set sample. The π-estimator uses this set.

The variance of the pwr-estimator can be expressed as

Vp
(
t̂pwr

)
≡
∑

Ω

p(s)
(
t̂pwr − ty

)2
=

1

m

∑
U

pk

(
yk
pk
− ty

)2

(13)

An unbiased estimator of the variance is

V̂p
(
t̂pwr

)
=

1

m(m− 1)

m∑
i=1

(
yk
pk
− t̂pwr

)2

(14)

Unlike the expressions for the variance of the π-estimator, the expressions for the
pwr-estimator are based on a single sum. This fact makes the calculation of the
variances (and its estimates) notably simpler for the case of the pwr-estimator in
comparison to the π-estimator.

In a sense analogous to that described for the π-estimator, the variance of the
pwr-estimator can be strongly reduced through the use of an auxiliary variable that
is highly correlated with the variable of interest: if we could get the p-values to be
exactly proportional to the y-values, the variance of the pwr-estimator would be zero.

1.3 Sampling designs

Three characteristics can be used as a simple way to categorize a sample design:

1. whether it is with or without replacement;

2. whether it is of fixed or random size; and,

3. whether it uses auxiliary information or not.

It is often observed that without replacement are more efficient than with replacement
designs; fixed size are more efficient than random size; and, designs that use auxiliary
information are more efficient than those that do not.

These three characteristics generate eight groups that are listed as follows (an
example of each case is listed between brackets):
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1. No auxiliary info. - Random size - With rep. (Bernoulli with replacement);

2. No auxiliary info. - Random size - Without rep. (Bernoulli without rep.);

3. No auxiliary info. - Fixed size - With rep. (SRS with replacement);

4. No auxiliary info. - Fixed size - Without rep. (SRS without replacement);

5. Auxiliary info. - Random size - With rep. (Poisson with replacement);

6. Auxiliary info. - Random size - Without rep. (Poisson without replacement);

7. Auxiliary info. - Fixed size - With rep. (pps);

8. Auxiliary info. - Fixed size - Without rep. (πps)

For a comprehensive description of these designs, see, for example (Tillé, 2006) or
(Särndal et. al., 1992). Those designs that do not use auxiliary information will not
be discussed in this document, the only exception being Simple Random Sampling
without replacement. This design will be considered for two reasons: the theory
behind it is useful to illustrate the concepts already defined in Section 1, and, this
design is often considered as a reference when comparisons are to be made. Also,
the Poisson with replacement design is not considered, given that it is known to
be an inefficient design. On the other hand, Poisson sampling and pps-sampling are
presented only with illustrative purposes, but they will not be used in the comparisons
in Section 5.

1.3.1 Simple Random Sampling without replacement

Let Ωsrs be the set composed of the
(
N
n

)
without replacement samples of size n out

of N elements. Simple Random Sampling without replacement, denoted SRS, is the
design that has Ωsrs as its support and assigns the same probability to each sample
in it, i.e.

p(s) =
1(
N
n

)
One sample selection scheme to select a sample from a SRS is the following: asso-

ciate, to each element k ∈ U , a value uk such that uk is a random number from
a uniform distribution Unif(0,1) and then, select the n elements with the smallest
u-values.

Under SRS the first and second order inclusion probabilities are

πk =
n

N
πkl =

n(n− 1)

N(N − 1)
(15)

Then, the π-estimator takes the form

t̂π =
N

n

∑
s

yk (16)

The variance of t̂π can be rewritten as

V
(
t̂π
)

=
N2

n

(
1− n

N

)
S2
y,U where S2

y,U =
1

N − 1

∑
U

(yk − ȳU)2 and ȳU =
1

N

∑
U

yk
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and the estimator for the variance is

V̂
(
t̂π
)

=
N2

n

(
1− n

N

)
S2
y,s where S2

y,s =
1

n− 1

∑
s

(yk − ȳs)2 and ȳs =
1

n

∑
s

yk

(17)

1.3.2 Poisson without replacement

Consider the following sample selection scheme. Associate, to each k ∈ U , two values:
a first value, π∗k (0 < π∗k ≤ 1), and a second value, uk such that uk is a random number
from a uniform distribution Unif(0,1) (note that the π∗-values are fixed and known,
while the u-values are random). If uk < π∗k, element k is included in the sample.

The design generated by the above scheme is known as Poisson without replace-
ment sampling. Note that the support for this design, Ωpois, consists of the power set
of U , i.e. the 2N subsets of U . Under this scheme, the probability of each sample in
the support can be written as

p(s) =
∏
s

π∗k
∏
U−s

(1− π∗k)

Under Poisson sampling the first and second order inclusion probabilities are

πk = π∗k πkl = π∗kπ
∗
l

The expression for the π-estimator cannot be simplified, so

t̂π =
∑
s

yk
πk

The variance of t̂π can be rewritten as

V
(
t̂π
)

=
∑
U

(1− πk)
y2
k

πk

and the estimator for the variance is

V̂
(
t̂π
)

=
∑
s

(1− πk)
y2
k

π2
k

Now, suppose that an auxiliary and positive variable x is available for every k ∈ U .
Henceforth, we assume that all the x-values are such that xk <

1
n
. We can define

π∗k = n
xk
tx

where tx =
∑
U

xk

and n is the expected sample size.

If there is a high correlation between x and the (unknown) variable y, the variance
will be reduced. In an extreme situation where yk = αxk, the variance would be equal
to zero.
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1.3.3 Proportional-to-size sampling with-replacement

Consider again the sample selection scheme described in Section 1.2.2. The support
generated by this scheme, Ωpps, consists of the Nm with-replacement samples of size
m out of N elements; and the probability associated with each sample is

p(s) =
∏
s

pk

This design is often coupled with the pwr-estimator. Expressions for the estimator,
its variance and an unbiased estimator for the variance have been already presented
in Section 1.2.2.

Suppose that an auxiliary and positive value x is available for every k ∈ U . We
can define

pk =
xk
tx

where tx =
∑
U

xk

As in the case of Poisson sampling, a high correlation between x and y will lead
to a great reduction in the variance. A perfect linear relation between x and y would
give a variance equal to zero.

Alternatively, the strategy (pps–π-estimator) can be considered. The first and
second order inclusion probabilities are

πk = 1− (1− pk)m πkl = 1− (1− pk)m − (1− pl)m + (1− pk − pl)m

Note that even under a perfect linear correlation between x and y, the variance
for this strategy is not equal to zero. This is a good reason why the strategy (pps–
pwr-estimator) is often preferred. Even so, sometimes smaller variances are obtained
through the former strategy.

1.3.4 Proportional-to-size sampling without-replacement

As mentioned above, usually, fixed size designs are more efficient than random size;
without replacement designs, are more efficient than with replacement; and, designs
that use auxiliary information are more efficient than those that does not use it. So,
we would expect a without-replacement fixed size with auxiliary information design
to be the best combination for a design. Many of such designs already exist. Tillé
(2006) and Hanif and Brewer (1980), for example, present reviews of available designs.

One design that satisfies the three conditions above is the so called πps design,
where the inclusion probabilities are created proportionally to the auxiliary variable,
so that the variance of the strategy (πps–π-estimator) is expected to be small. Even
when there are many schemes that allow for selecting a sample that follows a πps
design, other properties are strongly desired besides those already mentioned. Among
these properties we can mention: the scheme should be easily implemented, it should
be useful for selecting samples of size greater than two, and the second order inclusion
probabilities should be easily computable and greater than zero. If an estimator
different than the π-estimator may be considered, the last condition can be ignored.

Unfortunately, it is not easy to find a scheme that simultaneously satisfies all the
conditions above. Two schemes that offer interesting properties are: systematic πps
with fixed ordered frame and Pareto sampling. These schemes are briefly described
as follows.

12



Systematic πps (There are some variations of this scheme. The one described here
is usually called systematic πps with fixed ordered frame. More information about the
design can be found in Tillé (2006).) Let xk be the value of the auxiliary variable
associated with the k-th element, with xk > 0 for all k ∈ U and tx the total of x, i.e.

tx =
∑
U

xk

Assume that the sampling frame is ordered regarding a given pattern. For example,
ordered according the x-values, according to a different auxiliary variable, according
to an identification variable or according to any other “natural”order.

Define the variable zk as the cumulative sum of the first k values of x in the frame,
i.e.

zk =
k∑
i=1

xi

Let u be a random number from a uniform distribution Unif(0,L), where

L =
tx
n

Select the n elements such that

zk−1 ≤ u+ [(i− 1)L] < zk i = 1, 2, · · · , n

The scheme described above generates a strict πps design, i.e. the inclusion pro-
babilities, πk, generated by the scheme satisfy the relation

πk = n
xk
tx

,

that is also without-replacement and fixed-size. The selection method is simple to
implement in practice and the sample size is not a restriction. On the other hand,
the second-order inclusion probabilities generated by it are not easily obtained and,
often, many of them are equal to zero; so systematic sampling is not a measurable
design and the unbiased estimators for the variance presented in (9) and (11) cannot
be calculated. Many alternative estimators are available. Different estimators have
been proposed, but all of them seem to perform well under different situations (see,
for example (Wolter, 2007)).

Systematic πps is considered as an efficient scheme in the sense that its variance
is usually small compared to other designs or even to other πps schemes. However, as
there is no unbiased estimator for the variance, it is hard, in practice, to determine
how well it is working.

Pareto sampling Let π∗k be the desired inclusion probability associated with the
k-th element. The π∗-values must satisfy∑

U

π∗k = n

where n is the desired sample size. Often, the π∗k-values are defined as

π∗k = n
xk
tx

13



with x an auxiliary variable always greater than zero expected to be highly and
positively correlated with y, and

tx =
∑
U

xk

Associate, to each k ∈ U , a value uk, such that uk is a random number from a
uniform distribution Unif(0,1). Define the variable zk as

zk =
uk (1− π∗k)
π∗k (1− uk)

The sample consists of the n elements with the smallest z-values.
The scheme described above generates a without-replacement fixed size design,

which is also easy to implement in practice and works for every sample size. Even so,
Pareto sampling is not a strict πps, it is only approximately πps, i.e.

πk ≈ π∗k

The exact first and second order inclusion probabilities generated by the scheme
are not easy to obtain, so the π-estimator and the variance estimators (9) and (11)
cannot be calculated. An alternative estimator for the total, that resembles the π-
estimator is

t̂qπ =
∑
s

yk
π∗k

(18)

An expression that approximates the variance of t̂qπ is

AV
(
t̂qπ
)

=
N

N − 1

[
ty2(1−π∗)/π∗ −

t2y(1−π∗)

tπ∗(1−π∗)

]
(19)

where

ty2(1−π∗)/π∗ =
∑
U

y2
k(1− π∗k)/π∗k ty(1−π∗) =

∑
U

yk(1− π∗k)

tπ∗(1−π∗) =
∑
U

π∗k(1− π∗k)

An estimator for the variance is

V̂
(
t̂qπ
)

=
n

n− 1

[
t̂y2(1−π∗)/π∗ −

t̂2y(1−π∗)

t̂π∗(1−π∗)

]
(20)

where

t̂y2(1−π∗)/π∗ =
∑
s

y2
k(1− π∗k)/π∗k

π∗k
t̂y(1−π∗) =

∑
s

yk(1− π∗k)
π∗k

t̂π∗(1−π∗) =
∑
s

π∗k(1− π∗k)
π∗k

Although is not strictly πps, Pareto sampling is, as systematic sampling, con-
sidered a very efficient design. For a more comprehensive presentation of Pareto
sampling, see (Rosén, 1997).
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2 A without-replacement fixed-size sampling de-

sign that uses auxiliary information

In this section a without-replacement fixed-size sampling design which uses auxiliary
information is proposed. Also, the inclusion probabilities associated with this design
are calculated. An algorithm that allows to selecting a sample from the design is
described. In the final part of the section some examples are presented.

Result 1. Let U be the population that consists of N elements labeled {1, 2, · · · , N}
and let, for every k ∈ U , qk be a known value associated with the k-th element. Let,
also, Ωq be the set of the

(
N
n

)
without-replacement samples of size n out of the N

elements in U . The function that assigns the probability

p(s) =
1(

N−1
n−1

)∑
s

qk (21)

to any set s in Ωq, is a sampling design if

tq =
∑
U

qk = 1 (22)

n∑
i=1

q(i) > 0 (23)

where q(i) are the order statistics of the variable q.

A proof of the result is shown in the appendix. The support generated by the
design in (21) coincides with Ωsrs, the support of a SRS.

As this design is based on the q-values, it will be called q-sampling. Note that the
q-values do not need to be strictly positive, some of them can be negative. Condition
(23) establishes a “limit”for the negative q-values allowed: the sum of the n smallest
q-values must be greater than zero.

Now that, by Result 1, we know that q-sampling is, in fact, a sampling design, we
can calculate the inclusion probabilities. In the following result, expressions for the
first-order, second-order, and, in general, r-th order (r ≤ n) inclusion probabilities
are obtained.

Result 2 (Inclusion probabilities). Under q-sampling as defined in (21), the first
order inclusion probability of the k-th element is

πk =
1

N − 1
[(N − n) qk + (n− 1)] (24)

The second order inclusion probability of the elements k and l (k 6= l) is

πkl =
n− 1

(N − 1)(N − 2)
[(N − n) (qk + ql) + (n− 2)] (25)

In general, the r-th order inclusion probability of the elements k1, k2, · · · , kr is

πk1k2···kr =

r−1∏
i=1

(n− i)
r∏
i=1

(N − i)

[
(N − n)

r∑
i=1

qki + (n− r)

]
(26)
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The result is proved in the appendix. The first and second order inclusion probabi-
lities will be used in the next section, when q-sampling is coupled with the π-estimator.
Note that the πk defined in (24) are valid inclusion probabilities, in the sense that∑

U πk = n, where n is the desired sample size:

∑
U

πk =
∑
U

1

N − 1
[(N − n) qk + (n− 1)] = (by Result (2))

1

N − 1

[
(N − n)

∑
U

qk +N(n− 1)

]
= (after some algebra)

1

N − 1
[(N − n) +N(n− 1)] = (by condition (22))

1

N − 1
[Nn− n] = n

The selection algorithm that will be proposed later in this section requires the
calculation of conditional inclusion probabilities.

Result 3 (Conditional inclusion probabilities). The conditional inclusion probability
of the element k, given that the elements l1, l2, · · · , lr are also in the sample s, is

πk|l1l2···lr =
πl1l2···lrk
πl1l2···lr

=
n− r

N − r − 1

[(N − n) (
∑r

i=1 qli + qk) + (n− r − 1)]

[(N − n)
∑r

i=1 qli + (n− r)]

The result is proved in the appendix. A draw-by-draw sample selection scheme
for q-sampling is described as follows.

Sample selection scheme

1. For a given set of valid q-values (validity is to be understood under conditions
(22) and (23)), calculate the associated π-values; and select one element with
probabilities proportional to the π-values, say element l1 is selected.

2. Calculate the conditional inclusion probabilities for the remaining elements
given l1, πk|l1 ; and select one element with probabilities proportional to these
conditional probabilities, say element l2 is selected.

3. Calculate the conditional inclusion probabilities for the remaining elements
given l1, l2, πk|l1l2 ; and select one element with probabilities proportional to
these conditional probabilities, say element l3 is selected.

4. Continue this process until n elements are selected.

The following example illustrates the procedure.

