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ABSTRACT. The surface properties of newsprint and other paper qualities are to a great extent

determined by the properties of the cellulose fibres. An appropriate description of these fibres as

they appear in the paper is therefore important and can be used for quality classification and

process monitoring. We suggest a model that considers the fibre geometry and appearance. It is

based on a two-dimensional shot-noise process. The model is fit by minimizing a weighted least

squares distance between the model-based and estimated covariance functions and this provides

estimates of the fibre size, intensity and the non-uniform distribution of the fibre orientation. The

model is applied to simulated and real data.
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1. Introduction

The microstructure of newsprint has considerable importance for the paper quality and a good

characterization of this structure is necessary for process monitoring and quality control.

Especially the geometric properties of the fibres have vital importance. Currently, several

procedures exist for measuring the geometry of the cellulose fibres. Most of them are based on

measurements of fibres extracted from the pulp thus leaving the alterations of the fibres, which

occur during the manufacturing process, unnoticed.

The properties of paper are highly determined by length, intensity and orientation of the

fibres. In order to assess paper quality it is important to estimate these parameters from data.

Traditionally, fibre length and intensity have been estimated assuming a uniform fibre ori-

entation, as in Kallmes & Corte (1960), Warren (1970) and Dodson (1971). Fibre orientation,

on the other hand, has been estimated separately, regarding fibre length and fibre intensity as

nuisance parameters.

Many models of the microstructure of paper are devoted to model its mechanical properties,

especially the strength. See for exampleMiles (1964), where anisotropic thick lines is a model for

fibrous structures of thin sheets of paper. A common model for the fibre network is the Boolean

germ-grain process ofMatheron (1972, 1975), where locations of fibres form a two-dimensional

Poisson process and fibre regions (the grains) are mutually independent random objects, which

also are independent of the locations. An alternative approach was introduced by Mecke &

Stoyan (1980). Their fibre system is based on fibre length measures on Borel sets. The advantage

of this approach is that individual fibres need not bemodelled, whereas the germ-grain process is

easier to simulate from.For bothmodels, the union of all fibresN is the randomobject of interest,

and inference is based on this set. The length and intensity of fibres can be estimated by counting

the number of intersections between randomly chosen lines and N. The orientation of fibres can

be estimated by comparing the number of intersection between N and lines with different

directions, see e.g.Molchanov& Stoyan (1994) andKärkkäinen et al. (2001). In the latter paper,
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varying thickness of the fibres due to degraded imaging is taken into account. Line intersect

counts are replaced by the local behaviour of scaled variograms, and then a weighted least

squares objective function is used to estimate orientation parameters.

In this paper, we focus on properties that are important for the printing like surface roughness

and the intention is to model thickness measurements of newsprint. The local thickness of

newsprint depends not only on the properties of the fibres and other additives but also on the

paper-making procedure.Duringmanufacturing of newsprint, the cellulose fibres are distributed

randomly into layers. Due to the intensity of fibres, their geometric properties and orientation,

the local thickness of the final paper varies determined by the positions of the fibres. We model

varying paper thickness by means of a two-dimensional shot-noise process (Daley, 1975;

Westcott, 1976) and it includes fibre geometry, intensity and distribution of fibre orientation.

The model has been applied in a project involving Halmstad University and four Swedish

paper mills. The main purpose of this project is to find the correlation between the surface

properties of newsprint and the printing quality. As a part of the project we have developed

the model to be used for characterizing the surface of the newsprint in terms of fibre

parameters. A 2 � 2 mm2 area of newsprint has been sampled and the local heights at

501 � 501 sample points comprise the data set used for the modelling. Figure 1 shows the

two-dimensional observations viewed as an image, where the intensities correspond to the

values of the local heights.

A model that comprises the fibre geometry, intensity and the non-uniform distribution of

fibre orientation makes it possible to relate fibre mixtures to surface properties. As the fibre

mixtures can be manipulated by the manufacturer, the model enables monitoring of the

manufacturing process.

