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Abstract

In this article we describe and discuss implementation of a weighted simulation pro-
cedure, importance sampling, in the context of nonparametric linkage analysis. The ob-
jective is to estimate genome-wide p-values, i.e. the probability that the maximal linkage
score exceeds given thresholds under the null hypothesis of no linkage. In order to reduce
variance of the estimate for large thresholds, we simulate linkage scores under a distri-
bution different from the null with an artificial disease locus positioned somewhere along
the genome. To compensate for the fact that we simulate under the wrong distribution,
the simulated scores are reweighted using a certain likelihood ratio. If the sampling dis-
tribution are properly chosen the variance of the corresponding estimate is reduced. This
results in accurate genome-wide p-value estimates for a wide range of large thresholds
with a substantially smaller cost adjusted relative efficiency with respect to standard un-
weighted simulation.

We illustrate the performance of the method for several pedigree examples, discuss imple-
mentation including the amount of variance reduction and describe some possible gener-
alizations.
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1 Introduction

This article focuses on simulation and nonparametric linkage (NPL) analysis. The
latter is a subfield of linkage analysis and it may be used to perform genome-wide
scans designed to facilitate the search for genetic linkage of certain phenotypes (e.g.
diseases) to different chromosomal regions. In this context we will use a simulation
technique called importance sampling (cf. Hammersley and Handscomb, 1964) to
calculate the statistical significance (p-values) of maximum NPL scores. This is the
probability that the maximum NPL score exceeds a given threshold T under the null
hypothesis of no linkage. When the NPL score is maximized over many chromo-
somes, the resulting p-values are orders of magnitude larger than the corresponding
pointwise p-values. It is therefore important to correct for multiple testing. The
most straightforward method is to use direct Monte Carlo simulation, which gives
unbiased estimates of the p-value and is consistent in the limit of many simulations.
However, this method is often very slow, especially for small p-values, large fam-
ilies and incomplete marker data. To remedy this, analytical formulas have been
developed, based on approximating the NPL scores by a Gaussian process (Fein-
gold et al., 1993; Lander and Kruglyak, 1995), or a skewness adjusted/transformed
Gaussian process (Teng and Siegmund, 1998; Tang and Siegmund, 2001; Ängquist
and Hössjer, 2003a). These formulas are fast to compute, but still approximations
of the true p-value, the quality of which depend heavily on the information con-
tent of marker data. Importance sampling is an alternative which, like direct Monte
Carlo simulation, gives consistent p-value estimates in the limit of many simula-
tions. It typically is much faster than direct Monte Carlo simulation, especially for
small p-values.

An example of importance sampling implemented for maximum NPL scores
based on affected sib pairs is Malley et al. (2002) and further works using impor-
tance sampling in genetics and linkage analysis are e.g. Kong et al. (1992) and
Cordell et al. (1995). For more information about linkage analysis in general cf.
e.g. Ott (1999).

A brief guide to the general method now follows. The NPL score is simulated
from a distribution P̃ which differs from the null hypothesis distribution P. Im-
portance sampling is a weighted simulation technique, with weights depending on
the likelihood ratio L = dP̃/dP. The choice of P̃ is crucial and should i) give an
easily computed likelihood ratio ii) reduce the variance of the p-value estimate. In
this paper we present a choice of P̃ based on simulating an artificial disease lo-
cus X along the predefined genomic region and then making inheritance vectors
at X corresponding to high scores more likely according to an exponentially tilted
distribution. We will consider linear combinations of p-value estimates based on
differently tilted P̃ simulations. The distribution of the weights depends on the
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threshold T . A good choice of P̃ will help us to estimate small p-values corre-
sponding to large thresholds. This implies that a lower number of simulations will
be needed to get a certain accuracy in the calculations, but the price to pay is that
the simulation algorithm will be more time consuming per iteration. The efficiency
of the importance sampling will depend on the relation between these properties.

In Section 2 we introduce and present nonparametric linkage analysis and im-
portance sampling in order to give the reader enough tools to follow the subsequent
parts of the article. Next, in Section 3 the suggested importance sampling method
for perfect marker data is defined and p-value estimates from different P̃ measures
are weighted to obtain maximal variance reduction. By perfect marker data we
mean a dense set of markers, unrelated founders and that sufficiently many pedi-
gree members are genotyped so that the score function S for each family can be
unambigously determined at all loci. A generalization to incomplete marker infor-
mation is given in Section 4. The results are presented in Section 5. A number
of genome-wide scans, w.r.t. the 22 human autosomes based on four pedigree sets
with one pedigree structure, are performed. We generally conclude that the proce-
dure works well in the sense that it gives reliable p-values, even for very large NPL
thresholds. In Section 6 we briefly summarize the paper. Some technical details are
given in the appendices.