Example 1 (Ilustrating the sample selection scheme). Let U be a population of size
N = 10 with q-values equal to

q = [−0.0500 − 0.0125 0.0250 0.0625 0.1000

0.1000 0.1375 0.1750 0.2125 0.2500]

The goal is to draw a sample of size n = 4. Note that (22) and (23) are satisfied.
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1. The inclusion probabilities are calculated using (24), for example, for the first
element we have:

π1 =
1

N − 1
[(N − n)q1 + (n− 1)] =

1

10− 1
[(10− 4)(−0.0500) + (4− 1)] = 0.3

The set of inclusion probabilities is

π =
[
0.300 0.325 0.350 0.375 0.400 0.400 0.425 0.450 0.475 0.500

]
The cumulative sum of the π-values is

z =
[
0.300 0.625 0.975 1.350 1.750 2.150 2.575 3.025 3.500 4.000

]
One value from a uniform distribution Unif(0,4) is realized: u1 = 3.799, so the
element k = 10 is selected.

2. The conditional inclusion probabilities are calculated using (26). For example,
for the first element we have:

π1|10 =
n− r

N − r − 1

[(N − n) (q10 + q1) + (n− r − 1)]

[(N − n)q10 + (n− r)]
=

4− 1

10− 1− 1

[(10− 4) (0.2500 + (−0.0500)) + (4− 1− 1)]

[(10− 4)0.2500 + (4− 1)]
= 0.2667

The nine conditional inclusion probabilities are

πk|10 = [0.2667 0.2854 0.3042 0.3229 0.3417

0.3417 0.3604 0.3792 0.3979 NA]

The cumulative sum of the conditional probabilities is

zk|10 = [0.2667 0.5521 0.8563 1.1792 1.5208

1.8625 2.2229 2.6021 3.0000 NA]

One value from a uniform distribution Unif(0,3) is realized: u2 = 0.378, so the
element k = 2 is selected.

3. The new set of conditional inclusion probabilities is calculated. For example,
for the first element we have:

π1|10,2 =
n− r

N − r − 1

[(N − n) (q10 + q2 + q1) + (n− r − 1)]

[(N − n) (q10 + q2) + (n− r)]
=

4− 2

10− 2− 1

[(10− 4) (0.2500 + (−0.0125) + (−0.0500)) + (4− 2− 1)]

[(10− 4) (0.2500 + (−0.0125)) + (4− 2)]
= 0.1773

The eight conditional inclusion probabilities are

πk|10,2 = [0.1773 NA 0.2148 0.2336 0.2523

0.2523 0.2711 0.2889 0.3087 NA]
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The cumulative sum of the conditional probabilities is

zk|10,2 = [0.1773 NA 0.3921 0.6257 0.8780

1.1303 1.4015 1.6913 2.0000 NA]

One value from a uniform distribution Unif(0,2) is realized: u3 = 0.484, so the
element k = 4 is selected.

4. The new set of conditional inclusion probabilities is calculated. For example,
for the first element we have:

π1|10,2,4 =
n− r

N − r − 1

[(N − n) (q10 + q2 + q4 + q1) + (n− r − 1)]

[(N − n) (q10 + q2 + q4) + (n− r)]
=

4− 3

10− 3− 1

[(10− 4) (0.2500 + (−0.0125) + 0.0625 + (−0.0500)) + (4− 3− 1)]

[(10− 4) (0.2500 + (−0.0125) + 0.0625) + (4− 3)]
=

0.0893

The seven conditional inclusion probabilities are

πk|10,2,4 = [0.0893 NA 0.1161 NA 0.1429

0.1429 0.1563 0.1696 0.1830 NA]

The cumulative sum of the conditional probabilities is

zk|10,2,4 = [0.0893 NA 0.2054 NA 0.3482

0.4911 0.6473 0.8170 1.0000 NA]

One value from a uniform distribution Unif(0,1) is realized: u4 = 0.044, so the
first element is selected. And the selected sample is s = {1, 2, 4, 10}

The process is summarized in Table 1, where St stands for Step.

St 1, u = 3.799 St 2, u = 0.378 St 3, u = 0.484 St 4, u = 0.044
k q π z πk|10 zk|10 πk|10,2 zk|10,2 πk|10,2,4 zk|10,2,4

1 -0.0500 0.300 0.300 0.2667 0.2667 0.1773 0.1773 0.0893 0.0893
2 -0.0125 0.325 0.625 0.2854 0.5521 NA NA NA NA
3 0.0250 0.350 0.975 0.3042 0.8563 0.2148 0.3921 0.1161 0.2054
4 0.0625 0.375 1.350 0.3229 1.1792 0.2336 0.6257 NA NA
5 0.1000 0.400 1.750 0.3417 1.5208 0.2523 0.8780 0.1429 0.3482
6 0.1000 0.400 2.150 0.3417 1.8625 0.2523 1.1303 0.1429 0.4911
7 0.1375 0.425 2.575 0.3604 2.2229 0.2711 1.4015 0.1563 0.6473
8 0.1750 0.450 3.025 0.3792 2.6021 0.2899 1.6913 0.1696 0.8170
9 0.2125 0.475 3.500 0.3979 3.0000 0.3087 2.0000 0.1830 1.0000
10 0.2500 0.500 4.000 NA NA NA NA NA NA

Table 1: Ilustrating the sample selection scheme
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Note that, in Example 1, the sum of the conditional inclusion probabilities always
yield an integer. This is not a coincidence, in fact,∑

U(r)

πk|l1l2···lr = n− r

where U (r) is the set of all elements in U except the elements l1, l2, · · · , lr.
Admittedly, the selection scheme proposed above is more complicated than the

schemes described for systematic πps and Pareto sampling. However, the scheme is
not hard to implement in practice. A program in R is given in the appendix.

Depending on different settings for the q-values, q-sampling takes some interesting
forms, as will be shown in the following examples.

Example 2 (Simple Random Sampling). Let qk = 1
N

(k = 1, 2, · · · , N). Under this
setting of the q-values, q-sampling becomes a SRS.

In this case, (21) takes the form

p(s) =
1(

N−1
n−1

)∑
s

qk =
1(

N−1
n−1

)∑
s

1

N
=

1(
N−1
n−1

) n
N

=
1(
N
n

)
Conditions (22) and (23) are satisfied:

tq =
∑
U

qk =
∑
U

1

N
= N

1

N
= 1

n∑
i=1

q(i) =
n∑
i=1

1

N
= n

1

N
> 0

The first order inclusion probabilities are

πk =
1

N − 1
[(N − n) qk + (n− 1)] =

1

N − 1

[
(N − n)

1

N
+ (n− 1)

]
=

n

N

The second order inclusion probabilities are

πkl =
n− 1

(N − 1)(N − 2)
[(N − n) (qk + ql) + (n− 2)] =

n− 1

(N − 1)(N − 2)

[
(N − n)

(
1

N
+

1

N

)
+ (n− 2)

]
=

n(n− 1)

N(N − 1)

Example 3 (πps). As discussed in Section 1.3.4, suppose that we want to carry
out a πps sampling, i.e. we want to assign some (known and defined beforehand)
inclusion probabilities π∗1, π

∗
2, · · · , π∗N to the N elements in the population U . As

mentioned before, usually this design is intended to be coupled with the π-estimator.
This strategy will be discussed in Section 3.

Now, for the sampling design in (21), we know that if we fix the q-values, we
obtain the inclusion probabilities in (24). But we can work in the opposite direction:
we can fix the π-values and then we obtain the associated q-values. So, solving for πk
in equation (24), we have

qk =
1

N − n
[(N − 1)π∗k − (n− 1)] (27)
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With the q-values defined in this way, the design (21) takes the form

p(s) =
1(

N−1
n−1

)∑
s

qk =
1(

N−1
n−1

)∑
s

1

N − n
[(N − 1)π∗k − (n− 1)] =

1(
N−2
n−1

) [∑
s

π∗k −
n(n− 1)

N − 1

]
Condition (22) is satisfied:

tq =
∑
U

qk =
∑
U

1

N − n
[(N − 1)π∗k − (n− 1)] =

1

N − n

[
(N − 1)

∑
U

π∗k −N(n− 1)

]
=

1

N − n
[(N − 1)n−N(n− 1)] =

1

N − n
(N − n) = 1

where we use the fact that
∑

U π
∗
k = n. With respect to condition (23), we have

n∑
i=1

q(i) =
n∑
i=1

1

N − n
[
(N − 1)π∗(i) − (n− 1)

]
=

1

N − n

[
(N − 1)

n∑
i=1

π∗(i) − n(n− 1)

]
which is greater than zero only when

n∑
i=1

π∗(i) >
n(n− 1)

N − 1
(28)

In other words, q-sampling can be used to generate a πps design only when (28)
is satisfied. Unfortunately, (28) is a very strong requirement. Note that the right side
in (28) is approximately equal (when N and n are large enough) to n2

N
; now, under

SRS, the sum of the inclusion probabilities of any n elements is also n × n
N

= n2

N

So, for large samples and populations, the πps sampling generated by q-sampling
is limited to nearly constant inclusion probabilities; therefore, q-sampling becomes
almost “useless”as a scheme for a strict πps sampling. As an example, suppose that
we want to select a πps sample of size n = 50 from a population of size N = 100 using
q-sampling, then, by (28), the 50 smallest conditional probabilities must satisfy

n∑
i=1

π∗(i) >
50(50− 1)

100− 1
=

2450

99

therefore, the remaining 50 largest conditional probabilities must satisfy

N∑
i=n+1

π∗(i) < 50− 50(50− 1)

100− 1
= 50− 2450

99
=

2500

99
.

A condition that is only satisfied if the π-values are nearly constant.
In order to avoid this strong drawback an alternative estimator that is also un-

biased under q-sampling is proposed in Section 4. The strategy that combines q-
sampling and the proposed estimator is not affected by the restriction in (28).
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Example 4 (qps). Let x be an auxiliary variable known beforehand for every element
in U and xk > 0 (k = 1, 2, · · · , N). Define the q-values as

qk =
xk
tx

where tx =
∑
U

xk

It is known that when the auxiliary variable x is well correlated with the study
variable y, and the design is coupled with an appropriate estimator, there is a great
gain in using a proportional-to-size design. A strategy that combines this design with
an “appropriate”estimator will be discussed in the fourth section.

Under this setting, q-sampling takes the form

p(s) =
1(

N−1
n−1

)∑
s

qk =
1(

N−1
n−1

)∑
s

xk
tx

=
1(

N−1
n−1

)
tx

∑
s

xk

Conditions (22) and (23) are satisfied:

tq =
∑
U

qk =
∑
U

xk
tx

=
1

tx

∑
U

xk =
1

tx
tx = 1

n∑
i=1

q(i) =
n∑
i=1

x(i)

tx
=

1

tx

n∑
i=1

x(i) > 0

The first order inclusion probabilities are

πk =
1

N − 1
[(N − n) qk + (n− 1)] =

1

N − 1

[
(N − n)

xk
tx

+ (n− 1)

]
The second order inclusion probabilities are

πkl =
n− 1

(N − 1)(N − 2)
[(N − n) (qk + ql) + (n− 2)] =

n− 1

(N − 1)(N − 2)

[
(N − n)

(
xk
tx

+
xl
tx

)
+ (n− 2)

]
=

n− 1

(N − 1)(N − 2)

[
(N − n)

tx
(xk + xl) + (n− 2)

]
Note that the expression “proportional-to-size”is to be understood in a different

way according to the design: in πps sampling the proportionality is with respect to the
inclusion probabilities; in pps sampling, it is with respect to the selection probabilities
in each draw; in qps, it is with respect to the q-values. And, in the same way, different
estimators suits better to each case: π-estimator for a πps, pwr-estimator for a pps.
An estimator that suits well to qps will be proposed in Section 4.

3 q-sampling and the π-estimator

In this section we discuss briefly the strategy that couples q-sampling with the π-
estimator. Expressions for the estimator, its variance and an unbiased estimator for
the variance are presented.

21



As described in Section 2, for a given sample and a given set of valid q-values, the
associated inclusion probabilities can be easily calculated by (24), so the π-estimator,
presented in (5), can be implemented

t̂π =
∑
s

yk
πk

where πk =
1

N − 1
[(N − n)qk + (n− 1)] (29)

The second order inclusion probabilities can, also, be easily calculated under q-
sampling, and as it is a fixed-size design, either expression for the variance, (8) or
(10), can be used

V
(
t̂π
)

=
∑
U

∑
U

∆kl
yk
πk

yl
πl

= −1

2

∑
U

∑
U

∆kl

(
yk
πk
− yl
πl

)2

(30)

where ∆kl = πkl−πkπl, πkl = n−1
(N−1)(N−2)

[(N − n) (qk + ql) + (n− 2)] and πk as defined

in (29).
Under q-sampling, all the πkl are greater than zero, so the variance estimators (9)

and (11) are unbiased

V̂
(
t̂π
)

=
∑
s

∑
s

∆kl

πkl

yk
πk

yl
πl

(31)

V̂
(
t̂π
)

= −1

2

∑
s

∑
s

∆kl

πkl

(
yk
πk
− yl
πl

)2

(32)

As mentioned before, a sufficient condition for (32) to take nonnegative values
is that ∆kl < 0 for all k, l ∈ U . Under q-sampling, it can be seen that ∆kl can be
expressed as

∆kl = πkl − πkπl =
N − n

(N − 2)(N − 1)2
[(1− n)(1− qk − ql) + (2−N)(N − n)qkql]

which is smaller than zero, for example, when all the q-values are greater than zero.
(30) is an exact expression for the variance of the π-estimator, however, the double

sum leads to cumbersome calculations. For this reason, an alternative expression for
the variance is presented. This expression is easy to calculate, in the sense that
involves only single sums:

AV
(
t̂π
)

=
N

N − 1

[
ty2(1−π)/π −

t2y(1−π)

tπ(1−π)

]
(33)

where

ty2(1−π)/π =
∑
U

y2
k(1− πk)/πk ty(1−π) =

∑
U

yk(1− πk) tπ(1−π) =
∑
U

πk(1− πk)

The reasoning to propose (33) as an approximate variance for the strategy (q-
sampling–π-estimator) is as follows. In Pareto sampling, the actual inclusion proba-
bilities, πk, are nearly equal to the desired inclusion probabilities, π∗k, so the estimator
in (18) is nearly equal to the π-estimator, i.e.

t̂qπ =
∑
s

yk
π∗k
≈
∑
s

yk
πk

= t̂π

22



And its variances should also be similar:

V
(
t̂qπ
)
≈ V

(
t̂π
)

But, (19) is an approximation to V
(
t̂qπ
)
, so it is also an approximation to V

(
t̂π
)
.

Under q-sampling the exact π-values can be used, and so, formula (33) is obtained.
In the same sense that (33) mimics (19), a simpler (but biased) estimator for the

variance is obtained by mimicking (20):

V̂
(
t̂qπ
)

=
n

n− 1

[
t̂y2(1−π)/π −

t̂2y(1−π)

t̂π(1−π)

]
(34)

where

t̂y2(1−π)/π =
∑
s

y2
k(1− πk)/πk

πk
t̂y(1−π) =

∑
s

yk(1− πk)
πk

t̂π(1−π) =
∑
s

πk(1− πk)
πk

According to the results shown in Section 5, it seems that these simpler counter-
parts of the variance and its estimator can be considered as good approximations.

Note that a perfect association between the y and the q-values will not yield a
zero variance in this strategy.

4 An alternative unbiased estimator under

q-sampling

In this section an estimator for the total is proposed. It will be shown that this
estimator is unbiased under q-sampling. An expression that approximates the variance
of the estimator is developed. Also, an estimator for the variance will be presented.
Finally, the examples in Section 2 will be used again to illustrate its use with the
proposed estimator.

Result 4. Under q-sampling, the estimator

t̂q =

∑
s yk∑
s qk

, (35)

which will be called q-estimator, is unbiased for the total

ty =
∑
U

yk

A proof of the result is shown in the appendix. Note that if the q-values are
perfectly proportional to the unknown y-values, then the variance of the estimator
will be zero.

