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Abstract. In this paper we introduce two information criteria in linkage analysis. The setup
is a sample of families with unusually high occurrence of a certain inheritable disease. Given
phenotypes from all families, the two criteria measure the amount of information inherent in
the sample for 1) testing existence of a disease locus harbouring a disease gene somewhere
along a chromosome or 2) estimating the position of the disease locus.

Both criteria have natural interpretations in terms of effective number of meioses pres-
ent in the sample. Thereby they generalize classical performance measures directly counting
number of informative meioses.

Our approach is conditional on observed phenotypes and we assume perfect marker
data. We analyze two extreme cases of complete and weak penetrance models in partic-
ular detail. Some consequences of our work for sampling of pedigrees are discussed. For
instance, a large sibship family with extreme phenotypes is very informative for linkage for
weak penetrance models, more informative than a number of small families of the same total
size.

1. Introduction

The purpose of statistical linkage analysis is to map the location of gene(s) causing
or increasing susceptibility to a certain disease or trait based on phenotype and DNA
data from a number of pedigrees with occurrence of the disease. The technique is
almost hundred years old and based on Morgan’s discovery of crossovers during
formation of germ cells. An overview of linkage analysis can be found in the books
of Sham (1998) and Ott (1999).

DNA data is collected by typing as many family members as possible for genetic
markers, which are DNA segments of known position along the genome, prefera-
bly highly polymorphic. Historically, the available genetic markers were few, and
linkage analysis was carried out as a sequence of two-point comparisons between
the disease locus and one marker locus at a time. The recombination parameter
between the marker and disease locus is the unknown parameter of interest for
two-point linkage analysis, with possible extra nuisance parameters (disease allele
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frequencies, penetrance parameters) from the genetic model. In parametric link-
age analysis, all nuisance parameters are known, whereas the opposite is true in
nonparametric linkage. Multipoint linkage analysis is concerned with simultaneous
analysis of the trait locus together with a number (>1) of marker loci. In this case the
order and distances between the markers become important, and there is no longer
a single recombination parameter from any of the marker loci that could serve as
linkage parameter. Instead, the map distance along the chromosome is used for this
purpose.

It is important, for sampling and planning of linkage studies, that accurate mea-
sures of informativity are found for a single pedigree. In general, such a measure
will depend on the pedigree structure, the genetic model (known or not) and possi-
bly also on marker informativity and information on which pedigree members that
are genotyped. It could be either conditional on observed phenotypes or uncondi-
tional. In the latter case, a sampling distribution for pedigrees must be known, and
this introduces additional complication into model building (see e.g. Dudoit and
Speed, 2000).

The statistical theory of two-point linkage analysis is well developed. The direct
method is the classical procedure based on directly counting recombinant and non-
recombinant meioses. If k out of m meioses are recombinant, k/m is an estimate
of the recombination fraction and m may serve as the information content of data.
However, in general recombinations are not directly observed. In Chapters 4 and
5 of Ott (1999) two likelihood based information measures are outlined for para-
metric linkage analysis. The Fisher information of the recombination parameter θ
is an estimation based criterion quantifying the ability to estimate θ . The (maxi-
mum) expected linkage score (M)ELOD on the other hand is a test related criterion
based on the ability to test the null hypothesis of unlinked trait and marker loci
(θ = 0.5). Both these criteria are proportional to m in situations when the direct
method applies.

The statistical theory of multipoint linkage analysis is still under development.
The purpose of this paper is to define information bounds in multipoint linkage
analysis under the following two assumptions: i) Perfect marker data is available,
i.e. all (or sufficiently many for complete knowledge of DNA inheritance) pedigree
members are genotyped at a dense set of genetic markers. ii) The information
measures are conditional on observed phenotypes.

Under these premises, we define one test-related (I test) and one estimation-
related (I est) information criterion. It turns out that mtest = log2(I

test + 1) and
mest = I est can be interpreted as the effective number of meioses present in the
pedigree for testing and estimation respectively. The effective number of meioses
are added over families and provide a natural unified information framework for
different kinds of genetic models.

We consider two extreme cases of penetrance models in particular detail: Com-
plete and weak penetrance models. For complete penetrance models, the amount
of testing or estimation information is roughly proportional to pedigree size. For
weak penetrance models (the case of most interest in human genetics for complex
diseases), the testing/estimation information is roughly proportional to squared
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pedigree size. However, close relationships (mostly sibs) and extreme phenotypes
are much more informative than distant relationships and non-extreme phenotypes.

The derivation of I test is based on the common assumption in nonparametric
linkage to standardize family scores to have zero mean and unit variance at loci
unlinked to the trait locus. Such scores have distinct advantages over lod scores in
having a clear connection to p-values (Kurbasic and Hössjer, 2003). We use the
noncentrality parameter (Feingold et al. (1993)), a criterion closely related to power
but mathematically more convenient. Recent results of Hössjer (2003c, 2003e), are
employed, where the noncentrality parameter for weak genetic models is derived.
The derivation of I est is based on results in Hössjer (2003a,b), where estimation
accuracy under perfect marker information is analyzed. Both information bounds
are defined for arbitrary pedigree structures and genetic models.

The paper is organized as follows: In Sections 2 and 3 we introduce the informa-
tion bounds I test and I est for one and N pedigrees. We also derive their optimality
properties as information bounds. Complete and weak penetrance models are con-
sidered in Sections 4 and 5. Some extension are discussed in the last section and
finally, proofs are collected in the appendix.

2. Information Bounds for One Pedigree

Consider a pedigree with n individuals 1, . . . , n numbered so that the first f have
no ancestors (the founders) and the remaining persons have both their parents in
the pedigree (the nonfounders). For each nonfounder there are two meioses giving
rise to the maternal and paternal germ cells. Thus the total number of meioses in
the pedigree is m = 2(n − f ). Suppose we number them 1, . . . , m. The inheri-
tance vector v(t) = (v1(t), . . . , vm(t)) is a binary vector of lengthm whose j th bit
specifies the outcome (0 = grandpaternal, 1 = grandmaternal transmission) of the
j th meiosis at locus t . It was originally introduced by Donnelly (1983) and subse-
quently used in linkage analysis as a general tool for handling extended pedigrees
(Kruglyak et al., 1996).