2 Basic Theory

2.1 Definitions and Notation

Consider first one single pedigree including n related individuals; f founders and
(n− f ) nonfounders. The allelic inheritance for a single pedigree, i.e. the distribu-
tion of the founder’s alleles among the nonfounders, is based on the m = 2(n− f )
distinct meioses.

Following Donnelly (1983) the inheritance at locus x for a single pedigree is
described by the inheritance vector, v(x), defined as

v(x) = (p1,m1, p2,m2, . . . , pn− f ,mn− f ), (1)

In (1) pi (mi) equals 0 if the ithnonfounder’s paternal (maternal) allele originates
from the grandfather and 1 if it originates from the grandmother.

Available computer programs with (nonparametric) linkage analysis implemented
are e.g. GENEHUNTER (Kruglyak et al., 1996), ALLEGRO (Gudbjartsson et al.,
2000) or MERLIN (Abecasis et al., 2002).
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2.2 The NPL score

The score function is a function of the inheritance vector and measures compatibil-
ity between inheritance and phenotypes at a locus. Throughout this article we will
use the Sall function (cf. Whittemore and Halpern, 1994). More information and
discussions about the performance of score functions in general and Sall in particu-
lar may be found e.g. in Whittemore and Halpern (1994), Kruglyak et al. (1996),
McPeek (1999) and Sengul et al. (2001).

As linkage measure we will use the NPL score (cf. Kruglyak et al., 1996; Kong
and Cox, 1997) which for the kthpedigree is defined as

Zk(x) = ∑
w

P(vk(x) = w | MDk)Sk(w), (2)

where P(vk(x) = w | MDk) is the probability function (at position x) for the inheri-
tance vector vk(x) given the marker data MDk and Sk(·) is the normalized one-locus
score function,

Sk(v) ←
Sk(v)−µk

σk
, (3)

where µk = ∑w Sk(w)pvk
(w), σ2

k = ∑w Sk(w)2 pvk
(w)−µ2

k is the mean and variance
of Sk before normalization, pvk

(w) = 2−mk is the probability distribution of vk(x)
under the null hypothesis of no linkage and mk is the number of meioses of pedi-
gree k. Throughout this article we will assume that all score functions Sk(·) are
normalized to have zero mean and unit variance, as in (3).

For a pedigree set with N distinct pedigrees and possibly non-equal pedigree
weights, the NPL score is expressed as

Z(x) =
N

∑
k=1

γkZk(x), (4)

where Zk(x) is the NPL score in (2) assigned to the kthpedigree, γk is the corre-
sponding weight and ∑N

k=1 γ2
k = 1.

Equations (2)-(4) imply that E
(
Z(x)

)
= 0 and V

(
Z(x)

)≤ 1 under H0, with equal-
ity V

(
Z(x)

)
= 1 for perfect marker data. This implies that the perfect marker as-

sumption leads to conservative tests, cf. Kruglyak et al. (1996). For large N and
(close to) perfect marker information the NPL score may be approximated by a
N(0,1) normal distribution. The weights may be chosen according to different op-
timality criteria, cf. e.g. Sham et al. (1997), McPeek (1999) and Hössjer (2003a).

The maximum NPL score found during the analysis is formally expressed as

Zmax = sup{Z(x), x ∈ Ω}, (5)
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where Ω is the chromosomal region(s) of interest in the study. This random variable
Zmax is extensively used when we discuss issues of statistical significance, w.r.t.
possible genetic linkage, below.

2.3 Significance

The p-value corresponding to the maximum NPL score Zmax is defined as

α(zmax) = P(Zmax ≥ zmax), (6)

where P denotes probability under the null hypothesis H0 that no x ∈ Ω is linked to
the disease locus. It tells us how probable it is, under H0, to find a maximal NPL
score greater than or equal to the observed zmax.

When exact calculation of this p-value is not feasible one has to approximate it
using simulation techniques or asymptotic approximation formulas. In this work
we will use an importance sampling simulation method. Another approach, based
on extreme value theory for Gaussian processes, is discussed by e.g. Lander and
Botstein (1989), Feingold et al. (1993), Lander and Kruglyak (1995) and Tang
and Siegmund (2001). Their findings were generalized to arbitrary pedigrees and
adjusted for nonnormality in Ängquist and Hössjer (2003a).