As cellulose fibres are approximately piecewise linear, a single fibre can be detected as

several �apparent rectangular fibres� with different orientation. For this reason, the marks of

the shot-noise process consist of rectangles with varying orientation. In order to obtain a

simple model with parameters of high informativeness, we make the simplifying assumption

that all apparent fibres have the same length and width, so that in practice these parameters

can be interpreted as mean length and mean width of fibres. The non-uniform orientation of

the fibres is modelled through a von Mises distribution.

Our inference procedure is based on fitting observed mean and autocorrelations of height

measurements, i.e. the local thickness, to those obtained from the shot-noisemodel bymeans of a

weighted non-linear least squares procedure. In this way, we are able to estimate fibre intensity,

width, length, thickness and the non-uniform distribution of fibre orientation simultaneously.
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Fig. 1. Images of local heights on the surface of newsprint viewed as grey scale intensities.
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The use of shot-noise processes in paper applications is not new. For instance, Deng &

Dodson (1994) and Brown et al. (2003) consider a shot-noise process with circular objects as a

way of modelling flocculation in paper. Brown et al. (2003) define an approximate

ML-estimator based on Fourier transformed data along one manufacturing orientation when

white noise is added to the shot-noise process.

This paper is organized as follows: The shot-noise process model is defined in section 2 and

the matched autocorrelation estimator (MAE) in section 3. A simulation study is carried

through in section 4, where the choice of starting value of the iterative estimation procedure is

discussed in some detail. A real data example is analysed in section 5, whereas some further

extensions of our method are proposed in section 6.

2. The shot-noise model

Consider a stochastic process X(s), s 2 R2 of the form

X ðsÞ ¼
X
i

Wðs� Ti;UiÞ; s 2 X; ð1Þ

where f(Ti, Ui)g is a stationary, independently marked point process on R2 with some mark

space U and W : R2 � U ! R is a measurable non-negative function and X a subset of R2

where X is observed. We regard Ti as the position and Ui a vector specifying the size and

orientation of the ith object. We further assume that fTig is a stationary Poisson point process

on R2 with intensity k. Models of the kind (1) have been studied by Mat�ern (1960), Barlett

(1964) and in the shot-noise literature.

For simplicity, we assume that the objects are uniformly bounded in R2, i.e.

D ¼
[
u2U

ft;Wðt; uÞ > 0g ð2Þ

is a bounded subset of R2. Then, the mean mX ¼ E(X(s)) and the covariance function rX(s) ¼
Cov(X(s), X(s þ s)) are given by

mX ¼ k
Z

EðWðt;UÞÞdt; ð3Þ

and

rX ðsÞ ¼ k
Z

EðWðt;UÞ �Wðtþ s;UÞÞdt ð4Þ

respectively, provided that the integrals are finite, see Johansson & Hössjer (2001). Because of

(2), this is the case if W attains only the values 0 and c > 0. With

Au ¼ ft : Wðt; uÞ ¼ cg ð5Þ

we get

mX ¼ ckEjAUj ð6Þ

and

rX ðsÞ ¼ c2kEðjAU \ ðAU þ sÞjÞ: ð7Þ

Here, |A| is the Lebesque measure of the two-dimensional set A and A þ s denotes translation

of A by the vector s.
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To model newsprint cellulose fibres, we consider rectangular objects, with u ¼ (l, w, v),

wðt; uÞ ¼ c � 1fjt�evj�l=2;jt�e?v j�w=2g; ð8Þ

ev ¼ (cos (v), sin (v)) and e?v ¼ ðsinðvÞ; �cosðvÞÞ. Here l > 0 and w > 0 are the length and

width of the rectangle and v 2 (�p/2, p/2] is the orientation. The fibre preferred orientation is

denoted v0.
We assume the random object U has independent components L, W and V. The angle

distribution of V can conveniently be modelled from the von Mises family of distributions, cf.