For a chromosome of length L Morgans, allele transmission for the pedigree
is completely determined by the stochastic process V = {v(t); 0 ≤ t ≤ L}. The
purpose of genetic markers is to retain as much information as possible about V .
Under perfect marker information we assume V to be known1. According to Men-
del’s law of segregation, P(vj (t) = 0) = P(vj (t) = 1) = 0.5 for each meiosis.
If the outcomes of all meioses are independent, the a priori distribution of v(t)
becomes

P0(w) := P(v(t) = w) = 2−m (1)

for all binary vectorsw of lengthm and all loci t . Let Y = (Y1, . . . , Yn) be the col-
lection of phenotypes of the pedigree and τ the unknown position of a gene which

1 To be precise, the phase of the founders is usually not known. In this case, V is not
known even for perfect marker data (Kruglyak et al., 1996). However, the score functions
used in linkage analysis are usually invariant w.r.t. this uncertainty. Therefore, it is no loss
of generality to assume that V is known.
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causes or increases susceptibility to the disease. Knowledge of Y gives information
about v = v(τ), so that the aposteriori distribution

P1(w) := P(v = w|Y ) = 2−mP (Y |v = w)/P (Y ) (2)

differs from the prior P0. We refer to P1 as the conditional inheritance distribution.
It is of crucial importance in linkage analysis, see Dudoit and Speed (2000) and
Hössjer (2003e) for a detailed discussion. The factor P(Y |v) in (2) depends on
genetic model parameters. Let Gk = (a2k−1a2k) be the genotype of the kth indi-
vidual at the disease locus, with a2k−1 and a2k the alleles received from the father
and mother respectively. WithG = (G1, . . . ,Gn) the collection of genotypes and
a = (a1, . . . , a2f ) the founder alleles, we have

P(Y |v) =
∑

G

P (Y |G)P (G|v) =
∑

a

P (Y |a, v)P (a). (3)

We used the fact that G is uniquely determined by a and v, since v specifies how
founder alleles are transmitted to all nonfounders. Further, we assumed indepen-
dence of a and v (no segregation distortion).

The genetic model consists of disease allele frequencies and penetrance parame-
ters. The former enter into P(a) and the latter into P(Y |a, v) = P(Y |G). Suppose
there are M possible alleles 0, . . . ,M − 1 at the disease locus with pi the fre-
quency (probability) of the i th allele. Under random mating all founder alleles are
independent and

P(a) =
2f∏

k=1

pak . (4)

Since a is an ordered vector of founder alleles, no factors 2 are needed for hetero-
zygous founders.

Example 1 (Complete penetrance.). When genotypes can be determined unambig-
uously from phenotypes we have complete penetrance and put Y = G. The pen-
etrance factor P(Y |G) is then one if Y = G and zero if Y = G′ for any other
genotype configuration G′. ��
Example 2 (Binary phenotypes.). Binary phenotypes are usually encoded as ‘1 =
affected’ and ‘0 = unaffected’. For a single individual, the affection probability
P(Yk = 1|Gk) is a function of (a2k−1a2k), with the order of a2k−1 and a2k unim-
portant. Hence there are M(M + 1)/2 affection probabilities. When M = 2 we
usually interpret the two alleles as ‘normal’ (allele 0) and ‘disease causing’ (allele
1). Then the penetrance parameters are

ψ = (ψ0, ψ1, ψ2)

where ψj is the affection probability for an individual with j disease alleles. If
|Gk| = a2k−1 + a2k is the number of disease alleles of Gk , the penetrance factor
for individual k becomes

P(Yk|Gk) = ψ
Yk
|Gk |(1 − ψ|Gk |)

1−Yk .
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The penetrance factor for the whole pedigree is

P(Y |G) =
n∏

k=1

P(Yk|Gk)

if phenotypes are conditionally independent given genotypes. This is the case if
there are no other genes contributing to the disease and no shared environmental
components among the pedigree members. ��

Example 3 (Gaussian phenotypes.). When each individual k has a continuous phe-
notypeP(Y |G) is a density in (3). It is common to model the phenotypes as normally
distributed. Assume M = 2 alleles with 0 the normal and 1 the disease allele. Put
Yk|Gk ∈ N(m|Gk |, σ 2). Herem0,m1 andm2 are the mean phenotype values for an
individual with 0, 1 and 2 disease alleles and the residual variance σ 2 is caused by
polygenic and/or environmental effects. In vector form we have

Y |G ∈ N(µ, σ 2C), (5)

where µ = (m|G1|, . . . , m|Gn|) and C is an n× n correlation matrix.
If there are no shared environmental effects then

C = (1 − h2
a − h2

d)I + h2
aR + h2

d�, (6)

where I is an n×n identity matrix and h2
a and h2

d are polygenic heritabilities (i.e. the
fraction of σ 2 due to additive and dominance effects). The n×nmatricesR = (rkl)

and � = (δkl) are defined as follows: Let IBDkl(w) be the number of alleles that
k and l share identical by descent, i.e. from the same founder alleles, if w is the
inheritance vector. Then rkl = E0(IBDkl(w)/2) and δkl = P0(IBDkl(w) = 2) is
the fraction of alleles that k and l share on average (coefficient of relationship) and
the probability that they share both alleles IBD respectively when w ∼ P0.

The penetrance parameters of the Gaussian model (5)–(6) are

ψ = (m0,m1,m2, σ
2, h2

a, h
2
d).

See Fisher (1918), Kempthorne (1955) and Lynch and Walsh (1998) for more
details. ��

For one pedigree, the information bounds I test and I est are defined as functions
of the prior and posterior distributionsP0 andP1. The first one is a distance measure
between P1 and P0 defined as

I test =
∑

w

(P1(w)− P0(w))
2

P0(w)
= 2m

∑

w

P 2
1 (w)− 1

= E0

(
P1(w)

P0(w)
− 1

)2

, (7)
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Fig. 1. Four pedigrees used in simulations, upper left (1), upper right (2), middle (3) and
lower (4). Males and females are depicted as squares and circles. Affected individuals have
black and unaffected ones have white symbols. Individuals with unknown phenotypes have
question marks.

where E0 denotes expectation under P0. The sum ranges over Z
m
2 , the space of

all binary vectors of length m, which is a group under component-wise modulo 2
addition. The second quantity measures the non-uniformity of P1 as

I est =
∑

w∼w′

(P1(w
′)− P1(w))

2

P1(w)+ P1(w′)
, (8)

where the sum ranges over all m · 2m−1 (unordered) pairs w,w′ ∈ Z
m
2 which are

neighbours (w ∼ w′), i.e. differ at exactly one bit. We use the convention 0/0 = 0
in (8).