2.4 Simulations

We approximate the p-value α(T ) for a given threshold T by Monte Carlo simu-
lation as follows. Generate J independent identically distributed (i.i.d.) replicates
Z1

max, . . . ,Z
J
max of the random variable Zmax under H0 and consider the estimate

α̂(T ) =
1
J

J

∑
i=1

I(Zi
max ≥ T ), (7)

where I(A) is the indicator function for outcome A.
We assume absence of chiasma interference and that inheritance on different

chromosomes is independent. To begin with, we assume perfect marker data.
This assumption reduces the complexity of the Zi

max computation since no hidden
Markov algorithm is needed for evaluating the conditional inheritance distribution
in (2). Then, in Section 4, we will relax this assumption.

For perfect marker data, each family score has the form Zk(x) = Sk

(
vk(x)

)
. To

simulate {vk(x); x ∈ Ω}, each component of vk may be seen as an independent and
stationary Markov process with two states - 0 and 1 - and intensity matrix( −λ λ

λ −λ

)
. (8)
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This implies that jumps occur according to a Poisson process with intensity λ . The
simulated inheritance vectors will give us the pedigree scores which facilitates, us-
ing (4), computation of the total NPL score. When map distance is measured in
Morgans we have λ = 1.

For further information about simulation in the context of human linkage anal-
ysis cf. e.g. Boehnke (1986), Ploughman and Boehnke (1989), Ott (1989) and Ter-
williger et al. (1993).

2.5 Importance Sampling

Let us give a brief introduction to importance sampling and how to use it for esti-
mating α(T ). Assume first that Ω = [0, l] consists of one chromosome, where l is
the chromosome length. Let Z = {Z(x); x ∈ Ω} be the collection of all NPL scores
on Ω and f (Z) = I(Zmax ≥ T ). Then

α = α(T ) = E
(

f (Z)
)

=
∫

f (Z)dP(Z), (9)

where E denotes expectation under the P distribution of no linkage. This value may
be Monte Carlo estimated without bias, using (7), as α̂ = 1

J ∑J
i=1 f (Zi), where {Zi}

are i.i.d. copies of Z. A possible improvement may be introduced by changing the
probability measure from P to P̃ and considering the formula

α = α(T ) = E
(

f (Z)
)

= Ẽ
(
L−1(Z) f (Z)

)
(10)

with L(Z)= dP̃(Z)/dP(Z) the likelihood ratio. Formula (10) requires that dP̃(z) > 0
whenever f (z)dP(z) > 0, i.e. that the support of P̃ is a least as large as that of f P.
By proper choice of P̃, we get a variance reduction when estimating α by

α̃ =
1
J

J

∑
i=1

L−1(Zi) f (Zi), (11)

where {Zi} are i.i.d. copies of Z under P̃.
An optimal choice of P̃ is

dP̃(Z) =
f (Z)

E[ f (Z)]
dP(Z) =

f (Z)
α

dP(Z), (12)

which gives L−1(Zi) f (Zi) ≡ α for all i and hence V (α̃) = 0. This choice is not
possible to use in practice though, since α = E( f (Z)) is unknown. However, this
may serve as a guidance to choose P̃ as close to (12) as possible. For instance, in
the context of estimating p-values corresponding to exceedance of large thresholds,
it might be useful to increase the probability for Z such that f (Z) is large.

For further details on importance sampling cf. e.g. Hammersley and Handscomb
(1964), Kotz and Johnson (1983) and Ross (2002).
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3 Importance Sampling for Perfect Marker Data

3.1 One Single δ Value

Firstly, we describe the importance sampling algorithm in more detail for perfect
marker data and one chromosome, Ω = [0, l]. The estimator for several chromo-
somes is then defined in Section 3.3. The NPL score (4) for perfect marker data
becomes

Z(x) = ∑
k

γkSk

(
vk(x)

)
, (13)

where Sk is the score function and vk(x) the inheritance vector of pedigree k at locus
x. We will sample from a probability measure

dP̃(z) =
∫

Ω g
(
z(x)

)
dx

B
dP(z), (14)

where g is a non-negative function, B =
∫

Ω E
(

g
(
Z(x)

))
dx a normalization constant

and z = {z(x); x ∈ Ω} is the observed chromosome-wide NPL score. From this
representation we get a likelihood ratio L(z) =

∫
Ω g

(
z(x)

)
dx/B which is straight-

forward to compute as a function of z. We wish to choose g in such a way that P̃ in
(14) reduces the variance of the estimator α̃ as much as possible and, at the same
time, construct a feasible sampling algorithm. Notice that (14) can be written as a
mixture

dP̃(z) =
∫

Ω
p(x)dP̃x(z)dx, (15)

where dP̃x(z) = g
(
z(x)

)
dP(z)/E

(
g
(
Z(x)

))
and p(x) = E

(
g
(
Z(x)