Mardia & Jupp (2000). Then the density of V is given by

fV ðvÞ ¼
1

kðrÞ expðð1=r� 1Þ cos2ðv� v0ÞÞ; �p=2 < v � p=2; ð9Þ

where

kðrÞ ¼
Z p=2

�p=2
expðð1=r� 1Þ cos2ðv� v0ÞÞdv ð10Þ

is a normalizing constant. The parameter r 2 [0, 1] is a measure of dispersion and indicates

how concentrated the distribution is around v0. For r ¼ 1, the distribution is uniform and for

r ¼ 0, it is a one-point distribution, where the probability of the orientation v0 is 1. Figure 2

shows the density functions for three different values of r.
The mean and the covariance function of the process can now be expressed with the fol-

lowing proposition.

Proposition 1

Let X be a shot-noise process with rectangular shot effects in R2 with length L, width W,

orientation V and covariance vector s ¼ ksk(cos h, sin h), for h 2 (�p/2,p/2].
Then,

mX ¼ ckE½L�E½W � ð11Þ

and

rXðsÞ ¼ c2kE½ðL� kskj cosðV � hÞjÞþðW � kskj sinðV � hÞjÞþ� ð12Þ

¼ c2k
Z p=2

�p=2
E½ðL� kskj cosðv� hÞjÞþ��

E½ðW � kskj sinðv� hÞjÞþ�fV ðvÞdv:
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Fig. 2. Graphs of the angle densities for r ¼ 1 (left), r ¼ 0.2 (middle) and r ¼ 0.002 (right). Note that for

r ¼ 1, the distribution is uniform and when r ! 0, the distribution tends to a one-point distribution. The

figure in the middle illustrates the periodic nature of the density. In this figure v0 ¼ p/3.
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� Board of the Foundation of the Scandinavian Journal of Statistics 2005.



Proof. From (5) and (8), we have Au ¼ ft; 1fktÆvk � l/2ÆktÆv^k�w/2gg, which gives the area of

Au ¼ lw and then, according to (6), the mean mX ¼ ckE[L]E[W].

From (7) we get the covariance function by computing the area Au \ Au þ s. For given

length, width, orientation and covariance vector s, this rectangular area equals the area of the

intersection of two rectangles with the same orientation and with centres in s and s þ s. This

area is found by calculating the projections of the covariance vector s along the orientation of

the length, which is ksk|cos (v � h)| and perpendicular to this orientation, which is

ksk|sin (v � h)|. The sides of the rectangle are thus (l � ksk|cos (v � h)|)þ and

(w � ksk|sin (v � h)|)þ and the area of Au \ Au þ s ¼ (w � ksk|sin (v � h)|)þ(l �
ksk|cos (v � h)|)þ; cf. Figure 3.

When the fibres have constant length and width, (10) and (11) simplify to

mX ¼ cklw ð13Þ

and

rXðsÞ ¼ c2k
Z p=2

�p=2
ðl� kskj cosðv� hÞj

�
þ �

�
w� kskj sinðv� hÞjÞþ � fV ðvÞdv; ð14Þ

with fV defined as in (9). This integral has no explicit expression but can be solved numerically.

Remark. As a special case we consider the situation with fixed lengths and widths but with

the orientation angle, V uniformly distributed, V 2 Rect(�p/2, p/2], i.e. for r ¼ 1 in (9). This

case was described in Dodson (1971). By (14) we obtain,

rXðsÞ ¼
c2k
p

Z p=2

�p=2
ðl� kskj cosðv� hÞjÞþðw� kskj sinðv� hÞjÞþdv ð15Þ

¼

c2kwlð1� 2
p ð

ksk
l þ ksk

w � ksk2
2lw ÞÞ for 0 < ksk � w,

2c2kwl
p ðarcsinð w

kskÞ � w
2l �

ksk
w þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksk2
w2 � 1

q
Þ for w < ksk � l,

2c2kwl
p ðarcsinð w

kskÞ � arccosð l
kskÞ

� w
2l � l

2w �
ksk2
2lw þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksk2
l2 � 1

q
Þ for l < ksk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ w2

p
.