As t̂q is a ratio, its variance is not easy to calculate. Nevertheless, an expression
that approximates the variance is developed using the Taylor’s linearization method
as shown in, for example, Casella & Berger (2002). According to the method, the
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variance of a ratio of random variables, can be approximated in terms of the expected
values, variances and covariance:

V

[
Y

Q

]
≈ E2(Y )

E2(Q)

[
V (Y )

E2(Y )
− 2

Cov(Y,Q)

E(Y )E(Q)
+

V (Q)

E2(Q)

]
(36)

where E(Y ), V (Y ), E(Q), V (Q) and Cov(Y,Q) are, respectively, the expected value
of Y , the variance of Y , the expected value of Q, the variance of Q and the covariance
between Y and Q.

Letting Y =
∑

s yk and Q =
∑

s qk in (36), the following result is obtained. (A
proof of the result is presented in the Appendix).

Result 5. Under q-sampling, the variance of t̂q can be approximated by

AV
(
t̂q
)

=
(N − 1)

(N − 2)

1

B4

[
CB2 − 2EAB +DA2

]
(37)

where

A = tqy(N − n) + ty(n− 1)

B = tq2(N − n) + (n− 1)

C = tqy2(N − n)(N − 2n) + (ty2 + 2tqyty) (N − n)(n− 1) + t2y(n− 1)(n− 2)

D = tq3(N − n)(N − 2n) + 3tq2(N − n)(n− 1) + (n− 1)(n− 2)

E = tyq2(N − n)(N − 2n) + (tytq2 + 2tqy) (N − n)(n− 1) + ty(n− 1)(n− 2)

and

ty =
∑
U

yk ty2 =
∑
U

y2
k tq2 =

∑
U

q2
k tq3 =

∑
U

q3
k

tqy =
∑
U

qkyk tyq2 =
∑
U

ykq
2
k tqy2 =

∑
U

qky
2
k

It is true that, at first glance, (37) seems a cumbersome expression. Even so, it
is simpler than the variance for the π-estimator, (30), in the sense that it does not
require the matrix of second-order inclusion probabilities; (37) is based on simple
operations over totals.

An estimator of the variance is obtained by replacing the totals in (37) by its
estimates:

Result 6. An estimator of the variance for the strategy (q-sampling–q-estimator) is

V̂
(
t̂q
)

=
(N̂ − 1)

(N̂ − 2)

1

B̂4

[
ĈB̂2 − 2ÊÂB̂ + D̂Â2

]
(38)

where

Â = t̂qy(N̂ − n) + t̂y(n− 1)

B̂ = t̂q2(N̂ − n) + (n− 1)

Ĉ = t̂qy2(N̂ − n)(N̂ − 2n) +
(
t̂y2 + 2t̂qy t̂y

)
(N̂ − n)(n− 1) + t̂2y(n− 1)(n− 2)

D̂ = t̂q3(N̂ − n)(N̂ − 2n) + 3t̂q2(N̂ − n)(n− 1) + (n− 1)(n− 2)

Ê = t̂yq2(N̂ − n)(N̂ − 2n) +
(
t̂y t̂q2 + 2t̂qy

)
(N̂ − n)(n− 1) + t̂y(n− 1)(n− 2)
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and

N̂ =
n∑
s qk

t̂y =

∑
s yk∑
s qk

t̂y2 =

∑
s y

2
k∑

s qk
t̂q2 =

∑
s q

2
k∑

s qk

t̂q3 =

∑
s q

3
k∑

s qk
t̂qy =

∑
s qkyk∑
s qk

t̂yq2 =

∑
s ykq

2
k∑

s qk
t̂qy2 =

∑
s qky

2
k∑

s qk

It is important to remark that (37) is not the actual variance of the strategy, it
is only an approximation. Also, (38) is not an unbiased estimator of (37), it is only
a “consistent estimator”. In the next section they are studied in order to see how
well they behave with respect to their counterparts. But, before this comparison, the
q-estimator will be developed for the three different settings of the q-values presented
in examples 2, 3 and 4.

Example 5 (Continuation of Example 2). Let qk = 1
N

. The q-estimator becomes

t̂q ≡
∑

s yk∑
s qk

=

∑
s yk∑
s

1
N

=
N

n

∑
s

yk

So, when the q-values are all equal to 1
N

, the strategies (q-sampling–q-estimator)
and (SRS–π-estimator) are equivalent.

With respect to the variance, using (37) and noting that

tqy =
ty
N

, tq2 =
1

N
, tqy2 =

ty2

N
, tq3 =

1

N2
and tyq2 =

ty
N2

we obtain

AV
(
t̂y
)

=
N2

n

(
1− n

N

)
S2
y,U

which coincides exactly with the “true”variance. So, under the setting qk = 1
N

,
the approximation (37) is no longer an approximation, it is the actual value of the
variance. On the other hand, with respect to the variance estimator, using (38) and
noting that

t̂qy = ȳ, t̂y = Nȳ, t̂2q =
1

N
, t̂qy2 = ȳ2, t̂y2 = Nȳ2, t̂q3 =

1

N2
, t̂yq2 =

1

N
ȳ

we obtain

V̂
(
t̂q
)

=
(n− 1)

n

N

(N − 1)

N2

n

(
1− n

N

)
S2
y,s (39)

Comparing (39) with the unbiased estimator (17), we can see that even when (39)
is biased, it is assymptotically unbiased, i.e. is unbiased for large samples and large
populations.

Example 6 (Continuation of Example 3). Let qk defined as in Example 3, i.e.

qk =
1

N − n
[(N − 1)π∗k − (n− 1)]

Assuming that the q-values are valid under condition (28), q-sampling with this
setting generates a strict πps design. Under this setting, the q-estimator takes the
form

t̂y ≡
∑

s yk∑
s qk

=

∑
s yk∑

s
1

N−n [(N − 1)π∗k − (n− 1)]
=

(N − n)
∑

s yk
(N − 1)

∑
s π
∗
k − n(n− 1)
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Example 7 (Continuation of Example 4). Let qk defined as in Example 4, i.e.

qk =
xk
tx

where tx =
∑
U

xk and x > 0 for k = 1, 2, · · · , N

Under this setting, the q-estimator becomes

t̂y ≡
∑

s yk∑
s qk

=

∑
s yk∑
s
xk
tx

= tx

∑
s yk∑
s xk

(40)

Note that if we could have xk = αyk, then (40) would be

tx

∑
s yk∑
s xk

= αty

∑
s yk

α
∑

s yk
= ty

So, the variance of the strategy (qps–q-estimator) would be zero. And in this case,
both, the approximation to the variance (37) and its estimator (38) are also equal to
zero.

5 Assessing qps-sampling

In sections 2, 3 and 4, qps-sampling was defined and its use with two different es-
timators (the known π-estimator, and the proposed q-estimator) was discussed. In
this section a numerical study designed with the goal to assess the behavior of qps-
sampling is presented. In the first part of the section, the simulation study and its
objectives are described. In the second part, results regarding how well the approxi-
mated expressions for the variance work with respect to the variance are presented. In
the third part, results regarding how well the variance estimators work with respect to
the approximated variances are presented. The fourth part compares the bias of five
different strategies. The fifth part presents a comparison of the efficiency of the five
strategies in terms of its variance. A comparison of the coverage of the five strategies
is presented in the last subsection.

5.1 The simulation study and its objectives

q-sampling was defined in Section 2. It is a design that uses auxiliary information
and whose inclusion probabilities are easily obtained. q-sampling may be seen as a
family of designs, depending on how the q-values are defined. In particular three
different settings were presented. The first setting (where all the q-values are equal)
is equivalent to simple random sampling, so this case becomes “uninteresting”, in the
sense that no use of auxiliary information is made. The second setting is πps sampling,
and it was shown that the restriction in (28) should be satisfied by q-sampling in order
to obtain a strict πps; unfortunately, this restriction is so strong that is hardly satisfied
in practice, so, this case becomes also uninteresting. The third setting was called qps.
In this case, the q-values are defined proportionally to a known and positive auxiliary
variable. This is, somehow, a natural way to define the q-values and no restrictions
are found in this case. For this reason, qps is the only type of q-sampling that will be
evaluated through the simulation study in this section.

In Section 3, the use of the π-estimator together with qps sampling was described.
For this case, an exact expression for the variance is known (see equation (30)).
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However, this expression is hard to compute due to the double sum involved in it, so
a simpler but only approximate expression was presented in (33). In Section 4, the use
of qps, together with the proposed q-estimator was descibed. No exact expression for
the variance is available in this case, however an approximate expression is presented
in (37). To study how well these expressions approximate the variance is the first
objective of the simulation study, and will be developed in subsection 5.2.

Two unbiased estimators of the variance for the π-estimator were presented in
Section 3. Again, these estimators involve a double sum that makes them difficult
to compute in practice, for this reason a simpler, but biased, estimator was also
presented in (34). Regarding the q-estimator, no unbiased estimator for the variance
is available, but a “consistent”estimator was presented in Section 4. To study how
biased are these estimators with respect to the approximated variances is the second
objective of the simulation study and will be developed in subsection 5.3.

How good a sampling strategy is, is usually assessed in terms of its bias and
its variance. The two strategies (qps–π) (Section 3) and (qps–q) (Section 4) are
compared to three well known strategies: (SRS–π) (Section 1.3.1), (Pareto–qπ) and
(Systematic–π) (Section 1.3.4). The bias of the five strategies under comparison is
discussed in Section 5.4. To compare the variance of the five strategies is the third
objective of the simulation study and the results are shown in Section 5.5.

Usually, using the central limit theorem, the distribution of the estimators is ap-
proximated by a normal distribution, or being more conservative, by a t-distribution.
Therefore, confidence intervals are estimated using this approximation. In this sense,
it is expected that confidence intervals built in this way will cover the true parameter
with a probability of approximately 100(1 − α)% for a given confidence level, α. To
study the coverage of the five strategies under comparison is the fourth objective of
the simulation study. The results are shown in Section 5.6.

A Monte Carlo simulation study was developed in order to investigate the ob-
jectives described above. Four populations of sizes N = 20, 200, 2000, 20000 were
generated as follows.

The values for the auxiliary variable x were generated as N realizations from a χ2
1

distribution. The intention with this distribution is to recreate the usually observed
case in practice of right-skewed variables. Figure 1 shows the histogram for the case
N = 2000 with the actual density overplotted.

Once the values of the auxiliary variable were observed, thirteen study variables
were generated by assigning different values to the βs in the equation

y
(i)
k = β0 + β1x

β2
k + εk (i = 1, 2, · · · , 13) with εk ∼ N

(
0, β3x

β4
k

)
The different settings for the β-values are summarized in Table 2. The negative

values obtained using the equation above were replaced by its absolute value. Fur-
thermore, having into account that Pearson’s correlation has no clear interpretation
for non-linear associations between x and y, the high, medium and low correlations
in Table 2 refer to the rank-based Spearman’s correlation coefficient which measures
monotonic relations between x and y. Often, in a situation like the one presented
in case 1 in Table 2 (linear association without intercept with high correlation), the
variance of a design which uses auxiliary information is small compared to the vari-
ance of Simple Random Sampling. As the correlation between x and y gets smaller
or the type of association is far from linear without intercept, this efficiency tends to
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Figure 1: Histogram of x for the case N = 2000

disappear, at the point that SRS can be even more efficient than a proportional-to-size
design. Cases 2 to 13 allow to study the behavior of the strategies under non-ideal
situations.

Case (i) β0 β1 β2 β3 β4 Type Corr. ρ
1 0 2.39 1.0 1.00 1.00 Linear without intercept High 0.95
2 0 0.15 1.0 1.00 0.45 Linear without intercept Medium 0.65
3 0 0.11 1.0 1.00 0.17 Linear without intercept Low 0.35
4 10 2.54 1.0 1.00 1.00 Linear with intercept High 0.95
5 10 0.93 1.0 1.00 0.45 Linear with intercept Medium 0.65
6 10 0.36 1.0 1.00 0.17 Linear with intercept Low 0.35
7 0 4.88 0.5 1.00 1.00 Concave High 0.95
8 0 1.00 0.5 1.23 0.40 Concave Medium 0.65
9 0 1.00 0.5 2.61 0.15 Concave Low 0.35
10 0 1.66 2.0 1.00 1.00 Convex High 0.95
11 0 0.30 2.0 2.64 0.40 Convex Medium 0.65
12 0 0.33 2.0 3.00 0.10 Convex Low 0.35
13 0 0.00 1.0 1.00 0.00 Independent Zero 0.00

Table 2: β-values for the generation of the thirteen study variables y

Figure 2 shows scatter plots for nine selected y-variables for the case N = 2000.
The effect of the β-values can be more easily interpreted using the figure: β0 is the
intercept, β1 is a scale factor, β2 defines the functional form of the association, β3 is
a scale factor for the variance and β4 is the functional form of the variance. The idea
behind β3 and β4 is to create heteroscedastic relations between the variables.

Once the populations, U , have been completely defined, different sample sizes are
considered:

• For the case N = 20, the sample sizes defined were n = 1, 2, · · · , 19;
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• For the case N = 200, they were n = 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78,
91, 105, 120, 136, 153, 171, 191, 199;

• For the case N = 2000, they were n = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144,
169, 196, 225, 256, 289, 324, 361, 400;

• For the case N = 20000, they were n = 1, 50, 125, 250, 500, 1000, 2000.

Figure 2: Scatter plots of x and y for nine selected cases in Table 2

For each combination of population size, sample size and study variable, different
values of interest (estimates and parameters) are calculated in order to meet the objec-
tives described above. For every population size, the results were similar. Therefore,
only the results for the case N = 2000 will be presented.

5.2 The approximations to the variance

The first objective of the simulation study is to see how close are the approximate
variances of the strategies (qps–π) and (qps–q) to the actual variances, i.e. how close
are (33) and (37) to the respective actual variances they intend to approximate. Recall
that for the case of the q-estimator, no expression is available to calculate the actual
variance; for the case of the π-estimator, even when a compact expression is known
for the variance, it requires the calculation of several matrices of dimension N × N .
For this reason, the variances were obtained by simulation in the following way.