))
/B. This sug-

gests a sampling algorithm:

Algorithm 1 (Sampling Algorithm)

1. Generate X from the density p(·).
2. Conditionally on X, generate Z from P̃X(·).

Since Z is a stationary process under H0, the expected value E
(

g
(
Z(x)

))
is

independent of x and hence p(x) = 1/l is the uniform distribution on Ω in Step 1.
A possible choice of g is g(y) = I(y ≥ T ), see e.g. Frigessi and Vercellis (1985)
and Naiman and Priebe (2001). For imperfect marker data, it has recently been
applied to p-value calculation for genome-wide linkage by Malley et al. (2002).
An advantage of this g is that P̃ puts all it’s probability mass on the set {Zmax ≥ T}
where f is positive. On the other hand, it is difficult to construct an exact sampling
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algorithm for P̃X(·) in Step 2. Malley et al. (2002) suggest an approximate fast
algorithm based on the assumption that Z is a Gaussian process. This assumption
is motivated by the central limit theorem for large N but can be quite inaccurate if
N is small and/or there are a few large pedigrees in the data set.

In this paper, we don’t approximate the NPL score by a Gaussian process. The
main idea is to use an exponentially tilted density function for constructing P̃ (Ross,
2002, Section 8.5). This results in an exact and explicit simulation procedure for P̃x,
which gives unbiased estimates of α for arbitrary family structures, score functions
S and weighting schemes γ . Let δ ≥ 0 be a given design parameter and put g(y) =
exp(δy). Then E

(
g
(
Z(x)

))
= E

(
exp

(
δZ(x)

))
= M(δ ) is the moment generating

function of Z(x) under the null hypothesis of no linkage, evaluated at δ . One may
note that δ = 0 corresponds to standard simulation from P, i.e. under H0. The
likelihood ratio becomes

L(z) =
∫

Ω
exp

(
δ z(x)

)
p(x)dx/M(δ ). (16)

The crucial part of Step 2 in Algorithm 1 is to recognize that

P̃X

(
Z(X) = z(X)

)
∝ exp

(
δ z(X)

)
∝

N

∏
k=1

exp
(

δγkSk

(
vk(X)

))
, (17)

since this makes it possible to simulate Z(X) under P̃X by independently generat-
ing all inheritance vectors vk(X) according to the exponentially tilted distribution
P̃X(vk(X) = w) ∝ exp

(
δγkSk(w)

)
. Then, by the Markov property, vk(·) is gener-

ated at all other loci. In more detail, Step 2 can be decomposed into three steps as
follows:

Algorithm 2 (Simulating NPL Score from P̃X )

2a. Independently for k = 1, . . . ,N, generate vk(X) from distribution
P̃X(vk(X)= w)= 2−mk exp

(
δγkSk(w)

)
/Mk(δ ) and Mk(δ )= 2−mk ∑w exp

(
δγkSk(w)

)
is the moment generating function of γkSk

(
vk(X)

)
under H0.

2b. Independently for k = 1, . . . ,N do the following: Conditionally on
vk(X) generate vk = {vk(x); x ∈ Ω} according to P.
2c. Compute Z as in (13).

In Appendix A, we show that these steps indeed give a valid sampling algorithm for
P̃X(·). For each k, Step 2a is just simulation from a discrete probability distribution
and because of the assumption of no interference, Step 2b is obtained by generating
crossovers to the left and right of X independently, see the discussion in Section 2.4.

7Ängquist and Hössjer: Importance Sampling in Linkage Analysis

Produced by The Berkeley Electronic Press, 2005



For storage reasons it is more practical to loop over k, although we find the form
above more useful when discussing the algorithm.

We may interpret X in Step 1 as an artificial disease locus, uniformly positioned
along Ω. Conditional on X , it is shown in Appendix C that Z(X) approximately
has a N(δ ,1) distribution in the limit of large samples N. This gives a natural
interpretation of δ as the asymptotic noncentrality parameter Ẽ

(
Z(X)

)
(Feingold et

al., 1993) at the artificial disease locus.
The exponentially tilted distribution of Z(x) has previously been used (Kong

and Cox, 1997) as an empirical likelihood, with δ as the unknown parameter at
each locus x. Then, as a way to perform linkage analysis, δ is estimated as a
function of x.