Figure 1 depicts binary phenotypes for four pedigrees of various size. The
phenotypes of the first three show a clear autosomal dominant inheritance pattern
whereas the last one corresponds to an autosomal recessive disease. See also page
39 of Haines and Paricak-Vance (1998). In Figures 2 and 3, log2(I

test + 1) and
I est are plotted as function of disease allele frequency p1 for various penetrance
models. It is seen that presence of phenocopies (ψ0 > 0) reduces informativity of
pedigrees a lot, especially for small p1. In most cases informativity increases as p1
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Fig. 2. Effective numbermtest = log2(I
test +1) of meioses for testing as function of disease

allele frequencyp1. The pedigrees, with binary phenotypes, are given in Figure 1. For the first
three pedigrees the penetrance parametersψ correspond to a dominant trait; (0, 1, 1) (solid),
(0.02, 1, 1) (dotted) and (0.1, 1, 1) (dashed). The fourth pedigree has recessive penetrance
parameters; (0, 0, 1) (solid), (0.02, 0.02, 1) (dotted) and (0.1, 0.1, 1) (dashed).

gets small. The reason is that phenotypes give more information about genotypes
as p1 decreases.

3. Information Bounds for N pedigrees

Assume we have phenotype and marker data from N pedigrees. Let mi , Yi , vi(t),
P0i and P1i denote number of meioses, phenotype vector, inheritance vector at
locus t , prior and posterior distributions (1) and (2) for the i th pedigree. Let Y =
(Y1, . . . , YN), v(t) = (v1(t), . . . , vN(t)), v = v(τ ) and w = (w1, . . . , wN).
Assuming independent phenotype and marker data between pedigrees we get

P0(w) := P0(v(t) = w) = ∏N
i=1 P0i (wi) = 2−m,

P1(w) := P1(v = w|Y ) = ∏N
i=1 P1i (wi),

where m = ∑N
i=1mi is the total number of meioses and P0i and P1i the distribu-

tions (1) and (2) for the i th pedigree. The information bounds for N pedigrees are
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Fig. 3. Effective number mest = I est of meioses for estimation as function of disease allele
frequency p1. For details on pedigrees and penetrance parameters, see Figures 1 and 2.

natural generalizations of (7) and (8), given by

I test =
∑

w

(P1(w)− P0(w))
2

P0(w)
= 2m

∑

w

P 2
1 (w)− 1. (9)

and

I est =
∑

w∼w′

(P1(w
′)− P1(w))

2

P1(w)+ P1(w′)
, (10)

respectively. Here w ∼ w′ means that the two vectors w and w′ of lengthm differ
at exactly one bit, i.e. wi ∼ w′

i some i ∈ {1, . . . , N} and wi = w′
i for all other i.

The following result can now be deduced:

Lemma 1. The information bounds I test and I est in (9) and (10) are given by

I test =
N∏

i=1

(1 + I test
i )− 1

and

I est =
N∑

i=1

I est
i
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respectively, where I test
i and I est

i are information bounds for the i th pedigree, ob-
tained by replacing P0 and P1 by P0i and P1i in (7) and (8).

We will now motivate the relevance of I test and I est for linkage analysis. Let
S : Z

m
2 → R be a score function, with large values of S(w) = S(w; Y ) indicating

high compatibility between Y and the inheritance vector w. We assume that S has
been centered so that E0(S(v(t))) = 2−m∑

w S(w) = 0. Then, under perfect
marker information, a linkage score for all families at locus t is

Z(t) = S(v(t))/σ0, (11)

where σ 2
0 = V0(S(v(t))) = 2−m∑

w S
2(w) and V0 denotes variance under P0.

Notice that Z(t) is defined conditionally on observed phenotypes. The random
variation of Z(t) comes solely from marker data v(t). A special case of (11) is

Z(t) =
N∑

i=1

γiZi(t), (12)

i.e. the total linkage score Z(t) is a linear combination of family scores Zi(t) =
Si(vi(t))/σ0i , cf. Kruglyak et al. (1996). The weights γi satisfy the constraint∑N
i=1 γ

2
i = 1 and Si(wi) = Si(wi;Yi) is a score function for the i th pedigree.

We assume that Si is centered so that E0(Si(v(t)) = 0 and σ 2
0i = V0(S(vi(t))).

Suppose we wish to test
H0 : τ /∈ �,
H1 : τ ∈ �,

where � is a region, consisting of one or several chromosomes. Since allele trans-
missions at unlinked loci are independent it follows that underH0, v(t)|Y ∼ P0 at
all t ∈ �. Because of the definition ofSwe thus haveE(Z(t)) = 0 andV (Z(t)) = 1
under H0 and perfect marker information.

As test statistic we use
Zmax = sup

t∈�
Z(t),

and H0 is rejected as soon as Zmax exceeds a given threshold T . As performance
criterion we might use the power β = P(Zmax ≥ T |H1). It depends on the chosen
threshold T and the size of �. Another criterion (Feingold et al., 1993), which is
independent of these quantities, is the noncentrality parameter

NCP = E(Z(τ)).

It is the maximal value of E(Z(t)) attained at τ . When β is viewed as a func-
tion of the significance level α = P(Zmax ≥ T |H0) (rather than the threshold T ),
it is essentially determined by NCP, at least when N is so large that Z is well
approximated by a Gaussian process (Hössjer, 2003d). For data sets with a few
large pedigrees, skewness of Z(t) under H0 may sometimes increase T compared
to values suggested by a Gaussian process approximation. This decreases β and
makes NCP somewhat less accurate as surrogate for power.

The following result gives upper bounds for NCP and I test:
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Proposition 1. With a general score function (11), the maximum possible noncen-
trality parameter is

sup
S

NCP =
√
I test, (13)

and the maximum is attained for S ∝ P1 −P0. Restricting ourselves to linear score
functions (12), the maximal noncentrality parameter is

sup
{Si },{γi }

NCP =
√√√√

N∑

i=1

I test
i , (14)

and the maximum is attained for Si ∝ P1i − P0i and weights γi ∝ NCPi =
E(Zi(τ )).

It follows from Lemma 1 that the right hand side of (13) is strictly larger than
(14) if I test

i >0 for at least two i. The difference can be notable for complete pene-
trance models (Section 4) but is small for weak penetrance models (Section 5).

GivenH1, it is of interest to locate the position of τ as well as possible. It turns
out that I est is closely related to the size of confidence regions. Such a confidence
region can be defined e.g. as

�̃ = {t; Zmax − Z(t) ≤ T̃ }
for some threshold T̃ controlling the coverage probabilityP(τ ∈ �̃), see Siegmund
(1986) and Kruglyak and Lander (1995). It turns out that asymptotically for large
samples N , it is the local behaviour of Z(·) around τ that determines the length
of the confidence region. It is shown in Hössjer (2003a) that constants a, σ 2 > 0
exists such that

E(Z(τ)− Z(t)) = a|t − τ | + o(|t − τ |),
V (Z(τ)− Z(t)) = σ 2|t − τ | + o(|t − τ |) (15)

as t → τ . We refer to a as the mean slope and σ 2 as the diffusion coefficient at the
disease locus. The slope-to-noise ratio is defined as

SLNR = a2/σ 2. (16)

It is shown in Hössjer (2003b) that the expected length of the confidence region
depends (essentially) on the coverage probability and SLNR−1. For instance, a
95% (50%) confidence region has asymptotically expected length 3.11 · SLNR−1

(0.63 · SLNR−1) Morgans for weak genetic models as N → ∞. For this reason, it
is of interest to find an upper bound for SLNR.