For each study variable y, R = 5000 samples of size n were selected from U using
q-sampling, the total of y is estimated using both estimators for each sample. The
actual variance is approximated by the variance of the R estimates:

Vqps

(
t̂π
)
≈ Vsim

(
t̂π
)
≡ 1

R− 1

R∑
r=1

(
t̂(r)π −

¯̂tπ

)2

with ¯̂tπ =
1

R

R∑
r=1

t̂(r)π

Vqps

(
t̂q
)
≈ Vsim

(
t̂q
)
≡ 1

R− 1

R∑
r=1

(
t̂(r)q −

¯̂tq

)2

with ¯̂tq =
1

R

R∑
r=1

t̂(r)q

(41)
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If an approximation to the variance is close to the (simulated) variance, then its
ratio will be close to one. Table 3 shows the ratio

AVqps

(
t̂π
)

Vsim

(
t̂π
)

It can be seen that, for every variable, the larger the sample size, the better the
aproximation approaches the (simulated) variance. With a sampling fraction of 0.05
(n = 100), the ratio already lies in the interval (0.95 , 1.05). It does not seem to be
a differential behavior among variables, they all seem to approach to one at the same
“speed”.

n y(1) y(2) y(3) y(4) y(5) y(6) y(7) y(8) y(9) y(10) y(11) y(12) y(13)

1 1.01 1.22 7.51 37.27 1.77 32.59 1.00 1.07 1.43 1.02 0.83 3.77 43.32
4 1.17 1.04 0.98 1.04 1.25 1.28 1.10 1.00 1.02 1.09 1.05 1.01 1.26
9 1.08 1.00 1.02 1.06 1.01 1.12 1.08 1.03 0.99 1.14 1.15 1.00 1.12
16 1.12 1.03 0.98 1.08 1.00 1.04 1.07 1.03 1.02 1.12 1.07 1.03 1.01
25 1.04 1.06 0.99 1.02 1.03 1.02 1.05 1.01 0.97 1.07 0.92 1.05 1.00
36 1.06 1.03 1.02 1.04 1.03 1.02 1.01 1.01 1.02 0.98 1.03 1.07 1.02
49 1.04 0.98 1.00 1.02 1.01 1.03 1.03 1.02 0.96 0.97 0.99 1.03 1.06
64 1.08 1.03 1.01 1.01 1.04 1.00 1.00 1.05 0.97 1.06 1.04 1.05 1.06
81 1.01 0.98 1.00 1.02 1.02 1.03 1.01 1.02 1.01 1.03 0.96 1.01 1.01
100 1.05 1.03 0.98 1.01 1.03 1.01 1.03 1.01 1.00 1.05 0.98 0.99 1.00
121 1.01 1.03 0.99 1.01 1.05 0.98 1.00 1.03 1.01 1.04 1.00 0.98 1.00
144 1.01 1.01 0.98 0.95 1.01 1.02 0.99 0.97 0.98 1.02 1.03 1.00 0.99
169 1.00 1.00 0.98 0.99 1.02 0.99 1.00 1.03 1.01 1.03 1.01 0.96 0.97
196 1.01 1.00 0.98 1.00 0.99 1.02 0.99 1.00 1.03 1.04 0.97 0.98 1.00
225 1.00 1.01 1.01 1.00 1.01 1.03 1.01 1.03 0.98 1.00 0.99 1.03 0.98
256 1.00 0.98 0.95 0.95 1.02 0.98 1.03 0.98 0.97 0.99 1.01 0.99 0.99
289 1.00 0.98 1.00 1.01 0.99 1.01 0.99 0.98 0.96 1.00 0.96 1.00 0.99
324 0.99 1.01 0.97 1.00 1.03 1.02 1.02 0.96 1.02 1.01 1.00 1.00 1.01
361 0.97 1.01 1.01 1.01 1.00 1.04 1.00 1.03 0.98 1.01 1.03 1.00 1.01
400 0.99 1.02 0.97 1.03 1.01 0.98 1.02 0.97 1.04 1.02 1.01 0.99 1.03

Table 3: Approximation to the variance divided by simulated variance for the π-
estimator

Table 4 shows the ratio
AVqps

(
t̂q
)

Vsim

(
t̂q
)

Again, for every variable, the ratio tends to 1 as n increases, although in this case,
the approximation is “slower”than for the π-estimator. When the sampling fraction
is 0.05 (n = 100), the ratio lies in the interval (0.90 , 1.20); a sampling fraction close
to 0.15 (n = 289) or greater is required for the ratio to lie in the interval (0.95 ,
1.05). An interesting observation, that may be pure casuality, is that for the variables
with a convex relation, the AV tends to overestimate the variance; for the variables
with a concave relation or linear with intercept, the AV tends to underestimate it;
whereas for the variables with a linear relation without intercept, the AV lies around
the variance. Of course, this last statement cannot be generalized unless a deeper
analysis is carried out.
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n y(1) y(2) y(3) y(4) y(5) y(6) y(7) y(8) y(9) y(10) y(11) y(12) y(13)

1 1.79 0.27 0.06 0.01 0.00 0.01 0.39 0.16 0.01 7.84 0.92 0.06 0.01
4 1.44 0.62 0.32 0.17 0.22 0.18 0.80 0.50 0.27 3.97 1.85 0.37 0.18
9 1.18 0.82 0.56 0.43 0.49 0.47 0.91 0.70 0.51 2.71 1.91 0.92 0.50
16 1.12 0.90 0.71 0.69 0.64 0.62 0.99 0.80 0.72 1.99 1.49 1.07 0.61
25 1.11 0.91 0.77 0.76 0.73 0.76 1.01 0.88 0.81 1.59 1.26 1.08 0.78
36 1.07 0.92 0.84 0.82 0.84 0.83 0.98 0.93 0.84 1.34 1.29 1.05 0.79
49 1.08 0.95 0.87 0.84 0.84 0.88 0.97 0.99 0.90 1.22 1.21 0.99 0.87
64 1.06 0.96 0.92 0.89 0.92 0.90 1.01 0.98 0.91 1.23 1.13 1.02 0.89
81 1.05 0.98 0.92 0.93 0.92 0.89 1.00 0.97 0.96 1.17 1.07 1.00 0.94
100 1.01 0.99 0.93 0.91 0.91 0.95 0.99 0.98 0.95 1.17 1.04 1.01 0.91
121 1.04 0.97 0.94 0.95 0.96 0.93 1.01 0.96 0.97 1.13 1.08 0.98 0.97
144 1.01 0.96 0.94 0.90 0.95 0.94 0.96 1.02 0.93 1.11 1.08 1.01 0.94
169 1.02 0.97 0.99 0.93 0.98 0.93 0.98 1.00 0.99 1.08 1.05 0.99 0.98
196 1.04 1.00 0.98 0.96 0.98 0.98 0.98 0.96 0.96 1.07 1.02 0.99 0.95
225 1.01 0.99 1.00 0.97 0.98 0.95 0.99 0.98 0.95 1.05 1.03 1.02 0.96
256 1.01 1.03 0.99 0.92 0.97 0.93 1.00 1.01 1.01 1.03 1.03 1.01 0.95
289 1.02 1.01 0.98 0.98 0.95 0.99 1.01 0.97 0.97 1.02 1.01 1.02 0.96
324 1.00 1.02 0.99 0.97 1.00 1.00 1.00 0.97 0.99 1.04 1.04 0.99 0.98
361 0.97 1.02 0.98 0.98 0.97 0.99 0.97 0.95 0.98 1.02 1.00 1.00 1.00
400 1.00 1.03 0.96 0.99 0.98 1.01 0.97 0.96 0.98 1.04 1.03 0.99 0.99

Table 4: Approximation to the variance divided by simulated variance for the q-
estimator

5.3 The variance estimators

The second objective of the simulation study is to see how close is the expectation of
the biased variance estimators of the two strategies to the approximate variances, i.e.
how close are the expectation of (34) and (38) to (33) and (37), respectively. Given
that the expectation of (34) and (38) is unknown, it was obtained by simulation in
the following way.

Using the R = 5000 samples selected as described above for each study variable
and each sample size, estimates for the variance were obtained. The (simulated)
expectation of the variance estimator is calculated as the average of these R estimates:

E
(
V̂qps

(
t̂π
))
≈ Esim

(
V̂qps

(
t̂π
))
≡ 1

R

R∑
r=1

V̂qps

(
t̂(r)π
)

E
(
V̂qps

(
t̂q
))
≈ Esim

(
V̂qps

(
t̂q
))
≡ 1

R

R∑
r=1

V̂qps

(
t̂(r)q
) (42)

If the (simulated) expectation is close to the approximation to the variance, then
its ratio will be close to one. Table 5 shows the ratio

Esim

(
V̂qps

(
t̂π
))

AVqps

(
t̂π
)

Although biased, it is observed that, for every variable, as long as the sample size
increases, the (simulated) expectation tends to be closer to the approximation to the
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variance: with a sampling fraction as small as 2% (n = 36), the ratio already lies in
the interval (0.95 , 1.05). Also, it can be seen that the (simulated) expectation tends
to be smaller than the approximation to the variance. The largest bias is associated
with the variables y(10), y(11) and y(12), which are those with a convex association with
the auxiliary variable. Again, this last result may be due to pure chance.

n y(1) y(2) y(3) y(4) y(5) y(6) y(7) y(8) y(9) y(10) y(11) y(12) y(13)

4 0.81 0.95 0.99 0.98 0.79 0.78 0.88 0.97 1.01 0.89 0.91 0.96 0.78
9 0.92 0.96 0.98 0.92 0.96 0.93 0.91 0.96 0.99 0.89 0.89 0.99 0.91
16 0.91 0.97 0.99 0.93 1.00 0.98 0.94 0.97 0.98 0.90 0.98 0.97 0.96
25 0.94 0.97 0.99 0.96 0.97 1.00 0.96 0.97 1.00 0.96 1.06 0.98 0.98
36 0.97 0.98 0.99 0.96 0.98 1.00 0.96 0.98 1.00 1.00 0.97 0.98 0.99
49 0.99 0.99 1.00 0.98 0.99 1.00 0.97 0.98 1.00 1.01 0.98 0.97 1.00
64 0.97 0.98 1.00 0.99 0.98 1.00 0.98 0.99 1.00 0.96 0.99 0.97 1.00
81 0.98 0.99 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.98 1.02 1.00 1.00
100 0.98 0.99 1.00 0.99 0.98 1.00 0.99 0.99 1.00 0.96 1.04 0.99 1.00
121 0.98 1.00 0.99 0.99 0.99 1.00 0.99 0.99 1.00 0.97 1.02 1.00 1.00
144 0.99 1.00 1.00 0.99 0.98 1.00 0.99 1.00 1.00 0.97 1.00 0.97 1.00
169 0.99 1.00 1.00 0.99 0.99 1.00 0.99 0.99 1.00 0.98 1.00 1.03 1.00
196 0.99 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.97 0.99 1.02 1.00
225 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.01 0.99 1.00
256 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 0.97 1.01 0.99 1.00
289 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.99 1.00
324 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.01 1.00
361 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
400 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.01 0.98 1.00

Table 5: (Simulated) expectation divided by approximation to the variance for the
π-estimator

Table 6 shows the ratio
Esim

(
V̂qps

(
t̂q
))

AVqps

(
t̂q
)

The proposed estimator for the variance of this strategy, (38), was obtained as a
consistent estimate of the approximation to the variance (37) and is not an unbiased
estimator. Table 6 suggests that the estimator tends to underestimate the approxima-
tion to the variance. This behavior is stronger for the variables y(10) and y(11) (convex
association with high and medium correlation with x): for the remaining variables, a
sampling fraction of 10% (n = 196) is enough to obtain a ratio between 0.95 and 1,
while, at this point, the ratio is still smaller than 0.9 for the mentioned variables. On
the other hand, as expected, as the sample size increases, the bias decreases.

5.4 Comparing the bias of qps with alternative strategies

The performance of a sampling strategy is often assessed in terms of its bias and its
variance. Five strategies were compared in the simulation study:

• The strategy (qps–π), described in Section 3.

• The strategy (qps–q), described in Section 4.
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n y(1) y(2) y(3) y(4) y(5) y(6) y(7) y(8) y(9) y(10) y(11) y(12) y(13)

4 0.14 0.40 0.79 0.96 0.85 0.90 0.17 0.50 0.87 0.01 0.13 0.50 0.94
9 0.34 0.54 0.78 0.81 0.78 0.76 0.33 0.62 0.80 0.05 0.22 0.55 0.75
16 0.49 0.67 0.83 0.81 0.82 0.85 0.48 0.73 0.84 0.13 0.34 0.63 0.82
25 0.63 0.75 0.89 0.87 0.86 0.86 0.61 0.81 0.89 0.25 0.45 0.69 0.86
36 0.75 0.82 0.91 0.91 0.90 0.90 0.69 0.86 0.91 0.37 0.53 0.76 0.92
49 0.80 0.87 0.95 0.92 0.92 0.93 0.76 0.89 0.93 0.49 0.60 0.82 0.93
64 0.85 0.88 0.95 0.95 0.95 0.94 0.81 0.92 0.95 0.57 0.69 0.85 0.93
81 0.87 0.91 0.96 0.96 0.97 0.96 0.84 0.94 0.95 0.65 0.76 0.88 0.95
100 0.89 0.93 0.97 0.97 0.97 0.97 0.88 0.95 0.97 0.69 0.82 0.89 0.98
121 0.91 0.94 0.97 0.97 0.98 0.98 0.90 0.96 0.97 0.75 0.84 0.91 0.97
144 0.94 0.96 0.98 0.98 0.98 0.98 0.93 0.96 0.99 0.78 0.86 0.93 0.98
169 0.95 0.96 0.98 0.98 0.98 0.99 0.93 0.97 0.98 0.81 0.88 0.96 0.99
196 0.96 0.97 0.99 0.98 0.98 0.99 0.95 0.97 0.99 0.83 0.88 0.96 0.98
225 0.95 0.97 0.99 0.99 0.98 0.99 0.94 0.98 1.00 0.87 0.92 0.96 0.99
256 0.96 0.98 0.99 0.99 0.99 0.99 0.95 0.98 0.99 0.86 0.93 0.96 0.98
289 0.97 0.98 0.98 1.00 0.99 0.99 0.97 0.99 0.99 0.91 0.92 0.96 0.99
324 0.97 0.98 0.99 0.99 0.99 0.99 0.96 0.99 0.99 0.91 0.93 0.98 0.99
361 0.98 0.98 1.00 0.99 0.99 0.99 0.98 0.99 0.99 0.92 0.95 0.97 0.99
400 0.97 0.99 1.00 0.99 1.00 1.00 0.97 0.99 0.99 0.94 0.97 0.97 1.00

Table 6: (Simulated) expectation divided by approximation to the variance for the
q-estimator

• The strategy (SRS–π) is often considered as a benchmark. It is a very known
strategy that due to its simplicity is widely used. This strategy does not use
auxiliary information, which is, at the same time, an advantage and a disad-
vantage. Is an advantage in the sense that it can be implemented as long as a
sampling frame is available, nothing else is required. It is a disadvantage in the
sense that if auxiliary information is available, the strategy does not allow for
using it.

• Pareto sampling is a measurable design, which is considered to be an efficient
strategy when coupled with the qπ-estimator. Its main drawback is that it is
not a strict πps.

• The strategy (Systematic–π) has some interesting characteristics that make it
attractive: the design is a strict πps and is often considered as a very efficient
strategy. On the other hand, as discussed in Särndal et. al. (1992), being a
non-measurable design, is hard to obtain in practice valid variance estimation
and valid confidence intervals.

No tables of results from the simulation study about the bias are presented here.
The reason for this is that the first, third and fifth strategies use the π-estimator,
which is known to be unbiased. Also, in Section 4, it was shown that the q-estimator
is unbiased under q-sampling. Therefore, the strategy (Pareto–qπ) is the only one
that uses a biased estimator. However, it is assymptotically unbiased, as mentioned
in Rosén (2000). The results of the simulation study show that Pareto sampling
is “virtually”unbiased even for small sample sizes. So bias is not a concern for the
strategies under comparison.
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5.5 Comparing the variance of qps with alternative strategies

Exact expressions for the variance are known only for the strategies (SRS–π) and
(qps–π). For the latter, the expression involves a large number of terms which makes
it hard to compute in practice. Therefore, the variances for the five strategies were
approximated by simulation as described in Section 5.2.

Rosén (1997), introduces the Variance Increase of a given strategy relative to
Pareto sampling. In an analogous way, here the Variance Increase —VI— of a given
strategy relative to (SRS–π) is defined as

VI
(
p(·), t̂

)
=

Vp
(
t̂
)

VSRS

(
t̂π
) (43)

The VI is a measure of the efficiency of a given strategy compared to (SRS–π). When
the Variance Increase is smaller (greater) than one, the strategy is more (less) efficient
than SRS. As it is not possible to calculate the actual value of VI, it was obtained
through simulation as

VIsim

(
p(·), t̂

)
=
Vsim,p

(
t̂
)

VSRS

(
t̂π
) , (44)

The (simulated) VI —SVI— are compared for different sample sizes and the thir-
teen study variables described in Table 2. Table 7 shows the SVI for y(1), i.e. the case
of linear without intercept association between x and y and a high correlation. (The
SVI for SRS is presented only for completeness, although it is, of course, known that
its actual value should be equal to one.) It can be seen that, in this case, (SRS–π)
is the less efficient strategy. (qps–π) is slightly more efficient, but as the sample size
increases, this efficiency vanishes. The strategy (qps–q) is visibly more efficient, with
a SVI around 0.2. The two strategies (Pareto–qπ) and (Systematic–π) are even more
efficient, and they have very similar SVI values. Similar results were obtained for
y(10) and y(11) (convex, with high and medium correlation, respectively), therefore the
results of these variables are shown only in the appendix.