3.2 Weighting Estimates for Several δ Values

We consider estimates based on weighted averages. Introducing 0 = δ 1 < δ 2 < · · · < δ M

and w = (w1,w2, . . . ,wM) we define

α̃w =
M

∑
i=1

wiα̃δ i (18)

where α̃δ is the estimator (11) based on parameter δ and the weights satisfy wi ≥ 0
and ∑M

i=1 wi = 1. It follows that E(α̃w) = α and the variance

V (α̃w) = Cw(T )/J (19)

is inversely proportional to the number of simulations J, with proportionality con-
stant Cw(T ) = ∑M

i=1 w2
i C(T,δ i) and C(T,δ ) = Ẽ

(
( f (Z)/L(Z)−α)2

)
. To minimize

variance we use Tukey’s inequality (Kotz and Johnson, 1988) to define the weights
as

wi ∝ C(T,δ i)−1. (20)

In practice, we have to replace (20) by estimated weights, cf. Appendix D.

3.3 The Split-Merge Method

Although the importance sampling scheme works when Ω consists of several chro-
mosomes we find it natural to utilize that marker data from different chromosomes
is independent and split the estimation procedure into distinct estimates for the C
chromosomes belonging to Ω and then merge this information into a joint genome-
wide estimate
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α̃w = α̃w(T ) = 1−
C

∏
k=1

(
1− α̃w,k(T )

)
, (21)

where α̃w,k(T ) is the weighted estimate for the kthchromosome.

4 Importance Sampling for Imperfect Marker Data

It is possible to generalize the importance sampling procedure to incomplete marker
data. As in Section 3, we start with the case of one chromosome Ω = [0, l]. Then,
an estimate of α for several chromosomes is computed as in (21). By combin-
ing (2) and (4) we see that the NPL score Z(·) is a function of marker data MD =
(MD1, ...,MDN), which itself is a function of inheritance vectors v = {vk,k = 1, ...,N},
where vk = {vk(x); x ∈ Ω}, and founder genotypes at all marker loci for all pedi-
grees, MDfound. The simulation algorithm in Section 3 has to be modified, in that
Step 2c is replaced by:

Algorithm 3 (Simulating NPL Score Revisited)

2c1. Generate founder genotypes MDk,found, ∀k, at all marker loci.
2c2. Generate MDk, ∀k, as a function of vk and MDk,found by segregat-
ing the founder alleles.
2c3. Compute Z as function of MD by combining (2) and (4).

For storage reasons, it is more practical to loop over k, although we prefer to write
as above when discussing the algorithm. In order to get a manageable expression
for the likelihood ratio, we define it as a function of MD rather than Z(·). It is
shown in Appendix B that L(MD) = P̃(MD)/P(MD) equals

L(MD) =


∫

Ω
p(x)

N

∏
k=1

∑
w∈Z

mk
2

exp
(
δγkSk(w)

)
P(vk(x) = w|MDk)dx


/M(δ ).

(22)

The importance sampling estimator of α is

α̃(T ) =
1
J

J

∑
i=1

L−1(MDi) f (MDi), (23)

where {MDi}J
i=1 are i.i.d. drawn from P̃ and f (MD) = I(Zmax ≥ T ). Estimates

for several δ are combined in the same way as described in Section 3.2. The like-
lihood ratio (22) involves the conditional inheritance distributions P(vk(x) | MDk)
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for each pedigree. This distribution is computationally involved for large pedigrees,
cf. Kruglyak et al. (1996). Notice however that P(vk(x) | MDk) appears in (2)
and hence has to be computed for all pedigrees at all loci in order to define Zmax.
Therefore, the additional computational burden to evaluate the likelihood ratio is
relatively small.

5 Results

For simplicity of interpreting the effect of varying the pedigree structure, we con-
sidered only data sets with N pedigrees of the same kind, i.e. homogeneous pedigree
sets, chosen from Figure 1. We expect results for mixed pedigree sets to have sim-

−female

1 2

3
  woman 

−male

−affected man

−affected

4

Figure 1: Four pedigrees of different structure.

ilar performance. Moreover, we use N = 60 pedigrees, equal pedigree weighting,
i.e. γk = 1/

√
N for k = 1, . . . ,N and the grid {δ i}M

i=1 = {(i−1) ·5.5/(M−1)}M
i=1.

We compare, for perfect marker data, the weighted simulations to traditional un-
weighted simulations and an approximation formula based on extreme value theory
for stochastic processes (Ängquist and Hössjer, 2003a).
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5.1 Cost Adjusted Efficiency

The importance sampling algorithm involves the design vector δ = (δ 1,δ 2, . . . ,δ M)
and the corresponding weights w = (w1,w2, . . . ,wM), that should be chosen in or-
der to reduce variance as much as possible. Recall that the importance sampling
estimator (18) is unbiased with variance (19).