8>>>>>>><
>>>>>>>:

3. Estimation of model parameters

From realizations of the process, we can estimate mX and rX(s). These moments depend on the

parameters of the process. In our model, these include the height parameter, c, the intensity, k,

Fig. 3. The shaded area within the centre of a rectangle with sides w and l will cover both s and s þ s.
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the parameters of the distribution of the length, the width and the fibre orientation. In this

paper, we only consider a simplified model and assume that the unknown lengths and widths, l

and w, are of equal size for all fibres. It would be possible to allow L and W to be stochastic

with one location and one dispersion parameter for each. However, we believe the estimation

problem then becomes more ill-conditioned. Instead, we interpret l and w as location

parameters for the true underlying distributions of L and W. The angle is assumed to have a

distribution according to (9), which is fully characterized by the parameters r and v0.
We assume that v0 is known and thus summarize the parameters of the process in a

parameter vector,

n ¼ ðc; k; l;w; rÞ: ð16Þ

The mean function, mX and the covariance function, rX(s) can now be expressed as functions

of n.

In the paper application, the process X can only be observed at discrete points and we

introduce a lattice,

C ¼ fs1; s2; . . . ; sMg; si 2 X; i ¼ 1; . . . ;M ; ð17Þ

as a finite number of points in X.
The estimation of the fibre geometry assumes that realizations are studied in an area large

enough to eliminate the effects of the borders. This implies some knowledge of the fibre length

and width, properties that we are to estimate. We base the size of this area on measurements

from other investigations.

For the estimation we now get the system of equations:

rXð0Þ=mX ¼ c
m2

X=rXð0Þ ¼ klw
rXðsÞ=rXð0Þ ¼ E

��
1� ksk

l j cosðV � hÞj
�
þ �

�
1� ksk

w j sinðV � hÞj
�
þ
�

¼: fsðl;w; rÞ;

8>><
>>:

ð18Þ

where the expectation in (18) is taken with respect to V according to the distribution in (9).

Recalling that we observe X on the grid C in (17), we can estimate the quantities of the LHS of

(18) by means of

m̂X ¼ 1

M

X
s2C

XðsÞ ð19Þ

and

r̂XðsiÞ ¼
1

M

X
s2C

sþsi 2C

ðXðsÞ � m̂XÞðXðsþ siÞ � m̂XÞ; i ¼ 1; . . . ;K; ð20Þ

where each si can be written as sk � sj for some sj, sk 2 C. Viewing r̂XðsiÞ=r̂Xð0Þ as a noisy

observation of fsi(l, w, r), we can use weighted non-linear least squares, cf. Draper & Smith

(1998), to estimate (l, w, r) according to

ð̂l; ŵ; r̂Þ ¼ arg min
ðl;w;rÞ

PK
i¼1 mi

�
r̂ðsiÞ
r̂ð0Þ � fsiðl;w; rÞ

�2

ĉ ¼ r̂Xð0Þ=m̂X

k̂ ¼ m̂2
X=

�
r̂Xð0Þ̂lŵ

�
;

8>><
>>:

ð21Þ

where fmigKi¼ 1 is a preselected set of weights.
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We refer to the estimator (21) of n as the matched autocorrelation estimator, (MAE), cf.

Rue & Tjelmeland (2002), even though it is only three of the parameters, l, w and r, that are
estimated by fitting the autocorrelation function.

4. A simulation study

In this section, we perform a simulation study of the MAE (24). By using simulated fibre

processes with known parameter values, we obtain estimates of a variety of parameter com-

binations, which we compare with the specified values of the parameters. The simulated

processes are observed on a quadratic grid, C, of size 512 � 512 points with grid distance

equal to 1. Figure 4 shows an example of such a simulated process.

In total, 32 different parameter combinations have been investigated. For four values of the

angle parameter, we have chosen two values of the length, two values of the width and two

values of the intensity, k ¼ 0.0025 and k ¼ 0.005. Each parameter combination includes 100

simulated replicates thus making it possible to compute the standard errors.

For simplicity of implementation, we have chosen weights vi in (21) equal to 1 when si lies

along the fibre preferred orientation v0 or its orthogonal orientation v0 þ p/2 and equal to 0

otherwise. We believe the information loss with this choice of weights is small compared to

including more terms in (21) for lags si in other orientations.