Table 8 shows the SVI for the case of linear association between x and y without
intercept and medium correlation, y(2). Here, (Pareto–qπ) seems to be a little less
efficient than (qps–q), which is, in turn, less efficient than (SRS–π). (qps–π) shows the
same behavior than in the previous case: it is slightly more efficient than (SRS–π) for
small sample sizes, but this efficiency vanishes in medium to large samples. Finally,
(Systematic–π) is the most efficient strategy in this case.

The results for the case of linear association with a low correlation between x and
y, variable y(3), are shown in Table 9. In this case the situation is completely opposed
to that observed in Table 7 for y(1): (SRS–π) is the most efficient strategy. (qps–π)
is slightly less efficient. The SVI of (qps–q) is around 3. (Pareto–qπ) is less efficient;
and (Systematic–π) is the least efficient strategy in this case. A similar situation was
observed for variables y(4), y(5), y(6), y(9) and y(13) (the three cases with a linear with
intercept association, concave with low correlation and the independence case). The
tables for these variables are shown in the appendix.

The results for y(7), concave with high correlation, are shown in Table 10. In
this case, (qps–q) is less efficient than (SRS–π), with values of SVI between 1.10 and
1.15. As before, (qps–π) is a little more efficient than SRS for small samples. Pareto
sampling is more efficient than SRS, with SVI around 0.70. In this case, systematic
sampling is, again, the most efficient strategy.
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 0.06 0.06 0.06 0.07 0.98
4 0.13 0.32 0.06 0.06 1.00
9 0.17 0.55 0.06 0.06 0.98
16 0.18 0.64 0.06 0.05 1.00
25 0.19 0.77 0.06 0.06 0.98
36 0.19 0.81 0.06 0.06 0.99
49 0.19 0.86 0.06 0.07 0.96
64 0.19 0.85 0.06 0.05 0.98
81 0.20 0.92 0.06 0.06 0.98
100 0.20 0.89 0.06 0.06 0.99
121 0.20 0.94 0.05 0.03 1.03
144 0.20 0.95 0.05 0.06 0.96
169 0.20 0.97 0.05 0.05 0.96
196 0.20 0.96 0.05 0.05 1.00
225 0.20 0.97 0.05 0.09 1.01
256 0.20 0.98 0.04 0.03 1.06
289 0.20 0.98 0.04 0.05 1.02
324 0.20 0.99 0.04 0.03 1.00
361 0.21 1.02 0.04 0.04 0.99
400 0.21 0.99 0.03 0.02 1.03

Table 7: (Simulated) VI for five sampling strategies, study variable: y(1)

Table 11 shows the result for the concave case with medium correlation, y(8). Here,
systematic sampling is sometimes more efficient than SRS, but in general can be said
to be less efficient. (qps–q) is, also, less efficient than SRS, with SVI around 1.15.
Pareto sampling is even less efficient with SVI around 1.5. Regarding (qps–π), its
behavior is, as always, very similar to SRS, being slightly more efficient in this case.

Table 12 shows the result for y(12), this is the convex case with low correlation.
Here, Pareto and Systematic sampling are less efficient than SRS. (qps–q) is more
efficient than SRS (with SVI around 0.5). As always, the efficiency of (qps–π) is
comparable to that of SRS.

A summary of the results observed from the simulation regarding the efficiency of
the five strategies is as follows:

• The variance of the strategy (qps–π) is always similar to the variance of (SRS–
π), especially for medium to large samples. For small samples the former is
sometimes more and sometimes less efficient than the latter. A loose explanation
for this is that, as mentioned in Section 3, a perfect correlation between y and the
q-values does not result in a zero variance, somehow, this strategy “wastes”some
of the information provided by the auxiliary variable, so much, that the effect of
x vanishes for large sample sizes, and from there on, the reduction in variance
is due solely to the increasing in sample size, as is the case in SRS.

• A common result was that when (qps–q) is more efficient than (SRS–π), then
(Pareto–qπ) and (Systematic–π) are even more efficient. On the other hand,
when (qps–q) is less efficient than (SRS–π), then (Pareto–qπ) and (Systematic–
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 1.05 1.05 1.11 1.46 1.06
4 1.14 0.58 1.20 1.13 0.97
9 1.13 0.75 0.98 0.94 1.02
16 1.15 0.82 1.02 0.98 1.02
25 1.19 0.84 1.28 1.13 0.99
36 1.22 0.89 1.29 1.00 1.00
49 1.20 0.96 1.21 0.98 1.02
64 1.20 0.92 1.53 0.89 1.04
81 1.19 0.98 1.16 0.94 0.99
100 1.18 0.94 1.10 1.11 0.98
121 1.22 0.95 1.21 0.87 1.03
144 1.23 0.97 1.13 1.09 0.98
169 1.22 0.99 1.12 0.70 1.02
196 1.19 0.99 1.27 0.94 1.02
225 1.20 0.97 1.18 0.88 1.03
256 1.16 1.01 2.11 0.59 1.00
289 1.18 1.01 1.14 0.87 1.00
324 1.17 0.98 1.22 0.54 1.02
361 1.17 0.98 1.18 0.73 1.01
400 1.16 0.97 1.18 0.63 0.99

Table 8: (Simulated) VI for five sampling strategies, study variable: y(2)

π) are even less efficient. Somehow (qps–q) seems to be more “conservative”in
the sense that, not too much is gained, but not too much is lose.

• The ideal situation in practice is represented by y(1), where the study variable is
highly correlated with x and there is also a linear association without intercept
between the two variables. In this case Pareto and systematic sampling were
more efficient than the remaining strategies.

5.6 Comparing the coverage of qps with alternative strategies

Often, the distribution of the estimates obtained by a given strategy is approximated
by a normal or a t distribution. Therefore it is expected that estimated confidence
intervals of the form (

t̂− z1−α
2

√
V̂
(
t̂
)
, t̂+ z1−α

2

√
V̂
(
t̂
))

(45)

(where z1−α
2

is the 1− α
2

quantile of a normal or a t distribution with n− 1 degrees of
freedom) will cover the parameter, approximately, with a probability of 100(1−α)%.

The coverage of a strategy is defined as

Ep (C(s)) =
∑

Ω

p(s)C(s) (46)
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 4.41 4.41 7.26 3.62 1.00
4 3.37 0.86 9.33 8.61 1.01
9 3.08 0.85 11.88 15.79 1.01
16 2.94 0.92 7.97 17.40 1.01
25 2.98 0.95 18.45 981.37 0.97
36 2.90 0.93 42.67 22.02 0.99
49 2.89 0.97 14.55 11.51 1.03
64 2.81 0.96 12.95 22.91 1.02
81 2.85 0.98 65.83 124.94 1.01
100 2.82 1.01 11.11 16.57 1.00
121 2.84 1.00 9.62 218.99 0.99
144 2.86 1.00 12.03 10.28 0.95
169 2.71 1.01 14.12 5.94 1.00
196 2.76 1.01 14.10 34.72 0.99
225 2.70 0.98 15.94 20.51 1.01
256 2.75 1.05 33.57 11.40 1.03
289 2.78 1.00 15.89 9.78 0.99
324 2.74 1.03 44.57 319.12 0.99
361 2.79 0.98 19.96 17.67 1.03
400 2.84 1.03 31.17 11.74 1.02

Table 9: (Simulated) VI for five sampling strategies, study variable: y(3)

where

C(s) =

{
1, if the inteval (45) covers the parameter

0, otherwise

The coverage is a parameter and no compact expression is known for it. So, it
was simulated in the following way. For each of the R = 5000 samples for each
strategy (except for systematic sampling), the 95% confidence interval (45) using the
t distribution, and then C(s), were calculated. The simulated coverage —SC— is
defined as the average of the C(s)-values:

Ep (C(s)) ≈ Esim (C(s)) =
1

R

R∑
i=1

C(s)

Given that no variance estimator has been defined here for systematic sampling,
intervals of the form (45) cannot be computed. Therefore, the following alternative
interval was computed for this strategy(

t̂− z1−α
2

√
Vsim

(
t̂
)
, t̂+ z1−α

2

√
Vsim

(
t̂
))

(47)

It is important to have in mind this adaptation for the following comparisons, as
the latter interval is considered to be closer to the expected 100(1 − α)% than the
former, so the comparison among strategies is not completely fair.

Table 13 shows the (simulated) coverage of the five strategies for the variable
y(1). In this case, with a sample size as small as n = 36 (sampling fraction around
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 0.78 0.78 0.57 0.76 1.02
4 0.90 0.35 0.70 0.58 0.99
9 1.00 0.57 0.69 0.42 1.00
16 1.00 0.69 0.72 0.33 0.99
25 1.02 0.78 0.73 0.39 0.99
36 1.08 0.86 0.74 0.63 0.99
49 1.10 0.88 0.79 0.30 1.00
64 1.07 0.92 0.75 0.38 0.96
81 1.08 0.92 0.74 0.27 0.99
100 1.10 0.92 0.75 0.28 1.00
121 1.08 0.96 0.74 0.18 1.00
144 1.14 0.97 0.77 0.33 0.98
169 1.12 0.97 0.73 0.18 1.01
196 1.12 0.98 0.73 0.18 1.01
225 1.12 0.96 0.71 0.21 1.01
256 1.10 0.95 0.69 0.24 0.98
289 1.09 0.99 0.67 0.19 1.01
324 1.10 0.97 0.70 0.15 1.00
361 1.13 0.99 0.65 0.13 0.99
400 1.13 0.97 0.66 0.20 1.02

Table 10: (Simulated) VI for five sampling strategies, study variable: y(7)

0.02), the coverage of the five strategies is already greater than 0.9, a lack of coverage
that, can be, somehow, neglected. However, systematic sampling shows the largest
coverage, being even greater than the expected 95%; Pareto sampling lies very close
to the expected value. As before, the behavior of (qps–π) is very similar to (SRS–
π), especially for large samples, while for small samples the former performs slightly
better than the latter. Both of them lie a little below the expected 95%. (qps–q)
has the smallest coverage in this case. The results for variable y(10) are similar in the
sense that the coverage of (systematic–π) is larger than (Pareto–qπ), which is larger
than (qps–π), which is slightly larger than (SRS–π), which is, in turn, larger than
(qps–p). However, the differences are more notorious in that case. Results are shown
in the appendix.

The results in Table 14 correspond to the variable y(2). In this case, again, a
sampling fraction of 0.02 (n = 36) is enough for the five strategies to show a SC
larger than 0.9. Specifically, systematic sampling has the largest coverage, being
greater than the expected 95%. For small samples, (qps–π) has a SC slightly greater
than (SRS–π); a difference that vanishes in medium to large samples. However, both
strategies have a SC very close to the expected 95%. (qps–q) is a little “slower”than
the former strategies to achieve the expected coverage, even so, it performs very
well. In this case, Pareto sampling has the smallest coverage. Similar results were
observed for y(3), y(4), y(5), y(6), y(7), y(8), y(9) and y(13), although the differences among
strategies are more dramatical for some cases, for example in y(4), y(5) and y(6), where
Pareto has a SC below 75%. The results are shown in the appendix.

Table 15 shows the simulated coverage for y(11). Again, systematic sampling lies
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 1.37 1.37 1.07 1.07 1.02
4 1.22 0.59 1.31 1.30 0.99
9 1.19 0.73 1.24 2.79 1.03
16 1.19 0.80 1.18 1.38 1.00
25 1.16 0.88 1.37 0.87 1.00
36 1.14 0.91 1.46 0.95 1.02
49 1.09 0.92 1.31 1.08 1.02
64 1.12 0.90 1.43 1.11 0.98
81 1.13 0.94 1.31 1.05 1.02
100 1.13 0.96 1.29 0.77 0.97
121 1.16 0.94 1.56 1.26 1.03
144 1.10 1.00 1.30 1.50 0.99
169 1.12 0.95 1.48 1.32 1.00
196 1.18 0.99 1.52 0.92 0.99
225 1.16 0.96 1.40 1.24 1.02
256 1.12 1.01 1.35 0.93 0.99
289 1.17 1.01 1.80 1.32 1.00
324 1.17 1.03 1.41 1.33 0.96
361 1.20 0.96 1.48 0.88 0.96
400 1.18 1.03 1.28 1.17 1.01

Table 11: (Simulated) VI for five sampling strategies, study variable: y(8)

above the expected 95%. (qps–q) follows, with SC greater than 0.9 starting from
n = 36. Pareto sampling requires, in this case, a sample greater than 64 to overcome
the threshold of a 90% SC. Finally, (qps-π) and (SRS-π) are the worst performers in
this case.

Table 16 shows the results for y(12). As before, systematic sampling has the largest
SC, lying above the expected 95%. (qps–q) overcomes the threshold of the 90% at a
sample size around n = 36. (qps–π) and (SRS–π) seem to lie around a SC of 90%.
Finally, Pareto sampling has the smallest SC, with values around 80%.

A summary of the results observed from the simulation regarding the coverage of
the five strategies follows:

• (Systematic–π) showed the best results, with simulated coverage over the ex-
pected 95% in almost every case. Here is important to recall that the confidence
intervals for this strategy were obtained in a different way, so the comparison is
not completely fair.

• Even with small sample sizes the coverage of (qps–q) is already greater than
90%. Its coverage seems to be very close to the expected 95% in every case
except the convex with high-correlation case.

• As was the case in the variance, (qps–π) and (SRS–π) have a very similar be-
havior, with the former being slightly better than the latter for small sample
sizes. Their coverage lies between 0.9 and 0.95 in every case, except the convex
association case where it is smaller than 0.9.
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 5.39 5.39 3.14 1.25 1.18
4 1.29 0.30 5.00 2.88 0.94
9 0.55 0.48 8.79 2.86 0.92
16 0.47 0.59 11.47 2.15 1.01
25 0.47 0.67 3.15 3.50 1.06
36 0.48 0.72 5.52 2.20 0.99
49 0.51 0.80 7.24 24.68 0.99
64 0.50 0.81 6.42 2.68 1.02
81 0.51 0.87 4.73 3.62 1.02
100 0.50 0.91 10.14 4.23 0.97
121 0.52 0.94 4.15 5.14 1.04
144 0.50 0.93 5.35 3.06 1.05
169 0.52 0.98 14.23 3.51 0.95
196 0.51 0.97 4.78 16.90 1.00
225 0.50 0.93 4.36 6.35 0.99
256 0.50 0.96 5.13 3.83 0.97
289 0.50 0.96 5.83 3.14 0.97
324 0.52 0.97 12.89 4.27 0.99
361 0.51 0.97 7.08 122.62 1.01
400 0.52 0.98 10.51 4.23 1.00

Table 12: (Simulated) VI for five sampling strategies, study variable: y(12)

• (Pareto–π) seems to be the most affected by the study variable: in the high-
correlation case of the linear with intercept and the convex type association,
its coverage lies very close to the expected 95%. However, in some cases, its
coverage is strongly affected, taking values significantly below 90%.

6 Conclusions and comments

This section is divided into three parts. In the first part a summary of the imple-
mentation of q-sampling in practice is presented. In the second part, some comments
about the design itself are presented. The third part discusses the performance of the
different strategies compared in Section 5.