The advantages of this procedure should be balanced against the additional com-
putational cost compared to traditional Monte Carlo simulation (i.e. δ = 0). We
define CRi as the cost ratio for δ i, i.e. the ratio of the computation time per simu-
lation for importance sampling with δ = δ i and Monte Carlo simulation (δ = 0).
It depends to some extent on the implementation of the algorithm. We assume that
CRi is independent of T and define the cost adjusted relative efficiency (see also
Malley et al., 2002) as

RE(T ) = CMC(T )/(Cw(T )∗
M

∑
i=1

CRi), (24)

where CMC(T ) = C(T,0) = α(T )
(
1−α(T )

)
, and Cw(T ) is defined in Section 3.2.

This is the ratio of the computation time needed for the Monte Carlo estimate to
attain the same variance as the importance sampling estimate. In our case CR1 = 1
since δ1 = 0 and CRi = CR is independent of i for 2 ≤ i ≤ M. Therefore (24)
reduces to

RE(T ) = CMC(T )/(Cw(T )∗ (
1+(M−1)CR)

)
. (25)

Because of the asymptotic normality of Z under H0, we expect RE(T ) to be fairly
robust against variations of sample size, pedigree structures, weighting schemes and
score functions. It is a bit more sensitive to variations in total genomic length and
degree of marker informativity. For suboptimal choices of δ the estimate α̃ has
high variability. This is particularly true for δ = 0 and large thresholds T . For this
reason, we estimate CMC(T ) by ĈMC(T ) = α̃w(1− α̃w), where α̃w is the weighted
importance sampling estimate. The estimate Ĉw(T ) is defined in Appendix D.

Estimates of RE(T ) for one chromosome and various choices of l and M are
shown in Figure 2. The efficiency increases with T , e.g. for T =8 we get approxi-
mately RE(T ) = 107. The ratio decreases slowly with the genetic length l, despite
that the cost ratio decreases as well (CR ≈ 3 when l = 1 and CR ≈ 2 when l = 10).
As long as the δ -grid covers the set of thresholds T in the sense that some C(T,δ i)
is small for all T ∈ T, there is no need to increase M further.

5.2 Displaying the Weights

Figure 3 displays the weight vector w as function of the threshold T for one chro-
mosome of length 3.0 Morgans.
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Figure 2: Relative efficiency estimates based on J=2500 simulations for Pedi-
gree 3, with number of pedigrees N = 60, thresholds T , tuning constants, in-
troduced in Appendix D, ε = (0.001,0.95), genome length l=1,5 or 10 Mor-
gans and grid of tilting parameters {δ i}M

i=1 = {(i− 1) · 2.75}3
i=1, {(i− 1) · 1.1}6

i=1
or {(i−1) ·0.5}12

i=1 for M=3, 6 or 12 respectively, where M is the number of
gridpoints. Due to implementation reasons we used CR1 = CR > 1 which
(with a reduced effect for increasing M) slightly underestimates RE(T ) in (25).
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Figure 3: Illustration of the weight vector w = (w1, . . . ,w12) as function of
the threshold T for Pedigree 3 when the number of simulations and pedi-
grees are J=10000 and N=60 respectively, the grid of tilting parameters
{δ i}12

i=1 = {(i−1) ·0.5}12
i=1 and the tuning constants given in Appendix D are set

to ε=(0.001, 0.95).
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The procedure (41) gives large weights wi to small i when T is small and to
large i when T is large. This means that we successively include and remove new
α̃δ i when increasing T . With high probability new estimates α̃δ i are included and
removed in increasing δ i order. One may notice that the number of simultaneously
positive weights, for this setting, is about 6-10 (less for very small/large T s). This
corresponds to a range of δ roughly between 3 and 4.

5.3 Four Examples of Full-Scale Autosomal Investigations

To further test the simulation procedure, four pedigree sets (cf. Figure 1) are used
in a full autosomal setting, i.e. the genome region consists of all the 22 human
autosomes. We perform a split-merge analysis (Section 3.3) and the procedure is
successful i.e. we are able to get good estimates for p-values corresponding to a
wide range of thresholds (cf. Figure 4).

One may note that when using this technique it is possible to find estimates for
much smaller p-values (larger thresholds) than when using traditional unweighted
simulations. Importance sampling with J = 3000 and M = 12 leads to accurate es-
timates of p-values of magnitude less than 10−10, whereas Monte Carlo simulation
with J = 100000 leads to accurate p-value estimates down to 10−5.

6 Discussion

In this article we have discussed a method to calculate genome-wide significance
levels for arbitrary pedigree sets using importance sampling. The main strength
of the method described, compared to traditional simulation techniques, is that it
makes it possible to, given a reasonable number of simulations, accurately esti-
mate quantitatively very small p-values. Alternatively, less simulations are needed
to attain a given accuracy (i.e. variance) of the estimator. This may be important
e.g. when searching for an overall measure of significance w.r.t. a lot of different
genome scans with a large total genetic length.