4.1. Implementation issues for the matched autocorrelation estimator

We assumed in section 3 that the fibre preferred orientation v0 was known. For instance, we
may have prior knowledge of v0. Alternatively, v0 can be estimated using the estimated

covariance function in (21) or using image analysis methods, where the property that the

contours have maximal distance from the origin along the fibre preferred orientation can be

utilized.

4.1.1 Starting values for the length and the width

The estimated covariance function in the fibre preferred orientation and the orthogonal ori-

entation can be used to determine starting values for the length, l and the width, w.

With v0 known, we may without loss of generality put v0 ¼ 0. Starting out from Equation

(18) with h ¼ 0 and q ¼ ksk we then get

( Length units ) 

( 
Le

ng
th

 u
ni

ts
 )
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Fig. 4. An illustration of a simulation of the newsprint fibrous network. The parameter values are k ¼
0.0025, l ¼ 300, w ¼ 15 and r ¼ 0.2.
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rXðq; 0Þ ¼
c2k
kðrÞ

Z p=2

�p=2
ðl� qj cosðvÞjÞþ � ðw� qj sinðvÞjÞþfV ðvÞdv ð22Þ

and

rXðq; p=2Þ ¼
c2k
kðrÞ

Z p=2

�p=2
ðl� qj sinðvÞjÞþ � ðw� qj cosðvÞjÞþfV ðvÞdv: ð23Þ

For r ¼ 0, these equations become

rXðq; 0Þ ¼ c2kðl� qÞþw ð24Þ

in the fibre preferred orientation and

rXðq; p=2Þ ¼ c2kðw� qÞþl; ð25Þ

in the orthogonal direction. As can be seen from these equations, the covariance function

equals zero when q > l in the fibre preferred orientation and for q > w in the orthogonal

orientation. Also when the parameter r in the angle distribution differs from 0, there is a

breakpoint in the covariance functions, which easily can be detected in the graphs, cf. Fig. 5.

4.1.2 Starting values for the parameter r in the distribution of the fibre orientation

As a starting value of the parameter r, we have utilized the local scaling of the variogram

around the origin. If s ¼ q( cos h, sin h) and

qX ¼ 2
�
rXð0Þ � rXðsÞ

�
¼ 2bðhÞqa þ oðqaÞ ð26Þ

as q!0 and h is kept fixed, we refer to b(h) as the topothesy in the direction h and a as the

fractal index, cf. Davies & Hall (1999). For the fibre process it turns out that a ¼ 1, whereas

F ðrÞ :¼ bðv0Þ þ bðv0 þ p=2ÞR v0þp=2
v0

bðhÞdh
ð27Þ

only depends on r, cf. Johansson & Hössjer (2001) for calculations of b(h) and F(r). Now b(h)
can be estimated from data by applying ordinary least squares estimation based on the

logarithm of the variogram, since
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Fig. 5. The left figure shows the graphs of the estimated covariance function in the fibre preferred ori-

entation, r(q, 0) and the right figure in the orthogonal orientation, r(q, p/2). The fibre length equals 50

units, the width equals 6 units and the angle parameter r equals 0.1, 0.2, 0.4 and 0.8, respectively.
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log qXðsÞ ¼ log bðhÞ þ a log qþ oðlog qÞ; ð28Þ

cf. Constantine & Hall (1994). By plugging in the estimates of b(h) for several directions into
(27), we get an estimate, F̂ , of F(r). When the parameter r varies from 0 to 1, the distribution

of direction angles varies from a one-point distribution to a uniform distribution and the

function F(r) from 1 to 4/p, see Fig. 6. F(r) is monotonically increasing in [0, 1] and we find

the intersection of F(r) with the line y ¼ F̂ by successively testing the midpoints of sub-

intervals.

4.1.3 Summary

We sum up the implementation of the MAE in the following steps.

• The preferred orientation normally equals the orientation of manufacture, which means that

v0 is assumed to be equal to zero. Is this is in doubt, v0 is estimated by using the two-

dimensional covariance function and image analysis methods.

• Starting values for the length and the width are based on the covariance functions in the

orientation v0 and v0 þ p/2. The values are estimated by using standard image analysis

methods for finding the breakpoints described in section 4.1.1 and illustrated in Fig. 5.