Proposition 2. Upper bounds for the slope-to-noise ratio are

sup
{Si },{γi }

SLNR =
N∑

i=1

sup
{Si }

SLNRi ≤ sup
S

SLNR ≤ I est, (17)
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Table 1. Values of supSi SLNRi and I est
i for various genetic models and phenotype com-

binations. The parent’s phenotypes are unknown and the listed phenotypes are those of the
sibs.

Model Pedigree p1 ψ Phenotypes supSi SLNRi I est
i

Binary Sib pair 0.01 (0,0,1) (1,1) 3.8432 3.8432
0.5 0.4444 0.4444
0.01 (0,1,1) 1.2024 1.2024
0.5 0.0229 0.0229

Sib quartet 0.01 (0,0,1) (0,0,0,1) 3.4013 3.4013
0.5 3.1621 3.2000
0.01 (0,1,1) (0,0,1,1) 3.6551 3.6620
0.5 3.7362 3.7653

Gaussian Sib pair 0.01 (0,1,2,1,0,0) (2,2) 0.0090 0.0090
0.5 0.0144 0.0144

Sib quartet 0.01 (-2,-2,2,2) 0.0129 0.0129
0.5 1.5247 1.5296

where the first supremum is for linkage scores (12) and the second for general link-
age scores (11). In the former case, the optimal weighting scheme is γi ∝ a2

i /σ
2
i

and SLNRi = a2
i /σ

2
i is the slope-to-noise ratio (16) for the i th pedigree. Here ai

and σ 2
i are the mean slopes and diffusion coefficients obtained by replacing Z(·)

with Zi(·) in (15).

It turns out that supSi SLNRi and I est
i are very close, see Table 1 for some exam-

ples2. This indicates that the left and right hand sides of (17) are very close. There-
fore, it is no essential restriction for estimation purposes to consider the reduced
class of linkage scores (12).

It is clear from (15) that SLNR = a2/σ 2 depends on fluctuations ofZ(·), caused
by crossovers in close vicinity of τ . In the appendix, explicit formulas for a and σ 2

are given in (A.1). Equivalent formulations are a = m ·E1(S(w)−S(w′))/σ0 and
σ 2 = m ·E1((S(w

′)− S(w))2)/σ 2
0 , where w has distribution P1 and given w, w′

is uniformly distributed on all m neighbours w′ ∼ w that result when a crossover
occurs in w. Hence, for a standardized score function S with σ 2

0 = 1, a and σ 2 are
the intensity of crossovers m times the average increment and the average squared
increment respectively of S caused by one crossover w → w′ under H1. In the
upper bound I est of a2/σ 2 in formula (10), each of the m · 2m−1 possible pairs
w ∼ w′ in the sum corresponds to two crossovers, either w → w′ or w′ → w.

4. Complete Penetrance Models

In this section we derive formulas for I test and I est under the complete penetrance
model of Example 1. To begin with, we consider one pedigree and omit family
index i.

2 In fact, supSi SLNRi was used as definition of information in Hössjer (2003a). However,
we prefer to use I est

i here because this quantity has a simpler and more easily interpretable
expression.
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Let A and B be the sets of individuals k that are homozygotes (a2k−1 = a2k) and
heterozygotes with unknown phase (a2k−1 �= a2k but the parental origin of a2k−1
and a2k is unknown) respectively. For each k we also let Park and Offk denote the
set of parents and offspring of k that belong to the pedigree. Notice that either Park
or Offk may be empty. For instance, Park = ∅ when k is founder. Then define the
set

C =




∑

k∈A

∑

j∈Offk

αkj1j +
∑

k∈B
αk1Park∪Offk , αk, αkj ∈ {0, 1}




 , (18)

where addition is component-wise modulo 2, 1A is a vector with ones in positions
A ⊂ {1, . . . , m} and zeros elsewhere and 1j is short for 1{j}. In other words, C is
the linear span, in Z

m
2 , of all vectors 1j and 1Park∪Offk appearing in (18).

Theorem 1. Consider one pedigree. Assume random mating (4) and that the geno-
type vectorG is consistent with Mendelian inheritance, i.e. there is at least one pair
(a, v) such thatG is obtained when the founder alleles a are segregated according
to v ((a, v) → G).Then

P1(w) = |C|−11{w∈w0+C} (19)

for some coset w0 + C = {w0 + w; w ∈ C} depending on G.

Given the expression (19) for P1, we can easily plug it into (7) and (8) and derive
the following formulas for I test and I est:

Corollary 1. Under the assumptions of Theorem 1 we have

I test = 2m
test − 1, (20)

where mtest = m− dim(C) and dim(C) is the dimension of C. Further,

I est = mest, (21)

where mest is the number of inheritance vectors w ∼ 0 such that w /∈ C.

We interpret mtest and mest as the effective number of meioses in the pedigree
for testing and estimation respectively.

Example 4 (Fully polymorphic disease locus.) The disease gene is fully polymor-
phic for a pedigree if all founder alleles a1, . . . , a2f are distinct. This event occurs
with probability one in the limit of a large number of disease alleles, each having
small probability (M → ∞, max0≤i≤M−1 pi → 0). For a pedigree without loops
this means that all individuals are heterozygous. It is shown in the appendix that

mtest = m− f, mest = m− f ′ (22)

if the phases of all founder genotypes are unknown. Here f ′ is the number of
founders with precisely one offspring. The formula for mtest agrees with the foun-
der phase symmetry reduced number of meioses used in multipoint linkage analysis.
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See Kruglyak et al. (1996) for details. If the phase of all founders is known (this
requires allelic information from previous generations) one has

mtest = mest = m. (23)