We have generally assumed perfect data but have also (in Section 4) generalized
the method to incomplete marker information. One reason for assuming perfect
marker data in the simulations is the possibility to compare results to the approxi-
mation formula of Ängquist and Hössjer (2003a). The simulations for N = 60 pedi-
grees show good agreement between the two methods. (It can be shown that the
same is true also for other values of N, since the analytical method adjusts for non-
normality caused by lack of validity of the central limit theorem.) The approxima-
tion formula is faster to compute, whereas our importance sampling scheme gives
exact p-values in the limit of many simulations. Moreover, it naturally extends
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Figure 4: Significance comparisons between importance sampling with J=3000
simulations (· · · ), unweighted simulation with J=100000 simulations (–) and an
approximation formula (−−). The simulation is performed over all the 22 auto-
somes with a total chromosomal genetic length of 35.75 Morgans (Collins et al.,
1996). Additional parameters: number of pedigrees N=60, thresholds T , the grid
of tilting parameters {δ i}12

i=1 = {(i− 1) · 0.5}12
i=1 and the tuning constants, defined

in Appendix D, ε=(0.001, 0.95).
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to incomplete marker data of any kind, whereas the analytical approximation for-
mula is best suited for fully polymorphic markers with uniform marker spacing.

The importance sampling approach of Malley et al. (2002) is faster than ours,
since it is based on Gaussian process approximations, thereby avoiding the need to
simulate inheritance vectors. An advantage of our approach is that it gives unbiased
estimates of the p-value, since it does not rely on approximating the NPL score by
a Gaussian or transformed Gaussian process. It works for arbitrary combinations
of pedigree structures (even inbred ones with loops), weighting schemes and score
functions. This is true both for perfect as well as imperfect marker data, in the latter
case regardless of marker spacing and heterozygosity of markers. The method of
Malley et al. (2002) allows for finite marker spacing but requires each marker to be
fully polymorphic. Further, their algorithm depends on the fact that the covariance
function of Z is doubly exponential. This is certainly true when all families are
affected sib pairs, but not for general collections of pedigrees (Hössjer, 2003b).

Note that in some cases, e.g. when calculating a single p-value, it may be prefer-
able to choose M = 1 and use the unweighted estimate α̃δ . Although simpler, this
forces us to choose an appropriate δ . When considering a small number of thresh-
olds and a δ -grid, a linear combination of the estimates from the closest surround-
ing δ s may be used. For more details on this method, see Ängquist and Hössjer
(2003b).

7 Colophon

7.1 Programs

All calculations have been performed using MATLAB. For editing and typesetting
purposes we have used LATEX and BibTEX.
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A Verifying Sampling Algorithm for Perfect Data

Given X , let P̃X be the distribution of Z that results when applying Algorithm 2. We
will show that P̃X coincides with the definition earlier in Section 3, since this will
imply that Step 2 in Algorithm 1 can be replaced by Algorithm 2. We do this by
showing that LX(z) = dP̃X(z)/dP(z) = exp

(
δ z(X)

)
/M(δ ).

Let v(x) = {v1(x), . . . ,vN(x)} and v = {v(x); x ∈ Ω} be the collection of inheri-
tance vectors at locus x and at all loci respectively. Then

dP̃X(v)
dP(v)

=
dP̃X(v(X))
dP(v(X))

=
N

∏
i=1

exp
(

δγkSk

(
vk(X)

))
Mk(δ )

= LX(z), (26)

where z = {z(x); x ∈ Ω} is defined as in (13). In the first equality we used Step 2b,
from which it follows that dP̃X(v|v(X)) and dP(v|v(X)) have the same distribution,
and in the last equality we used M(δ ) = ∏N

k=1 Mk(δ ).
It remains to verify that the same likelihood ratio is obtained when replacing v

by z. First write z = F(v) to indicate that z is a function of v and then define the set
A = A(z) = {v; F(v) = z}. Then, it follows from (26) that

dP̃X(z) =
∫

A
dP̃X(v) =

∫
A

LX(z)dP(v) = LX(z)
∫

A
dP(v) = LX(z)dP(z), (27)

as was to be proved. The crucial step in the last equation is the constancy of
dP̃X(v)/dP(v) over A, since this implies that LX(z) can be factored out from the
integral.