Implementation of q-sampling in practice In order to implement q-sampling in
practice, a sampling frame should be available and a auxiliary variable, q, should be
identified. In general, q must satisfy (22) and (23). For qps, the q-values are defined
proportional to a variable x which is always greater than zero.

If the sample size is not defined beforehand, a proxy variable for the variable of
interest and the approximation to the variance, (37), may be of help. Once the size
has been defined, the sample is selected using the method described in Section 2.

The y-values for the selected sample are collected and the total is estimated by
(35) (or the π-estimator). The variance is estimated by (38) and an approximately
95% confidence interval is calculated by (45).
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.63 0.92 0.95 1.00 0.79
9 0.75 0.89 0.95 0.98 0.82
16 0.83 0.89 0.96 0.97 0.86
25 0.87 0.90 0.95 0.96 0.88
36 0.90 0.91 0.95 0.95 0.90
49 0.91 0.92 0.95 0.96 0.91
64 0.92 0.92 0.95 0.97 0.92
81 0.93 0.92 0.95 0.95 0.92
100 0.93 0.93 0.95 0.94 0.92
121 0.94 0.93 0.95 0.97 0.93
144 0.94 0.93 0.95 1.00 0.93
169 0.94 0.93 0.95 0.97 0.93
196 0.94 0.94 0.95 0.95 0.94
225 0.94 0.94 0.95 0.96 0.94
256 0.94 0.94 0.95 0.94 0.93
289 0.94 0.94 0.95 0.97 0.94
324 0.94 0.94 0.95 0.95 0.94
361 0.94 0.94 0.95 0.93 0.94
400 0.94 0.94 0.95 0.96 0.94

Table 13: (Simulated) coverage for five sampling strategies. Study variable: y(1)

Comments about the design q-sampling has some interesting theoretical proper-
ties, among them: i. it belongs to the family of without-replacement fixed-size designs
that use auxiliary information; which is a family often considered to be very efficient;
ii. the inclusion probabilities of any order are easily obtained; iii. because of ii., the
unbiased π-estimator can be used together with q-sampling; iv. the alternative (and
apparently more efficient) q-estimator is also unbiased under this design.

On the other hand, it has also some drawbacks that may be considered as future
research. These drawbacks are associated with the estimator which is coupled with
the design:

• Using the π-estimator, the ideal situation is a πps design. Unfortunately, to
obtain a πps from q-sampling is possible only for very restricted (and uninter-
esting) cases. Furthermore, if the πps condition is relaxed, and we just decide
to use the π-estimator with a given set of q-values, the result seems to be a
strategy that behaves almost as simple random sampling, so “wasting”most of
the information provided by the auxiliary variable.

• Using the q-estimator, no compact expression for the variance is available. An
approximated expression that performs well (not excellent) was obtained by the
Taylor’s linearization method. It would be interesting to try with a second order
approximation. Regarding the variance estimator, a consistent estimator was
proposed; however, the results show that it tends to underestimate the AV and
medium to large sample sizes are required in order for its bias to be negligible.
Further research is needed in order to improve this estimator.
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.68 0.89 0.88 0.99 0.86
9 0.78 0.90 0.88 0.97 0.87
16 0.85 0.91 0.89 0.98 0.90
25 0.88 0.93 0.89 0.98 0.91
36 0.90 0.93 0.90 0.97 0.92
49 0.91 0.93 0.90 0.97 0.93
64 0.92 0.94 0.91 0.97 0.93
81 0.93 0.93 0.92 0.96 0.94
100 0.93 0.94 0.92 0.96 0.94
121 0.93 0.95 0.92 0.96 0.94
144 0.93 0.94 0.93 0.96 0.95
169 0.94 0.94 0.92 0.97 0.94
196 0.94 0.94 0.93 0.97 0.94
225 0.94 0.95 0.93 0.95 0.94
256 0.95 0.94 0.93 0.96 0.95
289 0.95 0.94 0.93 0.95 0.95
324 0.95 0.94 0.93 0.97 0.94
361 0.95 0.95 0.93 0.97 0.94
400 0.95 0.95 0.94 0.96 0.95

Table 14: (Simulated) coverage for five sampling strategies. Study variable: y(2)

Conclusions about the performance of the five strategies It is important
to recall that the conclusions are based on a simulation study, so they cannot be
generalized in a straightforward way. Even so, according to what was observed in the
study, some conclusions are as follows:

• The Monte-Carlo simulation study allowed to compare the five strategies under
thirteen different variables of study. Variable y(1) represents the ideal situation
in practice: linear association between the auxiliary variable, x, and the study
variable, y, with a high correlation and without intercept. In this situation, the
strategy (Pareto–qπ) shows up as the best option: its bias can be neglected, its
coverage lies over the expected 95% and it is significantly more efficient than
the SRS and the two strategies that involve qps. Even when its efficiency can
be compared to systematic sampling, the balance tilts towards Pareto sampling
when we take into account that it is a measurable design, the approximate
variance seems to be very close to the actual variance and the variance estimator
seems to be almost free of bias, even for small samples.

• Regarding the other variables, and somehow reinforcing a conjecture presented
in Rosén (1997), Pareto sampling seems to be, also, the best choice when the
association between x and y is markedly convex or linear without intercept with
a medium correlation. On the other hand, when the association between x and
y is concave, linear with intercept or it has a low correlation, Pareto sampling
becomes very inefficient compared to simple random sampling and its coverage
seems to be significantly smaller than the expected.

• Systematic sampling coupled with the π-estimator is free of bias, it seems that
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.68 0.89 0.90 0.99 0.81
9 0.80 0.86 0.89 0.98 0.80
16 0.85 0.87 0.88 0.97 0.82
25 0.87 0.86 0.90 0.97 0.84
36 0.90 0.87 0.89 0.97 0.85
49 0.91 0.87 0.89 0.96 0.86
64 0.91 0.88 0.89 0.98 0.88
81 0.92 0.88 0.91 0.96 0.87
100 0.93 0.89 0.90 0.96 0.87
121 0.93 0.89 0.90 0.96 0.88
144 0.93 0.89 0.90 0.97 0.89
169 0.92 0.89 0.92 0.97 0.88
196 0.92 0.90 0.91 0.98 0.90
225 0.93 0.90 0.91 0.96 0.89
256 0.93 0.91 0.91 0.96 0.90
289 0.93 0.90 0.92 0.96 0.90
324 0.93 0.90 0.92 0.96 0.91
361 0.93 0.91 0.92 0.97 0.90
400 0.93 0.91 0.92 0.96 0.91

Table 15: (Simulated) coverage for five sampling strategies. Study variable: y(11)

coverage is not a problem here and its efficiency is comparable to that of Pareto
sampling. Even so, being a non-measurable design, variance estimation is quite
problematic.

• qps coupled with the π-estimator showed to be almost equivalent to simple
random sampling. This result makes this strategy uninteresting, if we take into
account the characteristic simplicity of SRS.

• qps is also unbiased when coupled with the q-estimator, its coverage showed to
be close to the expected 95%, except for convex-high correlation case. Regarding
its efficiency, in general it lies in between simple random sampling and Pareto
sampling: when (qps–q) is more efficient than SRS, Pareto is even more efficient;
when (qps–q) is less efficient than SRS, Pareto is even less efficient. It can be
said to be more conservative than Pareto or systematic sampling.

• However, there were some cases where (qps-q) was more efficient than the re-
maining strategies. Taking into account that qps is only a particular case of
q-sampling, it may be interesting to investigate if it is possible to improve the
performance of the strategy, possibly considering a different setting for the q-
values.

A necessary question is whether to recommend or not the use of q-sampling. As
always, a necessary answer is that further research and improvements may be done
about q-sampling. So far, in the rare case of a study interested only in one variable, the
answer would be: no. If powerful auxiliary information is available, Pareto sampling
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.74 0.91 0.81 0.99 0.87
9 0.82 0.90 0.74 0.99 0.84
16 0.86 0.89 0.73 0.98 0.85
25 0.89 0.88 0.75 0.98 0.85
36 0.91 0.89 0.74 0.98 0.85
49 0.92 0.88 0.76 1.00 0.86
64 0.93 0.89 0.78 0.98 0.87
81 0.93 0.88 0.78 0.98 0.88
100 0.93 0.88 0.79 0.98 0.88
121 0.93 0.89 0.79 0.99 0.88
144 0.93 0.89 0.79 0.98 0.89
169 0.94 0.90 0.80 0.98 0.90
196 0.94 0.90 0.80 0.99 0.90
225 0.94 0.90 0.81 0.98 0.90
256 0.94 0.90 0.81 0.98 0.90
289 0.94 0.91 0.81 0.98 0.91
324 0.94 0.91 0.81 0.97 0.91
361 0.94 0.91 0.81 1.00 0.91
400 0.93 0.91 0.82 0.97 0.91

Table 16: (Simulated) coverage for five sampling strategies. Study variable: y(12)

seems to performs better; on the other hand, if weak or no auxiliary information at
all is available, SRS would be the choice.

Probably, in a multi-purpose study where good auxiliary information is available
for the most important variables, q-sampling could be used. It will reduce the variance
of the most important variables, without strongly impacting the remaining variables.
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A Proof of results

Proof of Result 1. In order to prove Result 1, we need to show that conditions (3)
and (4) are satisfied, in other words, we need to show that i. the sum of p(s) over
the support equals one, and, ii. p(s) is greater than zero for any without-replacement
sample of fixed size n in the support. The proof of the second part is straighforward:

By (23), for any s in Ωq we have

p(s) =
1(

N−1
n−1

)∑
s

qk ≥
1(

N−1
n−1

) n∑
i=1

q(i) > 0

In words, if the sum of the n smallest q-values is greater than zero, then the sum
of any set of size n of q-values, will be greater than zero.

For the first part, we need to show that∑
Ωq

p(s) =
∑
Ωq

1(
N−1
n−1

)∑
s

qk = 1

Let Ik be an indicator that takes the value 1 if the element k belongs to the sample
s and 0 otherwise, then, we have∑

Ωq

1(
N−1
n−1

)∑
s

qk =
∑
Ωq

1(
N−1
n−1

)∑
U

qkIk =
1(

N−1
n−1

)∑
Ωq

∑
U

qkIk =
1(

N−1
n−1

)∑
U

∑
Ωq

qkIk

But each element is included in
(
N−1
n−1

)
samples, so

1(
N−1
n−1

)∑
U

∑
Ωq

qkIk =
1(

N−1
n−1

)∑
U

(
N − 1

n− 1

)
qk =

(
N − 1

n− 1

)
1(

N−1
n−1

)∑
U

qk =
∑
U

qk

But, by (22), ∑
U

qk = 1

Proof of Result 2. The first order inclusion probability of the element k is the sum of
the probabilities of the samples that include that element, i.e.

πk =
∑
s3k

p(s) =
∑
s3k

1(
N−1
n−1

)∑
s

qi =
1(

N−1
n−1

)∑
s3k

∑
s

qi

Using the indicators defined above

πk =
1(

N−1
n−1

)∑
s3k

∑
s

qi =
1(

N−1
n−1

)∑
s3k

∑
U

qiIi =
1(

N−1
n−1

)∑
s3k

[
qk +

∑
U(k)

qiIi

]

where U (k) is the set of all elements in U except the element k. The last expression
is obtained by noting that the k-th element is included in all terms in the sum. This
expression can be rewritten as
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πk =
1(

N−1
n−1

)∑
s3k

[
qk +

∑
U(k)

qiIi

]
=

1(
N−1
n−1

) [∑
s3k

qk +
∑
s3k

∑
U(k)

qiIi

]

But, there are
(
N−1
n−1

)
samples that include the k-th element. And, of those samples,(

N−2
n−2

)
include each of the remaining elements, so

πk =
1(

N−1
n−1

) [∑
s3k

qk +
∑
s3k

∑
U(k)

qiIi

]
=

1(
N−1
n−1

) [(N − 1

n− 1

)
qk +

(
N − 2

n− 2

)∑
U(k)

qi

]
=

1(
N−1
n−1

) [(N − 1

n− 1

)
qk +

(
N − 2

n− 2

)
(1− qk)

]
=

1(
N−1
n−1

) [(N − 1

n− 1

)
qk +

(
N − 2

n− 2

)
−
(
N − 2

n− 2

)
qk

]
=

1(
N−1
n−1

) [((N − 1

n− 1

)
−
(
N − 2

n− 2

))
qk +

(
N − 2

n− 2

)]
=

1(
N−1
n−1

) [(N − 2

n− 1

)
qk +

(
N − 2

n− 2

)]
=

N − n
N − 1

qk +
n− 1

N − 1
=

1

N − 1
[(N − n)qk + (n− 1)]

The second order inclusion probability of the elements k and l is the sum of the
probabilities of the samples that include simultaneously both elements, i.e.

πkl =
∑
s3k,l

p(s) =
∑
s3k,l

1(
N−1
n−1

)∑
s

qi =
1(

N−1
n−1

) ∑
s3k,l

∑
s

qi

Again, using the indicators we have

πkl =
1(

N−1
n−1

) ∑
s3k,l

∑
s

qi =
1(

N−1
n−1

) ∑
s3k,l

∑
U

qiIi =
1(

N−1
n−1

) ∑
s3k,l

[
qk + ql +

∑
U(k,l)

qiIi

]

where U (k,l) is the set of all elements in U except the elements k and l. The last
expression is obtained by noting that the elements k and l are included in all the
terms in the sum. This expression can be rewritten as

πkl =
1(

N−1
n−1

) ∑
s3k,l

[
qk + ql +

∑
U(k,l)

qiIi

]
=

1(
N−1
n−1

) [∑
s3k,l

(qk + ql) +
∑
s3k,l

∑
U(k,l)

qiIi

]

But, there are
(
N−2
n−2

)
samples that include both elements, k and l. And, of those

samples,
(
N−3
n−3

)
include each of the remaining elements, so
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πkl =
1(

N−1
n−1

) [∑
s3k,l

(qk + ql) +
∑
s3k,l

∑
U(k,l)

qiIi

]
=

1(
N−1
n−1

) [(N − 2

n− 2

)
(qk + ql) +

(
N − 3

n− 3

) ∑
U(k,l)

qi

]
=

1(
N−1
n−1

) [(N − 2

n− 2

)
(qk + ql) +

(
N − 3

n− 3

)
(1− (qk + ql))

]
=

1(
N−1
n−1

) [(N − 2

n− 2

)
(qk + ql) +

(
N − 3

n− 3

)
−
(
N − 3

n− 3

)
(qk + ql)

]
=

1(
N−1
n−1

) [((N − 2

n− 2

)
−
(
N − 3

n− 3

))
(qk + ql) +

(
N − 3

n− 3

)]
=

1(
N−1
n−1

) [(N − 3

n− 2

)
(qk + ql) +

(
N − 3

n− 3

)]
=

(N − n)(n− 1)

(N − 1)(N − 2)
(qk + ql) +

(n− 1)(n− 2)

(N − 1)(N − 2)
=

n− 1

(N − 1)(N − 2)
[(N − n)(qk + ql) + (n− 2)]

In general, the r-th order inclusion probability of the elements k1, k2, · · · , kr is the
sum of the probabilities of the samples that include simultaneously the r elements,
i.e.