��
Example 5 (Backcross.) Consider a nuclear family with noff offspring. The father is
heterozygous (01) and the mother homozygous (00). We assume that nhet offspring
are heterozygous (01) and the remaining noff − nhet offspring homozygous (00). It
is shown in the appendix that

mtest = mest = noff (24)

and

mtest = noff − 1, mest = noff1{noff>1} (25)

if the father has known and unknown phase respectively. ��
Example 6 (Intercross.) In the previous example, assume instead that both the father
and mother are heterozygous (01) and nhet offspring are heterozygous (01). The
remaining noff − nhet homozygous offspring can have two genotypes, either (00)
or (11). It is shown in the appendix that

mtest = 2noff − nhet, mest = 2noff (26)

and

mtest = 2noff − nhet − 2 + 1{nhet=noff}, mest = 2noff1{noff>1} (27)

if the parents have known and unknown phase respectively. ��
We end this section by considering N pedigrees. Lemma 1 and Corollary 1

suggest that the effective number of meioses for testing and estimation should be
defined as

mtest = log2(I
test + 1) = m+ log2

(
∑

w

P 2
1 (w)

)

mest = I est (28)

for general genetic models, not necessarily those with complete penetrance. By
combining Corollary 1 with Lemma 1, we immediately get:

Corollary 2. The effective number of meioses (28) for testing and estimation are
added over families, i.e. mtest = ∑N

i=1m
test
i and mest = ∑N

i=1m
est
i . Here mtest

i =
log2(I

test
i + 1) and mest

i = I est
i are the effective number of meioses for testing and

estimation in the i th pedigree. These are always non-negative integers for complete
penetrance models.



Information and effective number of meioses in linkage analysis 221

Notice that mtest and mest tend to integer values as p1 → 0 for the domi-
nant models of pedigrees 1–3 when there are no phenocopies (ψ = (0, 1, 1)).
The reason is that p1 → 0 corresponds to a complete penetrance model with
Yk = 0 ⇒ Gk = (00) and and Yk = 1 ⇒ Gk = (01). This is not the case for the
recessive modelψ = (0, 0, 1)without phenocopies in pedigree 4. In this case, when
p1 → 0, Yk = 0 implies eitherGk = (00) or (01) for the three unaffected children
of the last generation. Further, it is not certain which of the two grandparents in the
first generation that carries the disease allele.

5. Weak Penetrance Models

As in the previous section we first consider one fix pedigree and drop index i.
The genetic model consists of disease allele frequencies p = (p0, . . . , pM−1) and
penetrance parameters ψ . The stronger the genetic model, the more information Y
carries about v = v(τ). As a result, the distribution P1 is less uniform.

In this section we let the penetrance parameters ψ = ψε depend on the scalar
ε. When ε = 0 there is no genetic effect at τ , meaning that P(Y |a, v) = P(Y ) is
independent of a and v in (3) andP1 = P0. The larger ε is, the stronger is the genetic
component and the more P1 departs from P0. By essentially Taylor expanding (3)
with respect to ε around ε = 0, it has been shown (McPeek, 1999, Hössjer, 2003c,
2003e) that

P1(w) = 2−m(1 + ερSopt(w))+ o(ερ) (29)

as ε → 0 for some positive integer ρ and score function Sopt. It turns out that Sopt

is a locally optimal score function for small ε in terms of maximizing both NCP
and SLNR (Hössjer, 2003a). For pedigrees without loops (outbred pedigrees) one
has ρ = 2 and

Sopt(w) =
∑

k<l

ωklSkl(w), (30)

for many genetic models. The sum in (30) ranges over all pairs of individuals with
known phenotype. Here

Skl(w) = (1 − c) · (IBDkl(w)/2 − rkl)+ c · (1{IBDkl (w)=2} − δkl) (31)

and c is the fraction of genetic variance at the main locus τ due to dominance
effects. The weights ωkl depend on phenotypes and genetic model parameters.
McPeek (1999) derived (30) for binary phenotypes and Hössjer (2003c, 2003e) for
general genetic models.

Example 7 (Gaussian phenotypes.). Continuing Example 3, let m∗
0, m∗

1 and m∗
2 be

the first three penetrance parameters of a fixed reference model. Thenm = E(Yk) =
p2

0m
∗
0+2p0p1m

∗
1+p2

1m
∗
2 is the phenotype mean andσ 2

g = Var(m∗
|Gk |) = E(m∗

|Gk |−
m)2 the genetic variance at τ . Consider a family {ψε}ε≥0 of genetic models

ψε = (m,m,m, σ 2, h2
a, h

2
d)+ ε(σ/σg)(m

∗
0

−m,m∗
1 −m,m∗

2 −m, 0, 0, 0). (32)
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Notice that the phenotype mean is m for all ε. When ε grows, only the first three
parameters are changed, starting from a model with no genetic effects at ε = 0
and going in direction towards the reference model. The main locus heritability
h2 = Var(m|Gk |)/Var(Yk) = ε2σ 2/(ε2σ 2 + σ 2) = ε2/(1 + ε2) gives a natural
interpretation of ε. Let r = (Y − m)/σ = (r1, . . . , rn) be the vector of standard-
ized residuals. Then (30) holds with

ωkl = (rC−1)k(rC
−1)l − C−1

kl

h2
a=h2

d=0= rkrl, (33)

where C−1
kl is the (k, l)th entry of the inverse correlation matrix in (6). See

Commenges (1994) in the special case of no polygenic effects and
Tang and Siegmund (2001) and Hössjer (2003c) for the general case. The refer-
ence model’s genetic variance at τ can be split into additive and dominance com-
ponents, σ 2

g = σ 2
a + σ 2

d . Here σ 2
a = 2p0p1(p1(m

∗
2 − m∗

1) + p0(m
∗
1 − m∗

0))
2,

σ 2
d = (p0p1)

2(m∗
2 − 2m∗

1 +m∗
0)

2 and c = σ 2
d /σ

2
g in (31).

Figures 4–5 displaymtest andmest for a trajectory (32) of penetrance parameters
as function of main locus heritability. It is seen that the number of sibs, the phe-
notypes, and the amount of polygenic variance all influence mtest and mest greatly.
This will be further discussed later on in this section. ��

Example 8 (Binary phenotypes.) In Example 2, let ψ∗
0 , ψ∗

1 and ψ∗
2 be the pene-

trance parameters of a fixed reference model with prevalence Kp = P(Yk = 1) =
(1 − p0)

2ψ∗
0 + 2p0p1ψ

∗
1 + p2

1ψ
∗
2 . Then introduce the family of genetic models

{ψε}0≤ε≤εmax by

ψε = (Kp,Kp,Kp)+ ε(Kp/σg)(ψ
∗
0 −Kp,ψ

∗
1 −Kp,ψ

∗
2 −Kp),

where σ 2
g = Var(ψ∗

|Gk |) = E(ψ∗
|Gk | −Kp)

2 is the genetic variance at τ . The upper
bound εmax guarantees that all components of ψε are probabilities. The prevalence
is Kp for all ε and the genetic component grows with ε so that the relative risk
ratio P(Yk = 1|Yl = 1)/P (Yk = 1) of a monozygotic twin pair (k, l) is 1 + ε2, cf.
Risch (1990a). In this case (30) holds with

ωkl = (Yk −Kp)(Yl −Kp)/(1 −Kp)
2, (34)

see McPeek (1999).As for Gaussian phenotypes, the genetic varianceσ 2
g = σ 2

a +σ 2
d

at τ can be split into additive and dominance components. Hereσ 2
a = 2p0p1(p1(ψ

∗
2 −

ψ∗
1 )+ p0(ψ

∗
1 − ψ∗

0 ))
2, σ 2

d = (p0p1)
2(ψ∗

2 − 2ψ∗
1 + ψ∗

0 )
2 and c = σ 2

d /σ
2
g in (31).