• Starting values for the orientation parameter r are determined as described in section 4.1.2.

• Estimates of the three parameters (l, w, r) are computed iteratively from the autocorrelation

function according to (21), using weighted non-linear least squares, with starting parameters

as determined from the previous steps.

• Estimates of c and k are computed from (24), using the estimated values of (l, w, r) from the

previous step as plug-in.

A simulation study with different starting values has also been performed. Since the starting

values are chosen according to the observed breakpoints of the graphs, they may be difficult to

determine precisely. However, the simulation study shows that the values chosen in this way

do not affect the parameter estimates.

4.2. Conclusions

The results from the simulation experiment with intensity equal to 0.005 are listed in Table 1.

The other investigated intensity, 0.0025, shows similar results and are not presented here.
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Fig. 6. Graph of the function F(r).
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The weighted non-linear least squares estimator of the covariance function performs

reasonably well for a wide variety of parameter combinations. The scale and intensity

parameters are those which give the best estimates with respect to bias and standard error. For

some combinations of parameters, especially large fibre length and large r-values, the pro-

cedure may diverge or oscillate between two different values and not give any estimates. Such

behaviour of the non-linear regression technique is also described in the literature, cf. Draper

& Smith (1998). We also note that for small w and large r the estimates of the length are not

very good. These results might depend on the small variation of the covariance function in the

preferred orientation for values of ksk close to the fibre length. Compare the flat shape of the

corresponding graphs as shown in Fig. 5. Another problem is the estimates of w, which seem

to be biased with increasing values of r. However, for the paper application, this is not a

serious disadvantage since the distribution of fibre orientation is concentrated around the

preferred direction and the parameter r is < 0.4 for most paper qualities.

5. Application

We have investigated the surface topography of a rectangular piece of newsprint of size

2 � 2 mm2 made from soft-wood without any return fibres, cf. Fig. 1.

The measurements are performed using a stylus instrument, which samples the surface on a

grid with 4 lm between the samples points, see Benett & Dancy (1981) for details on the

measuring. In total, there are 501 � 501 sample points. The choice of such a small area may

cause edge effects but the measurements can be performed during a reasonable short time

which is desirable for industrial applications.

Figure 7 shows the estimated covariance functions in the fibre preferred orientation and the

orthogonal orientation. The results of the estimation are listed in Table 2. Based on these

Table 1. Results from a simulation study with intensity k ¼ 0.0050 and c ¼ 1. For each combination of

parameter values, 100 replicates have been simulated

Specified

values Estimated values

l w r

l̂ ŵ r̂ k̂ � 104 ĉ

Mean SE Mean SE Mean SE Mean SE Mean SE

50 6 0.1 51.48 2.23 6.35 0.04 0.12 0.01 49 0.2 1.01 0.005

50 6 0.2 51.21 1.42 5.96 0.03 0.23 0.01 38 0.3 1.01 0.006

50 6 0.4 47.38 1.98 5.47 0.01 0.35 0.00 53 0.1 1.01 0.005

50 6 0.8 49.76 3.18 5.36 0.04 0.87 0.00 48 0.3 1.02 0.007

50 3 0.1 49.51 3.84 3.18 0.10 0.11 0.02 52 0.4 1.01 0.005

50 3 0.2 53.57 1.88 3.08 0.03 0.24 0.01 49 0.3 1.01 0.005

50 3 0.4 49.86 3.27 2.77 0.01 0.40 0.01 47 0.4 1.01 0.004

50 3 0.8 79.48 9.99 2.69 0.01 0.82 0.04 46 0.4 1.01 0.005

25 6 0.1 24.69 0.39 6.10 0.04 0.11 0.01 51 0.2 1.00 0.004

25 6 0.2 25.32 0.71 5.72 0.04 0.22 0.01 48 0.3 1.01 0.005

25 6 0.4 25.45 0.71 5.45 0.05 0.41 0.01 52 0.3 1.01 0.003

25 6 0.8 26.70 1.75 5.47 0.01 0.77 0.03 49 0.4 1.01 0.004

25 3 0.1 24.37 0.19 3.02 0.04 0.10 0.00 48 0.3 1.01 0.006

25 3 0.2 26.13 0.78 2.84 0.03 0.22 0.00 49 0.4 1.01 0.005

25 3 0.4 25.48 1.35 2.73 0.01 0.41 0.01 49 0.3 1.01 0.007

25 3 0.8 30.21 0.92 2.66 0.00 0.80 0.01 48 0.5 1.01 0.007

SE, standard error.
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estimates, we simulate realizations of the fibre process and for each such realization we