B Verifying Sampling Algorithm for Imperfect Data

As noted in Step 2c1, the marker data is a function of v and the founder alleles
at all marker loci for all pedigrees. We write MD ∼ v if marker data is consistent
with v. That is, at all marker loci segregation of marker alleles is consistent with
v at the corresponding loci and for all pedigrees. The requirement MD ∼ v is less
stringent if markers have a low heterozygosity since then more segregation patterns
are possible. Define B = B(MD) by B = {v ; MD ∼ v}. Then

P̃(MD) =
∫

B
P(MD | v)dP̃(v). (28)

By Bayes’ rule, the conditional inheritance distribution of v given markers can be
written as

dP(v | MD) =
P(MD | v)dP(v)

P(MD)
. (29)
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From (16) and (26)-(27) it follows that

dP̃(v) = dP(v)

(∫
Ω

p(x)
N

∏
k=1

exp
(

δγkSk

(
vk(x)

))
dx

)
/M(δ ). (30)

Inserting these two equations into (28) and changing the order of integration we get

P̃(MD) = P(MD)

(∫
Ω

p(x)
∫

B

N

∏
k=1

exp
(

δγkSk

(
vk(x)

))
dP(v | MD)dx

)
/M(δ ).

(31)
Because of independence of marker data for different pedigrees

dP(v | MD) =
N

∏
k=1

dP(vk | MDk). (32)

Therefore, the inner integral in (31) may be written as

N

∏
k=1

∑
w

exp
(
δγkSk(w)

)
P(vk(x) = w | MDk). (33)

Combining (31), (33) and taking the likelihood ratio we obtain (22).

C Asymptotic Distribution of Z(X)

We begin with deriving an approximation of the expected NPL score at locus X un-
der the probability measure P̃ and perfect marker data. First consider the kthpedigree
only and introduce δk = δγk. Then

Ẽ
(
Zk(X)

)
= ∑

z
zP̃(Zk(X) = z) =

∑z z P(Zk(X) = z)exp(δkz)
∑z P(Zk(X) = z)exp(δkz)

=
M′

k(δ )
Mk(δ )

, (34)

where Mk(δ ) = 2−mk ∑w exp
(
δγkSk(w)

)
(cf. Algorithm 2) and the derivative is

taken with respect to δk. Now, using a Taylor expansion,

Mk(δ ) = 1+δkE
(
Zk(X)

)
+

δ 2
k

2
E

(
Zk(X)2)+o(δ 2

k ) = 1+
δ 2

k

2
+o(δ 2

k ) (35)

and (34)-(35) imply Ẽ
(
Zk(X)

)
= M′

k(δ )/Mk(δ ) = δk +o(δk) as δk → 0.
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For the total linkage score we use that ∑N
k=1 γ2

k = 1 and find

Ẽ
(
Z(X)

)
=

N

∑
k=1

γkẼ
(
Zk(X)

)
=

N

∑
k=1

γk

(
δk +o(δk)

)
= δ +o(1). (36)

as N → ∞ and max1≤k≤N γk → 0.

Further, a similar calculation shows that Ṽ
(
Z(X)

)
= 1 + o(1) under the same

conditions. Then a Central Limit Theorem argument implies, under mild regularity
conditions on the set of pedigree structures, that asymptotically

Z(X) D→ N(δ ,1), (37)

where
D→ denotes convergence in distribution under P̃.

D Computing the Weighted Estimate

To find the weights in (20) estimate C(T,δ ) through

Ĉ(T,δ ) =
J

∑
i=1

( f (Zi)/L(Zi)− α̃δ )2/J. (38)

Notice that these weights depend on T whereas all P̃ do not. Hence it is just the
weighting in (18) and the function f in (10) that depend on the threshold. Introduce

βδ (T ) = P̃(Zmax ≥ T ) (39)

for the probability that the maximum NPL score exceeds T under P̃. We interpret
βδ (T ) as the power of the test Zmax ≥ T to detect the artificial disease locus at X
under P̃. Moreover, define an estimator

β̂δ (T ) =
1
J

J

∑
i=1

I(Zmax,i ≥ T ). (40)

based on J i.i.d. maximal NPL scores {Zmax,i} under P̃.
One problem with the variance estimator is a tendency to be noisy for extreme

values of (39). To avoid this effect we define a truncation rule of the weights, given
T ,

wi ∝ Ĉ(T,δ i)−1 if ε1 ≤ β̂δ i(T ) ≤ ε2, (41)

with the complementary rule of putting the weights to 0 in all other cases, except for
the situation where no β̂δ -value satisfies the above inequalities. Then we perform
traditional (non-weighted) simulation and put w1 = 1.

The choice of ε = (ε1,ε2) is not that crucial, see Ängquist and Hössjer (2003b)
for more details.
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