��

By inserting (30) into (29), we get the following result:

Proposition 3. Consider one pedigree. Assume a weak penetrance expansion (29)
with ρ = 2 and Sopt as in (30). Then

I test = ω�testω′ · ε4 + o(ε4) (35)
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Fig. 4. Effective number mtest = log2(I
test + 1) of meioses for testing as function of main

locus heritability h2 = σ 2
g /(σ

2
g + σ 2). The reference model is Gaussian with no dominant

polygenic effects (h2
d = 0). At the main locus, it’s disease allele frequency p1 = 0.1 and it’s

penetrance parameters are m∗
0 = 0, m∗

1 = 1, m∗
2 = 2 and σ = 1. Hence m = E(Yk) = 0.2.

The parents have unknown phenotypes and the children in the sib pair family have phe-
notypes (2.2,2.2) (solid), (-1.8 2.2) (dotted) and (0.2,2.2) (dashed). The children in the
sib quartet family have phenotypes (2.2,2.2,2.2,2.2) (solid), (-1.8,-1.8,2.2,2.2) (dotted) and
(-1.8,0.2,0.2,2.2) (dashed).

and

I est = ω�estω′ · ε4 + o(ε4) (36)

as ε → 0. Here ω = (ωkl; k < l) is a row vector with indexes ranging over all
pairs of individuals with known phenotype. Further, �test = (�test

kl,k′l′) and �est =
(�est

kl,k′l′) are matrices with entries

�test
kl,k′l′ = 2−m∑

w

Skl(w)Sk′l′(w)

and
�est
kl,k′l′ = 2−m−1

∑

w∼w′
(Skl(w

′)− Skl(w))(Sk′l′(w
′)− Sk′l′(w))

respectively.



224 O. Hössjer

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Sib pair: h
a
2=0

Heritability h2

m
es

t 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Sib pair: h
a
2=0.5

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

Sib quartet: h
a
2=0

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

Sib quartet: h
a
2=0.5

Fig. 5. Effective number mest = I est of meioses for estimation as function of main locus
heritability h2 = σ 2

g /(σ
2
g + σ 2). See Figure 4 for more details.

An expression for ω�testω′ appears in Tang and Siegmund (2001) for Gaussian
phenotypes in the special case c = 0. In general, the phenotypes enter into (35)
and (36) only through ω. The pedigree structure, on the other hand, enter into the
matrices �test and �est. Table 2 shows values of the diagonal elements �test

kl,kl and
�est
kl,kl for various relative pairs (k, l). It is seen that these decrease rapidly with

distance of relationship.
In most cases, at least some nondiagonal entries of �test and �est are nonzero.

An important exception, however, occurs for a nuclear family with 2 parents and
noff = n− 2 children. Then�test

kl,kl = �est
kl,kl = 0 if a least one of k and l is a parent.

Therefore, it suffices to consider sib pairs (k, l). It can be shown that�test and�est

are proportional to identity matrices of order noff(noff − 1)/2, with diagonal entries
taken from Table 2. Plugging this into (35)–(36) we get

ω�testω′ = (0.125 + 0.0625 · c2)
∑

k<l

ω2
kl,

ω�estω′ = (0.25 + 0.25 · c2)
∑

k<l

ω2
kl, (37)

where the sums range over all noff(noff − 1)/2 sib pairs (k, l). Hence the amount of
testing and estimation information depends only on the dominance ratio c and the
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Table 2. Values of �test
kl,kl and �est

kl,kl for various pairs of relatives (k, l) as function of the
fraction c of dominance variance at the main locus.

(k, l) rkl δkl �test
kl,kl �est

kl,kl

Parent-offspring 0.5 0 0 0
Sibs 0.5 0.25 0.125 + 0.0625 · c2 0.25 + 0.25 · c2

Grandp-grandch 0.25 0 0.0625 · (1 − c)2 0.0625 · (1 − c)2

Uncle-nephew 0.25 0 0.0625 · (1 − c)2 0.15625 · (1 − c)2

First cousins 0.125 0 0.0469 · (1 − c)2 0.125 · (1 − c)2

Second cousins 0.03125 0 0.0146 · (1 − c)2 0.046875 · (1 − c)2

Double first cousins 0.25 0.0625 0.0562 + 0.0441 ·
(c − 0.8)2

0.1875 + 0.25 ·
(c − 0.5)2

sum
∑
k<l ω

2
kl for sibling families and weak penetrance models. An informative

sib pair is one with large ω2
kl . For instance, this confirms the well known fact that

affected sib pairs are most informative for binary traits when p1 andKp are small,
cf. (34) and Risch (1990b). For Gaussian phenotypes, it follows from (33) that con-
cordant (both Yk and Yl large) or discordant (Yk large, Yl small or vice versa) sib
pairs are the most informative ones. The larger the residual correlation is because
of additive/dominant polygenic variance, the more informative are discordant sib
pairs in relation to concordant ones. See Figures 4–5 and Risch and Zhang (1995).

We close this section by considering N pedigrees. The following result can
easily be deduced from Lemma 1 and Proposition 3:

Corollary 3. The conclusions of Proposition 3 remain valid for N pedigrees, pro-
vided the quadratic forms in (35) and (36) are replaced by

∑N
i=1 ωi�

test
i ω′

i and∑N
i=1 ωi�

est
i ω

′
i respectively. Here ωi , �test

i and �est
i are the values of ω, �test and

�est for the i th pedigree.

6. Conclusions

In this paper, we have introduced two information measures, I test and I est. We have
motivated their usefulness for testing presence or estimating location of a disease
locus in linkage analysis. Both criteria have natural interpretations in terms of effec-
tive number of meioses for testing and estimation, thereby naturally generalizing
the direct method based on fully informative meiotic events. Particular attention
has been paid to complete and weak penetrance models.

An alternative performance criterion for testing is expected lod score. The clas-
sical lod score corresponds to a score function

S(w) = log10(P1(w)/P0(w)).