estimate model parameters according to (21). The standard errors are then calculated from the

bootstrapped parameter estimates.

As a validation of the model we compared m̂X in (19) and r̂X in (20) along the fibre preferred

orientation and the orthogonal orientation with (13)–(14), using estimated values of Table 2 as

plug-in. The two estimates of mX were 18.92 (model-based) and 19.01 (non-parametric) and

the two covariance functions are shown in Fig. 7 for each orientation. This indicates a good fit

between the non-parametric and the model-based estimates of mX and rX.

The results in Table 2 correspond well to other results concerning fibre length and fibre

widths; cf. Deng & Dodson (1994) and references therein. We have not found any model in the

literature comprising fibre geometry, intensity and distribution of fibre orientation and it has

therefore not been possible to make comparisons with other research. This paper may pioneer

in estimation of all these properties within the same model.

6. Conclusions

We have proposed a general parametric model for fibre geometry, intensity and non-uniform

distribution of fibre orientation and an estimator of these parameters. The model is tested in a

newsprint application to study the surface roughness for a specified pulp mixture.

In our implementation, two-dimensional measurement are only needed for the computation

of the starting value of r. If therefore, some prior knowledge of the parameter r is available, it
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Fig. 7. Plots of the estimated covariance functions of the newsprint application r(q, 0) (left) and r(q, p/2)
(right). The dashed lines are the model-based estimates and solid lines the non-parametric estimates.

Table 2. Results of estimation of fibre geometry and fibre intensity on newsprint. The grid-size 4 lm is used

as length unit. The starting values were l ¼ 120, w ¼ 12 and r ¼ 0.12

l̂

Estimated values (length units)

ŵ r̂ k̂ ĉ

375.2 (19.0) 12.17 (0.36) 0.27 (0.02) 0.0037 (0.004) 1.12 (0.05)

Estimated values (mm)

1.501 (0.076) 0.049 (0.002) 0.27 (0.02) 238 (25) 0.0045 (0.0002)

The values in parentheses are the standard errors.
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suffices to measure the paper in the fibre main and its orthogonal orientations. The method is

thus easy to use in paper industry because standard measurements can be utilized.

A possible generalization of the model is to consider a superposition of two shot-noise

processes, one fibre process with rectangular objects and one cluster process with larger cir-

cular objects. In this way both the fibre geometry and the fibre flocculation can be modelled,

see Johansson & Hössjer (2001).

A further application is to use the vector n (or a subset of it) to cluster or discriminate

between various paper types. For instance, if several samples of each type of paper are

available, one could use a random effects model, with n having a separate distribution in R5

for each type of paper. See also Johansson (2002), where estimated values of the fractal index

and topothesy are used for discrimination.

The proposed estimator of model parameters, the MAE, is based on fitting observed mean

and autocorrelations. An alternative approximate ML procedure can be defined by noting that

the vector X ¼ (X(s1), . . . , X(sM)) is asymptotically normal as the intensity k tends to infinity,

cf. Papoulis (1971), Rice (1977) and Heinrich & Schmidt (1985). Hence, provided k is

reasonably large, we may approximate the distribution of X by N(m, R), where m ¼
(mX, . . . , mX) and R ¼ (rX(si þ sj))ij. This approach has computational disadvantages, how-

ever, since we need to invert the large matrix R. Another faster and approximate ML-

estimator can be defined in terms of the two-dimensional Fourier transform of X, see Brown

et al. (2003) in the context of shot-noise processes with circular objects. It would be interest-

ing to compare the performance of the MAE with this estimator.
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