πk1k2···kr =
∑

s3k1,k2,··· ,kr

p(s) =
∑

s3k1,k2,··· ,kr

1(
N−1
n−1

)∑
s

qi =
1(

N−1
n−1

) ∑
s3k1,k2,··· ,kr

∑
s

qi

Again, using the indicators we have

πk1k2···kr =
1(

N−1
n−1

) ∑
s3k1,k2,··· ,kr

∑
s

qi =
1(

N−1
n−1

) ∑
s3k1,k2,··· ,kr

∑
U

qiIi =

1(
N−1
n−1

) ∑
s3k1,k2,··· ,kr

[
r∑
i=1

qki +
∑
U(r)

qiIi

]

where U (r) is the set of all elements in U except the elements l1, l2, · · · , lr. The last
expression is obtained by noting that the elements l1, l2, · · · , lr are included in all the
terms in the sum. Note that this notation is slightly different than that used in the
previous cases. This expression can be rewritten as

πk1k2···kr =
1(

N−1
n−1

) ∑
s3k1,k2,··· ,kr

[
r∑
i=1

qki +
∑
U(r)

qiIi

]
=

1(
N−1
n−1

) [ ∑
s3k1,k2,··· ,kr

r∑
i=1

qki +
∑

s3k1,k2,··· ,kr

∑
U(r)

qiIi

]
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But, there are
(
N−r
n−r

)
samples that include simultaneously the elements, k1, k2, · · · , kr.

And, of those samples,
(
N−r−1
n−r−1

)
include each of the remaining elements, so

πk1k2···kr =
1(

N−1
n−1

) [ ∑
s3k1,k2,··· ,kr

r∑
i=1

qki +
∑

s3k1,k2,··· ,kr

∑
U(r)

qiIi

]
=

1(
N−1
n−1

) [(N − r
n− r

) r∑
i=1

qki +

(
N − r − 1

n− r − 1

)∑
U(r)

qi

]
=

1(
N−1
n−1

) [(N − r
n− r

) r∑
i=1

qki +

(
N − r − 1

n− r − 1

)(
1−

r∑
i=1

qki

)]
=

1(
N−1
n−1

) [(N − r
n− r

) r∑
i=1

qki +

(
N − r − 1

n− r − 1

)
−
(
N − r − 1

n− r − 1

) r∑
i=1

qki

]
=

1(
N−1
n−1

) [((N − r
n− r

)
−
(
N − r − 1

n− r − 1

)) r∑
i=1

qki +

(
N − r − 1

n− r − 1

)]
=

1(
N−1
n−1

) [(N − r − 1

n− r

) r∑
i=1

qki +

(
N − r − 1

n− r − 1

)]
=

(N − n)

r−1∏
i=1

(n− i)
r∏
i=1

(N − i)

r∑
i=1

qki +

r∏
i=1

(n− i)
r∏
i=1

(N − i)
=

r−1∏
i=1

(n− i)
r∏
i=1

(N − i)

[
(N − n)

r∑
i=1

qki + (n− r)

]

Proof of Result 3. Let A be the event “element k is included in the sample”, and B
be the event “elements l1, l2, · · · , lr are included in the sample ”. The conditional
probability of A given B is

P (A|B) =
P (A ∩B)

P (B)

But P (B) = πl1l2···lr and P (A ∩B) = πl1l2···lrk, so

P (A|B) =
P (A ∩B)

P (B)
=
πl1l2···lrk
πl1l2···lr

=

r∏
i=1

(n−i)

r+1∏
i=1

(N−i)
[(N − n) (

∑r
i=1 pli + pk) + (n− r − 1)]

r−1∏
i=1

(n−i)
r∏
i=1

(N−i)
[(N − n)

∑r
i=1 pli + (n− r)]

n− r
N − r − 1

[(N − n) (
∑r

i=1 pli + pk) + (n− r − 1)]

[(N − n)
∑r

i=1 pli + (n− r)]

Proof of Result 4. We need to prove that

Eq
(
t̂q
)

= ty
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By definition

Eq
(
t̂q
)

=
∑
Ωq

p(s)t̂q = (by definition of expected value)

∑
Ωq

1(
N−1
n−1

)∑
s

qk

∑
s yk∑
s qk

= (using the design and estimator)

1(
N−1
n−1

)∑
Ωq

∑
s

yk =

1(
N−1
n−1

)∑
Ωq

∑
U

ykIk = (using the Ik defined in the proof of Result 1)

1(
N−1
n−1

)∑
U

∑
Ωq

ykIk = (interchanging summations)

1(
N−1
n−1

)∑
U

(
N − 1

n− 1

)
yk = (each element is included in

(
N − 1

n− 1

)
samples)∑

U

yk = ty

Proof of Result 5. Let Y =
∑

s yk and Q =
∑

s qk. First, note that

Cov(Y,Q) = E(XY )− E(X)E(Y ) V (Y ) = E(Y 2) and V (Q) = E(Q2)

so (36) can be rewritten as

V

[
Y

Q

]
≈ E2(Y )

E2(Q)

[
V (Y )

E2(Y )
− 2

Cov(Y,Q)

E(Y )E(Q)
+

V (Q)

E2(Q)

]
=

1

E4(Q)

[
E
(
Y 2
)
E2(Q)− 2E(Y Q)E(Y )E(Q) + E(Q2)E2(Y )

]
(48)

The goal is to obtain expressions for E(Y ), E(Q), E (Y 2), E (Q2) and E(Y,Q),
and then use these expressions into (48).

First, we will calculate E(Y ),

E(Y ) = E

(∑
s

yk

)
=
∑
Ωq

p(s)
∑
s

yk = (definition of expected value)

∑
Ωq

1(
N−1
n−1

)∑
s

qk
∑
s

yk =
1(

N−1
n−1

)∑
Ωq

∑
s

qk
∑
s

yk = (using the design)

1(
N−1
n−1

)∑
Ωq

∑
s

∑
s

qkyl =
1(

N−1
n−1

)∑
Ωq

∑
U

∑
U

qkylIkIl = (using Ik as above)

1(
N−1
n−1

)∑
U

∑
U

∑
Ωq

qkylIkIl (interchanging summations)
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Noting that each element appears
(
N−1
n−1

)
times in Ωq, and each pair k, l appears(

N−2
n−2

)
times, the last term can be rewritten

1(
N−1
n−1

)∑
U

∑
U

∑
Ωq

qkylIkIl =

1(
N−1
n−1

) [(N − 1

n− 1

)∑
U

qkyk +

(
N − 2

n− 2

)∑∑
k 6=l

qkyl

]
= (as mentioned above)

1(
N−1
n−1

) [((N − 1

n− 1

)∑
U

qkyk −
(
N − 2

n− 2

)∑
U

qkyk

)
+((

N − 2

n− 2

)∑
U

qkyk +

(
N − 2

n− 2

)∑∑
k 6=l

qkyl

)]
= (adding and substracting)

1(
N−1
n−1

) [(N − 1

n− 1

)
N − n
N − 1

∑
U

qkyk +

(
N − 2

n− 2

)∑
U

∑
U

qkyl

]
=

1(
N−1
n−1

) [(N − 1

n− 1

)
N − n
N − 1

∑
U

qkyk +

(
N − 2

n− 2

)∑
U

yk

]
= (noting that tq = 1)

N − n
N − 1

∑
U

qkyk +
n− 1

N − 1

∑
U

yk =

1

N − 1
[(N − n)tqy + (n− 1)ty]

Now, in order to calculate E(Q) just replace y by q in the procedure above, so

E(Q) = E

(∑
s

qk

)
=

1

N − 1
[(N − n)tq2 + (n− 1)]

For the remaining terms of interest, consider arbitrary X and Z defined as X =∑
s xk and Z =

∑
s zk. We need to calculate E(XZ):

E(XZ) = E

(∑
s

xk
∑
s

zk

)
=
∑
Ω1

p(s)
∑
s

xk
∑
s

zk = (definition of expectation)

∑
Ωq

1(
N−1
n−1

)∑
s

qk
∑
s

xk
∑
s

zk = (using the design)

1(
N−1
n−1

)∑
Ωq

∑
s

qk
∑
s

xk
∑
s

zk = (factorizing)

1(
N−1
n−1

)∑
Ωq

∑
s

∑
s

∑
s

qkxlzm =

1(
N−1
n−1

)∑
Ωq

∑
U

∑
U

∑
U

qkxlzmIkIlIm = (using the Ik)

1(
N−1
n−1

)∑
U

∑
U

∑
U

∑
Ωq

qkxlzmIkIlIm (interchanging summations)
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Noting that each element appears
(
N−1
n−1

)
times in Ωq, each pair k, l appears

(
N−2
n−2

)
and each triplet k, l,m appears

(
N−3
n−3

)
times, the last term can be rewritten

1(
N−1
n−1

)∑
U

∑
U

∑
U

∑
Ωq

qkxlzmIkIlIm =

1(
N−1
n−1

) [(N − 1

n− 1

)∑
U

qkxkzk +

(
N − 2

n− 2

)(∑∑
k 6=l

qkxkzl +
∑∑

k 6=l

qkxlzk +
∑∑

k 6=l

qlxkzk

)
+

(
N − 3

n− 3

)∑∑∑
k 6=l 6=m

qkxlzm

]
=

1(
N−1
n−1

) [(N − 1

n− 1

)∑
U

qkxkzk+(
N − 2

n− 2

)(∑
U

∑
U

qkxkzl +
∑
U

qkxlzk +
∑
U

qlxkzk − 3
∑
U

qkxkyk

)
+

(
N − 3

n− 3

)(∑
U

∑
U

∑
U

qkxlzm −
∑
U

∑
U

qkxkzl −
∑
U

∑
U

qkxlzk −
∑
U

∑
U

qlxkzk + 2
∑
U

qkxkzk

)]
1(

N−1
n−1

) [((N − 1

n− 1

)
− 3

(
N − 2

n− 2

)
+ 2

(
N − 3

n− 3

))∑
U

qkxkzk+((
N − 2

n− 2

)
−
(
N − 3

n− 3

))(∑
U

∑
U

qkxkzl +
∑
U

∑
U

qkxlzk +
∑
U

∑
U

qlxkzk

)
+

(
N − 3

n− 3

)∑
U

∑
U

∑
U

qkxlzm

]
=

1(
N−1
n−1

) [(N − 1

n− 1

)
(N − n)(N − 2n)

(N − 1)(N − 2)

∑
U

qkxkzk+(
N − 1

n− 1

)
(N − n)(n− 1)

(N − 1)(N − 2)

(∑
U

∑
U

qkxkzl +
∑
U

∑
U

qkxlzk +
∑
U

∑
U

qlxkzk

)
+

(
N − 1

n− 1

)
(n− 1)(n− 2)

(N − 1)(N − 2)

∑
U

∑
U

∑
U

qkxlzm

]
=

1

(N − 1)(N − 2)

[∑
U

qkxkzk(N − n)(N − 2n)+(∑
U

∑
U

qkxkzl +
∑
U

∑
U

qkxlzk +
∑
U

∑
U

qlxkzk

)
(N − n)(n− 1)+

∑
U

∑
U

∑
U

qkxlzm(n− 1)(n− 2)

]
=

1

(N − 1)(N − 2)
[tqxz(N − n)(N − 2n) + (tqxtz + tqztx + txz) (N − n)(n− 1) + txtz(n− 1)(n− 2)]
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Now, replace X and Z by Y =
∑

s yk and Q =
∑

s qk, respectively, we have

E(Y Q) = E

(∑
s

yk
∑
s

qk

)
=

1

(N − 1)(N − 2)
[tyq2(N − n)(N − 2n) + (2tqy + tq2ty) (N − n)(n− 1) + ty(n− 1)(n− 2)]

In order to calculate E (Y 2), replace both X and Z by Y in (A), we have

E
(
Y 2
)

= E

(∑
s

yk
∑
s

yk

)
=

1

(N − 1)(N − 2)

[
tqy2(N − n)(N − 2n) + (2tqyty + ty2) (N − n)(n− 1) + t2y(n− 1)(n− 2)

]
And E (Q2) is

E
(
Q2
)

= E

(∑
s

qk
∑
s

qk

)
=

=
1

(N − 1)(N − 2)
[tq3(N − n)(N − 2n) + 3tq2(N − n)(n− 1) + (n− 1)(n− 2)]

Finally, using the five expressions obtained into (48), we obtain the expression in
(37).
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B Sampling selection method: Program in R

The program has two inputs: q: the vector of q-values, of length N ; n: the sample
size. The output is a vector of length n indicating the selected elements.

qsample<- function(q,n) {

N<- length(q)

ido<- 1:N

id<- ido

qno<- q

qsi<- numeric(N)

elige<- numeric(n)

for (i in 1:n) {

alea<- runif(1,0,n+1-i)

pinc<-

(n-i+1)*((N-n)*(sum(qsi)+qno)+(n-i))/((N-i)*((N-n)*sum(qsi)+n-i+1))

psup<- cumsum(pinc)

pinf<- c(0,psup[-length(pinc)])

elegido<- (pinf<=alea&alea<psup)

elige[i]<- id[elegido>0]

qsi<- q[elige]

qno<- q[setdiff(ido,elige)]

id<- ido[setdiff(ido,elige)]

}

return(elige)

}
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C Simulated Variance Increase

In section 5.5 tables of the SVI for y(1), y(2), y(3), y(7), y(8) and y(12) were presented.
Tables 17 to 23 correspond to the remaining variables.

n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 60.73 60.73 73.18 307.44 0.98
4 22.30 0.12 148.70 56.99 1.01
9 15.83 0.23 194.90 319.25 1.01
16 12.63 0.42 91.11 555.00 0.96
25 12.97 0.59 1018.59 85.13 0.98
36 12.82 0.67 224.47 98.38 0.99
49 13.00 0.76 305.69 108.29 0.98
64 12.69 0.81 115.25 105.75 0.98
81 12.39 0.84 171.30 211.31 1.01
100 12.77 0.87 922.85 1313.54 1.01
121 12.42 0.89 242.76 252.62 1.00
144 13.09 0.96 1400.47 111.00 0.96
169 12.76 0.94 842.74 4049.04 1.01
196 12.42 0.94 953.82 113.31 0.99
225 12.43 0.95 198.51 125.53 0.99
256 13.07 1.00 168.17 181.03 1.00
289 12.36 0.95 351.80 285.74 1.01
324 12.50 0.97 259.93 608.55 1.02
361 12.35 0.96 6478.28 150.27 0.98
400 12.23 0.94 1195.32 187.91 1.03

Table 17: (Simulated) VI for five sampling strategies, study variable: y(4)
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 8640.97 8640.97 382.34 347.85 0.97
4 115.36 1.51 7548.02 1397.80 0.99
9 92.85 0.32 1953.41 686.19 0.99
16 92.13 0.32 793.49 896.94 1.01
25 90.24 0.44 1285.93 1548.01 0.98
36 84.37 0.55 888.83 11528.47 0.99
49 87.53 0.66 781.61 3970.37 0.98
64 82.86 0.70 532817.20 744.72 1.02
81 84.44 0.76 1208.31 4127.70 0.98
100 86.23 0.79 12674.49 6574.17 1.03
121 82.77 0.81 13571.54 1814.09 1.01
144 83.63 0.86 1569.03 1813.41 1.01
169 82.11 0.87 4906.47 3746.46 0.98
196 82.37 0.91 1798.13 1740.36 0.98
225 82.17 0.91 63562.39 2039.07 1.00
256 83.64 0.91 1672.94 5076.80 1.02
289 85.44 0.95 2622.05 1660.41 0.98
324 81.80 0.92 3209.37 1536.59 1.01
361 83.86 0.95 7056.21 2506.07 0.99
400 83.06 0.95 2544.41 4250.31 1.00

Table 18: (Simulated) VI for five sampling strategies, study variable: y(5)