In our framework of perfect marker data and conditioning on phenotypes, the con-
ditional expected lod score at locus t is defined as CELOD(t) = E1(S(v(t))).
It’s maximum is attained at τ = t (see Hössjer, 2003a), which is the maximum
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conditional lod score

MCELOD = CELOD(τ ) =
∑

w

log10(P1(w)/P0(w))P1(w). (38)

This criterion is essentially the Kullback-Leibler distance between P0 and P1 and
is closely related to log10(I

test + 1) = mtest/ log2(10). Therefore, an alternative
definition of effective number of meioses for testing is

m̃test = log2(10) · MCELOD. (39)

This criterion is also added over families, and it is easy to see that mtest and m̃test

are equivalent for complete penetrance models and in the limit ε → 0 for weak
penetrance models they differ by a factor log2(e). The reason why we have used
NPL scores rather than lod scores is the formers closer relationship to p-values
(Kurbasic and Hössjer, 2003).

It is interesting to note the relationship between I est and I test with Fisher infor-
mation. Firstly, I est resembles a Fisher information with an m-dimensional ‘score
vector’ {(P1(w + 1j ) − P1(w))/(P1(w + 1j ) + P1(w))}mj=1 at w. Secondly, the

proportionality constant I = ω�testω′ in I test = Iε4 + o(ε4) can be interpreted as
a Fisher information for estimating the ‘genetic model strength parameter’ ε = ε2

at ε = 0, cf. Hössjer (2003c).
One consequence of this work is sampling of pedigrees. For complete pene-

trance models,mtest andmest are roughly proportional to the pedigree size (measured
in terms of number of nonfounders). Sincemest andmtest are added over families, it
is equally informative to sample one large pedigree as sampling many small pedi-
grees of the same total size. The situation is different for weak penetrance models,
then both I est and (to a good approximation) I test are added over families. Both
these quantities grow quadratically in pedigree size (measured in terms of number
of individuals with known phenotype). This suggests that one large pedigree is
more informative than many small pedigrees of the same total size. However, the
situation is not as simple as this since distant relationships are much less informa-
tive than close ones. Still, we can conclude from (37) that one nuclear family with
noff sibs is much more informative than, for instance, three nuclear families with
noff/3 sibs and similar phenotypes.

It is striking that the maximal noncentrality parameter NCP =
√

2mtest − 1 for
a correctly specified model grows so rapidly with mtest, cf. (13) and (28). Figure 6
shows that less than five fully informative meioses are sufficient for obtaining
highly significant linkage for a genomewide scan with affected sib pairs (Lander
and Kruglyak, 1995, Ängquist and Hössjer, 2003). This explains the early success
of positional cloning for diseases with a clear Mendelian inheritance pattern, i.e.
strong penetrance (Haines and Paricak-Vance, 1998). Of course, in practice the
effective number of meioses required will be larger because of unknown genetic
model and imperfect marker data.

We have definedmtest andmest conditionally on phenotypes Y for one pedigree.
By averaging this quantities over a population we get, for each pedigree, the average
number of meioses for testing and estimation in the population. For instance, the
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Fig. 6. Maximal noncentrality parameter (
√

2mtest − 1) as function of effective number of
meioses for testing (mtest). Horizontal lines are thresholds for genomewide significance for
affected sib pairs (crossover rate 2) based on 23 pairs of chromosomes of total genetic
length 33 M. They correspond to suggestive linkage (dotted), significant linkage (dashed)
and highly significant linkage (solid).

maximum expected lod score (MELOD) is obtained by averaging MCELOD in (38)
with respect to Y . In veiw of (39), log2(10) ·MELOD can be interpreted as the aver-
age effective number of meioses for testing. See Hössjer (2003a, 2003e) for more
work along this line. The conditional approach does not require specification of any
sampling distribution of Y (Winter, 1980). This is an advantage since the sampling
distribution depends on the ascertainment scheme and is typically very involved.

The results in this paper are also valid for oligogenic diseases, provided that the
other major genes are unlinked to τ . It is only the probabilityP(Y |v) in (3) that needs
to be generalized. A challenge is to derive appropriate information bounds for sev-
eral linked disease loci.Another generalization is to handle incomplete marker data.

Appendix. Proofs

Proof of Lemma 1. To prove the first part, notice that

I test = 2m
∑

w

P1(w)
2 − 1 =

N∏

i=1

2mi
∑

wi

P1i (wi)
2 − 1 =

N∏

i=1

(I test
i + 1)− 1.
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The second part follows by noticing that

(P1(w
′)− P1(w))

2

P1(w)+ P1(w′)
= (P1i (w

′
i )− P1i (wi))

2

P1i (wi)+ P1i (w
′
i )

if w ∼ w′ and differ at a bit which belongs to the i th pedigree. ��

Proof of Proposition 1. Formula (14) follows from Hössjer (2003a), but to make
the exposition self-contained we present a short proof here. First NCP =∑
i=1 γiNCPi , so the constraint

∑N
i=1 γ

2
i = 1 and Cauchy-Schwarz’s inequal-

ity imply that γi ∝ NCPi maximizes NCP given a certain set of family-wise score

functions {Si}. The maximal value is
√∑N

i=1 NCP2
i . It remains to find score func-

tions which maximize NCPi separately for each i. We introduce the inner product
(S1, S2) = 2−mi ∑

w S1(w)S2(w) for functions Z
mi
2 → R. Then

NCPi = E(Zi(τ )) =
∑
w Si(w)P1i (w)√

2−mi ∑
w S

2
i (w)

= 2mi (Si, P1i − P0i )√
(Si, Si)

.

In the last equality we used the zero sum restriction
∑
w Si(w) = 0 on Si . When

maximizing over all zero sum functions, it follows from Cauchy-Schwarz’s inequal-

ity that Si ∝ P1i − P0i gives the maximal value
√
I test
i of NCPi .

The proof of (13), finally, is analogous to the proof of maxSi NCPi =
√
I test
i . ��

Proof of Proposition 2. The slope-to-noise ratio for the total linkage score (12) is

SLNR = (
∑N
i=1 γiai)

2

∑N
i=1 γ

2
i σ

2
i

.

Given score functions {Si}, the optimal weighting scheme γi ∝ ai/σ
2
i gives the

maximal value SLNR = ∑N
i=1 SLNRi . By maximizing this expression with respect

to all {Si} we obtain the first identity of (17). See Hössjer (2003a) for more details.
The first inequality of (17) follows immediately since on the left hand side we
maximize SLNR over a smaller class of score functions (namely those that are
linear combinations of family-wise scores). Hence it remains to prove the second
inequality of (17).