D Simulated Coverage

In section 5.6 tables of the simulated coverage for y(1), y(2), y(11) and y(12) were pre-
sented. Tables for the remaining variables are shown in this section.
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 1112.37 1112.37 942.43 614.50 0.97
4 332.69 5.06 2307.30 5303.14 1.01
9 232.70 1.39 2142.29 2109.70 1.03
16 223.24 0.80 2235.76 1970.50 1.00
25 205.44 0.70 1319.84 1594.76 1.03
36 200.97 0.72 2421.73 1711.42 0.99
49 196.90 0.75 6173.98 1606.43 0.98
64 198.43 0.81 32074.35 1845.36 1.00
81 204.33 0.82 2462.10 3698.81 1.03
100 195.32 0.86 9540.40 4101.76 1.01
121 200.71 0.91 8731.39 7249.44 0.98
144 199.85 0.89 8677.83 20386.54 1.01
169 204.12 0.93 6594.75 13646.80 0.98
196 193.37 0.91 13310.64 12312.58 1.01
225 201.21 0.91 141152.88 3815.38 0.99
256 205.15 0.97 3152.13 2597.78 1.01
289 194.63 0.94 3348.19 193533.74 1.02
324 193.18 0.94 3544.63 105841.89 1.00
361 193.88 0.93 2717.29 3815.76 1.01
400 191.57 0.99 9225.12 2183.99 0.99

Table 19: (Simulated) VI for five sampling strategies, study variable: y(6)

n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 25.21 25.21 7.37 6.34 0.99
4 3.90 0.81 9.29 7.54 1.03
9 3.26 0.87 12.04 11.15 1.03
16 2.78 0.88 10.16 5.45 1.00
25 2.74 0.96 8.83 36.93 1.01
36 2.78 0.93 11.77 11.63 1.00
49 2.69 1.00 10.99 21.74 0.96
64 2.70 1.00 22.41 9.35 1.01
81 2.62 0.96 11.89 10.92 1.01
100 2.67 0.98 11.93 13.24 0.99
121 2.62 0.97 12.75 293.73 0.97
144 2.76 1.00 16.22 14.39 1.00
169 2.62 0.98 19.23 13.08 1.01
196 2.70 0.96 47.81 16.85 1.01
225 2.75 1.01 23.62 13.03 1.00
256 2.60 1.02 16.95 79.92 1.00
289 2.69 1.04 13.78 13.69 1.00
324 2.64 0.98 14.03 12.49 1.01
361 2.69 1.02 139.47 12.76 0.98
400 2.68 0.96 51.88 43.67 0.99

Table 20: (Simulated) VI for five sampling strategies, study variable: y(9)
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 0.05 0.05 0.06 0.06 1.34
4 0.17 0.25 0.05 0.03 0.86
9 0.25 0.40 0.05 0.02 1.14
16 0.32 0.53 0.05 0.02 1.02
25 0.38 0.65 0.05 0.01 1.04
36 0.43 0.78 0.05 0.01 1.02
49 0.46 0.84 0.04 0.01 0.98
64 0.45 0.81 0.04 0.00 0.98
81 0.46 0.86 0.04 0.00 0.97
100 0.46 0.85 0.03 0.00 1.01
121 0.47 0.88 0.03 0.00 1.01
144 0.47 0.91 0.02 0.00 1.02
169 0.49 0.91 0.02 0.00 1.00
196 0.49 0.91 0.01 0.00 1.01
225 0.50 0.95 0.01 0.00 0.98
256 0.50 0.96 0.01 0.00 0.97
289 0.51 0.96 0.01 0.00 1.01
324 0.50 0.96 0.01 0.00 1.02
361 0.50 0.96 0.00 0.00 0.96
400 0.50 0.95 0.00 0.00 1.01

Table 21: (Simulated) VI for five sampling strategies, study variable: y(10)

n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 0.45 0.45 0.27 0.30 0.78
4 0.31 0.28 0.43 0.24 0.90
9 0.29 0.41 0.35 0.26 0.87
16 0.34 0.57 0.32 0.25 1.03
25 0.39 0.76 0.35 0.23 1.09
36 0.37 0.75 0.35 0.27 0.91
49 0.38 0.83 0.34 0.23 1.04
64 0.40 0.83 0.34 0.23 1.00
81 0.42 0.92 0.33 0.26 1.01
100 0.43 0.92 0.38 0.22 1.03
121 0.41 0.92 0.36 0.24 1.00
144 0.41 0.90 0.35 0.21 1.00
169 0.42 0.93 0.35 0.21 1.03
196 0.43 0.97 0.36 0.36 0.97
225 0.42 0.96 0.36 0.27 1.00
256 0.42 0.95 0.40 0.18 1.02
289 0.43 1.00 0.36 0.20 0.97
324 0.42 0.97 0.35 0.20 1.01
361 0.43 0.94 0.34 0.25 1.02
400 0.42 0.96 0.36 0.17 0.98

Table 22: (Simulated) VI for five sampling strategies, study variable: y(11)
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
1 888.59 888.59 1435.73 24766.57 0.99
4 357.70 7.03 1130.84 3450.19 1.01
9 234.61 2.55 11960.99 1578.96 1.00
16 244.94 1.64 1714.32 1474.41 1.00
25 215.57 1.28 3238.48 14420.78 0.99
36 227.71 1.12 1954.12 9307.28 0.99
49 216.14 1.02 2060.93 5844.05 0.99
64 216.17 0.99 121498.28 2870.67 1.02
81 209.36 1.02 2641.35 3127.60 0.99
100 218.46 1.02 4637.45 3856.83 1.01
121 207.60 1.01 46357.27 2821.42 0.99
144 215.63 1.02 2985.62 2058.12 1.03
169 209.00 1.03 9123.58 4722.49 0.97
196 216.31 1.01 28081.68 4625.51 1.00
225 214.68 1.02 6527.30 16370.75 1.02
256 216.70 1.01 2831.55 5876.95 1.00
289 215.50 1.01 14069.09 349831.62 1.00
324 210.65 0.99 9597.24 4161.57 1.00
361 207.79 0.99 204208.23 4386.30 1.01
400 210.62 0.97 20890.35 77614.71 1.00

Table 23: (Simulated) VI for five sampling strategies, study variable: y(13)

n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.69 0.91 0.75 0.99 0.90
9 0.78 0.92 0.75 0.99 0.91
16 0.85 0.92 0.77 0.99 0.93
25 0.88 0.93 0.78 1.00 0.94
36 0.90 0.94 0.80 0.99 0.94
49 0.91 0.95 0.80 0.98 0.94
64 0.92 0.94 0.81 0.99 0.94
81 0.92 0.95 0.82 1.00 0.94
100 0.93 0.94 0.82 0.97 0.94
121 0.93 0.94 0.82 1.00 0.95
144 0.94 0.94 0.84 0.97 0.95
169 0.94 0.95 0.84 0.96 0.94
196 0.94 0.95 0.84 0.99 0.95
225 0.94 0.95 0.84 0.98 0.95
256 0.95 0.94 0.85 0.98 0.94
289 0.94 0.95 0.85 0.97 0.95
324 0.94 0.95 0.84 1.00 0.95
361 0.94 0.95 0.85 0.98 0.95
400 0.94 0.94 0.86 0.97 0.95

Table 24: (Simulated) coverage for five sampling strategies. Study variable: y(3)
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.71 0.89 0.67 0.99 0.80
9 0.79 0.87 0.64 0.99 0.84
16 0.84 0.89 0.66 1.00 0.86
25 0.87 0.90 0.67 0.98 0.87
36 0.90 0.90 0.69 0.98 0.89
49 0.91 0.92 0.68 0.98 0.91
64 0.92 0.92 0.71 0.98 0.91
81 0.93 0.93 0.71 0.98 0.92
100 0.93 0.93 0.72 0.99 0.92
121 0.93 0.93 0.72 0.98 0.93
144 0.93 0.92 0.71 0.97 0.93
169 0.94 0.93 0.73 1.00 0.93
196 0.93 0.94 0.73 0.97 0.94
225 0.93 0.93 0.72 0.97 0.94
256 0.94 0.93 0.73 0.98 0.94
289 0.94 0.94 0.73 0.98 0.94
324 0.94 0.94 0.73 0.99 0.93
361 0.94 0.94 0.73 0.97 0.94
400 0.95 0.94 0.72 0.97 0.94

Table 25: (Simulated) coverage for five sampling strategies. Study variable: y(4)

n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.71 0.94 0.66 1.00 0.85
9 0.80 0.94 0.64 0.99 0.86
16 0.83 0.95 0.67 0.99 0.89
25 0.87 0.93 0.68 0.99 0.91
36 0.89 0.93 0.69 1.00 0.92
49 0.91 0.93 0.69 1.00 0.92
64 0.92 0.94 0.71 0.98 0.93
81 0.92 0.93 0.70 0.99 0.93
100 0.93 0.93 0.71 1.00 0.93
121 0.94 0.94 0.72 0.98 0.94
144 0.93 0.94 0.72 0.98 0.94
169 0.94 0.94 0.72 0.99 0.94
196 0.94 0.94 0.74 0.98 0.94
225 0.94 0.94 0.72 0.98 0.94
256 0.94 0.94 0.72 0.99 0.94
289 0.94 0.94 0.74 0.98 0.95
324 0.94 0.95 0.74 0.98 0.94
361 0.94 0.94 0.73 0.98 0.95
400 0.95 0.95 0.74 0.99 0.94

Table 26: (Simulated) coverage for five sampling strategies. Study variable: y(5)
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.70 0.95 0.65 1.00 0.94
9 0.78 0.95 0.65 0.99 0.95
16 0.83 0.95 0.66 0.99 0.95
25 0.87 0.95 0.67 0.98 0.94
36 0.90 0.95 0.68 0.98 0.95
49 0.92 0.95 0.70 0.98 0.94
64 0.92 0.95 0.71 0.98 0.95
81 0.93 0.95 0.70 0.98 0.95
100 0.93 0.95 0.71 0.99 0.95
121 0.93 0.94 0.72 0.99 0.95
144 0.93 0.95 0.72 1.00 0.95
169 0.94 0.95 0.72 0.99 0.95
196 0.95 0.95 0.72 0.99 0.95
225 0.94 0.95 0.74 0.98 0.95
256 0.93 0.94 0.72 0.98 0.95
289 0.94 0.95 0.73 1.00 0.94
324 0.95 0.95 0.73 1.00 0.95
361 0.94 0.95 0.73 0.98 0.95
400 0.95 0.94 0.74 0.97 0.95

Table 27: (Simulated) coverage for five sampling strategies. Study variable: y(6)

n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.69 0.95 0.92 0.99 0.90
9 0.78 0.94 0.91 0.98 0.90
16 0.83 0.93 0.91 0.97 0.92
25 0.87 0.93 0.91 0.98 0.92
36 0.89 0.94 0.92 0.99 0.93
49 0.90 0.94 0.92 0.93 0.93
64 0.91 0.94 0.92 0.98 0.94
81 0.92 0.94 0.93 0.97 0.94
100 0.92 0.94 0.93 0.96 0.94
121 0.93 0.94 0.93 0.94 0.94
144 0.93 0.94 0.92 0.95 0.95
169 0.93 0.94 0.92 0.94 0.94
196 0.93 0.95 0.93 0.98 0.95
225 0.93 0.95 0.93 0.94 0.94
256 0.93 0.95 0.92 0.97 0.95
289 0.94 0.95 0.93 0.96 0.94
324 0.94 0.95 0.93 0.98 0.95
361 0.93 0.95 0.93 0.96 0.95
400 0.94 0.95 0.93 0.98 0.95

Table 28: (Simulated) coverage for five sampling strategies. Study variable: y(7)
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.69 0.90 0.87 0.99 0.86
9 0.79 0.91 0.88 0.99 0.89
16 0.84 0.92 0.88 0.98 0.91
25 0.88 0.92 0.89 0.96 0.93
36 0.90 0.93 0.90 0.97 0.92
49 0.92 0.93 0.91 0.96 0.93
64 0.92 0.94 0.91 0.96 0.94
81 0.93 0.94 0.92 0.97 0.94
100 0.93 0.94 0.92 0.97 0.95
121 0.93 0.94 0.92 0.98 0.94
144 0.94 0.94 0.92 0.99 0.95
169 0.94 0.94 0.92 0.98 0.95
196 0.94 0.94 0.92 0.97 0.95
225 0.94 0.95 0.93 0.99 0.94
256 0.94 0.94 0.92 0.97 0.95
289 0.94 0.94 0.93 0.97 0.95
324 0.95 0.94 0.92 0.97 0.96
361 0.94 0.95 0.93 0.97 0.95
400 0.94 0.94 0.93 0.96 0.94

Table 29: (Simulated) coverage for five sampling strategies. Study variable: y(8)

n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.71 0.91 0.75 0.99 0.90
9 0.78 0.93 0.75 0.99 0.91
16 0.84 0.93 0.76 0.97 0.93
25 0.88 0.93 0.76 0.99 0.93
36 0.89 0.94 0.79 0.98 0.94
49 0.91 0.94 0.79 0.99 0.95
64 0.92 0.94 0.80 0.97 0.95
81 0.93 0.95 0.81 0.98 0.94
100 0.93 0.94 0.81 0.97 0.95
121 0.93 0.95 0.83 1.00 0.95
144 0.93 0.95 0.82 0.97 0.94
169 0.94 0.95 0.83 0.98 0.95
196 0.94 0.95 0.84 0.98 0.95
225 0.94 0.95 0.82 0.98 0.95
256 0.94 0.94 0.84 1.00 0.95
289 0.94 0.94 0.83 0.97 0.94
324 0.94 0.95 0.84 0.98 0.94
361 0.94 0.95 0.84 0.98 0.95
400 0.94 0.96 0.84 0.99 0.95

Table 30: (Simulated) coverage for five sampling strategies. Study variable: y(9)
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n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.44 0.74 0.89 0.99 0.55
9 0.54 0.73 0.91 0.96 0.63
16 0.62 0.75 0.91 1.00 0.69
25 0.70 0.77 0.92 0.99 0.74
36 0.75 0.79 0.94 0.95 0.76
49 0.78 0.81 0.94 1.00 0.79
64 0.79 0.83 0.94 0.98 0.81
81 0.81 0.84 0.95 1.00 0.82
100 0.82 0.85 0.95 0.98 0.84
121 0.82 0.85 0.95 0.94 0.85
144 0.83 0.86 0.95 0.97 0.85
169 0.84 0.87 0.95 0.97 0.86
196 0.84 0.87 0.95 0.97 0.86
225 0.85 0.87 0.95 0.97 0.88
256 0.85 0.87 0.95 0.98 0.88
289 0.86 0.89 0.94 0.95 0.88
324 0.86 0.89 0.95 0.95 0.88
361 0.86 0.89 0.95 0.96 0.89
400 0.87 0.89 0.95 0.99 0.89

Table 31: (Simulated) coverage for five sampling strategies. Study variable: y(10)

n (qps - q) (qps - π) (Pareto - qπ) (Syst. - π) (SRS - π)
4 0.72 0.96 0.65 1.00 0.95
9 0.78 0.95 0.65 0.99 0.95
16 0.83 0.95 0.65 0.98 0.95
25 0.87 0.95 0.69 1.00 0.95
36 0.90 0.95 0.69 0.99 0.95
49 0.91 0.95 0.70 0.99 0.95
64 0.92 0.96 0.70 0.98 0.95
81 0.93 0.95 0.71 0.99 0.95
100 0.93 0.95 0.71 0.98 0.95
121 0.93 0.95 0.70 0.97 0.95
144 0.94 0.95 0.72 0.97 0.95
169 0.94 0.95 0.71 0.98 0.96
196 0.93 0.95 0.72 0.98 0.95
225 0.94 0.95 0.72 0.99 0.95
256 0.94 0.95 0.72 0.98 0.95
289 0.94 0.95 0.73 1.00 0.95
324 0.94 0.95 0.72 0.98 0.95
361 0.95 0.95 0.73 0.98 0.95
400 0.94 0.95 0.74 1.00 0.95

Table 32: (Simulated) coverage for five sampling strategies. Study variable: y(13)
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