Let A be the space of real-valued functions (w,w′) → R(w,w′) defined for all
m2m−1 (unordered) pairs w,w′ ∈ Z

m
2 which differ at precisely one bit. Introduce

the inner product 〈R1, R2〉 = ∑
w∼w′ R1(w,w

′)R2(w,w
′)(P1(w)+ P1(w

′)) on
A. It can be shown that

a = σ−1
0

∑

w∼w′
(P1(w

′)− P1(w))(S(w
′)− S(w)) = σ−1

0 〈Ropt, R〉

σ 2 = σ−2
0

∑

w∼w′
(P1(w)+ P1(w

′))(S(w′)− S(w))2 = σ−2
0 〈R,R〉, (A.1)
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where R(w,w′) = S(w′) − S(w), Ropt(w,w
′) = (P1(w

′) − P1(w))/(P1(w) +
P1(w

′)) and 0/0 = 0 in the definition of Ropt. Formula (A.1) is proved in Hössjer
(2003a) for one pedigree and the proof for N pedigrees is identical. Hence

sup
S

SLNR ≤ sup
R∈A

〈Ropt, R〉2

〈R,R〉 = 〈Ropt, Ropt〉 = I est, (A.2)

and the second supremum is attained for R = Ropt. This completes the proof.
Notice that the bound (A.2) need not be tight, since this requires existence of a

score function S such that S(w′)− S(w) = Ropt(w,w
′) for all w ∼ w′. ��

Proof of Theorem 1. Let F = {1, . . . , f } be the set of founders and F0 ⊂ F the
set of heterozygous founders. Further, let A be the set of founder allele vectors
a = (a1, . . . , a2f ) which are compatible with G, i.e. such that Gk = (a2k−1a2k)

or (a2ka2k−1) for each founder k. Clearly A has 2|F0| elements, since switching
a2k−1 ↔ a2k leaves a within A for each k ∈ F0.

Since Y = G, (2) and (3) imply

P1(w) ∝ P(G|w) =
∑

a∈A

P(G|a,w)P (a) =
∑

a∈A;(a,w)→G

P (a) ∝ n(w),

where n(w) := |{a ∈ A; (a,w) → G}|. We used the fact that P(G|a,w) is one
if (a,w) → G and zero otherwise and that P(a) has the same value for all a ∈ A

under random mating (4). By assumption, we know that n(w) > 0 for at least one
w. Hence it suffices to prove that i) n(w) = n(w + c) for each c ∈ C and ii) if
w /∈ v + C, then at least one of n(w) and n(v) is zero.

In order to prove i), notice that

(a,w) → G ⇔ (a,w + 1j ) → G, if j ∈ Offk and k ∈ A,
(a,w) → G ⇔ (πka,w + 1Offk ) → G, if k ∈ B ∩ F,
(a,w)→G⇔(a,w + 1Park ∪ Offk ) → G, if k ∈ B ∩ N , (A.3)

where πk , k ∈ F0, is the permutation of (a1, ..., a2f ) that switches elements 2k−1
and 2k and N is the set of nonfounders. By repeated application of (A.3) for various
k and j it follows that n(·) is constant on each coset w + C, and this proves i).

To prove ii), assume, on the contrary, the existence of two inheritance vectors
v = (v1, . . . , vm) and w = (w1, . . . , wm) such that w /∈ v + C and n(v), n(w) >
0. Then there exist founder allele vectors a and a′ such that (a, v) → G and
(a′, w) → G. By repeated application of the middle equation of (A.3), it follows
that a′ = a can be assumed without loss of generality. We also assume that meioses
have been numbered so that the two meioses giving rise to each nonfounder k have
lower number than all meioses corresponding to the offspring of k. Let j = j (v,w)

be the smallest number in {1, ..., m} for which vj �= wj . Assume also that v and w
have been chosen to give the maximal possible value of j (v,w). Denote the parent
and offspring corresponding to j by k and l. If k is a homozygote we must have
j (v+1j , w) > j (v,w) and (a, v+1j ) → G. Since v+1j ∈ v+C, we could then
replace v by v + 1j and this would contradict, by the way we numbered meioses,
our choice of v andw to maximize j (v,w). Hence k must be a heterozygote. Since
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vj �= wj , k passes on different alleles (say a1 and a2) to l according to v and w.
Let k′ be the other parent of l. Since (a, v) → G and (a,w) → G, k′ must also be
a heterozygote (a1a2) which passes on different alleles to l according to v and w.
But then v′ = v+1Parl∪Offl ∈ v+C satisfies (a, v′) → G and j (v′, w) > j (v,w).
Again, this contradicts our choice of v and w to maximize j (v,w). Hence ii) is
proved. ��
Proof of Corollary 1. By definition (2) of P1 we have

I test = 2m
∑

w

P1(w)
2 − 1 = 2m|C|−1 − 1 = 2m

test − 1,

where the first equality follows as in the proof of Lemma 1 and |C| = 2dim(C) =
2m−mtest

is the number of elements of C. To prove (21), notice first thatmest can be
written asmest = |{w; w ∼ w0 and w /∈ w0 +C}|. Then observe that each term of
(2) is nonzero iff one of w and w′ lies in w0 + C. The nonzero value is |C|−1, and
the number of such pairs w ∼ w′ is mest|C|. Hence I est = mest|C| · |C|−1 = mest.
��
Details from Example 4. When founder phases are unknown we have A = ∅ and
B = F , with F defined in the proof of Theorem 1. Now Park = ∅ for each
founder k. Further, the sets Off1, . . . ,Offf are disjoint. Hence dim(C) = f and
mtest = m−f . Ifw ∼ 0 thenw = 1j for some j = 1, . . . , m. In order to determine
mest we must count the number of j such that 1j /∈ C. It is clear that 1j ∈ C iff
j ∈ Offk for some founder k with |Offk| = 1. The number of such j is f ′ and hence
mest = m − f ′. When founder phases are known we have A = B = ∅, implying
C = {0} and hence (23). ��
Details from Example 5. We number individuals as 1 = father, 2 = mother, 3, . . . ,
nhet + 2 for the heterozygous offspring and nhet + 3, . . . , n for the homozygous
offspring. There are m = 2noff meioses. Those corresponding to the father’s and
mother’s offspring are numbered as 1, ..., noff and noff + 1, . . . , 2noff respectively.
Notice that

Off1 = {1, . . . , noff},
Off2 = {noff + 1, . . . , 2noff},
Park = {k − 2, k − 2 + noff}, k = 3, . . . , n. (A.4)

Assume first that the father has known phase. Then A = {2, 3 + nhet, . . . , n} and
B = ∅ since all heterozygous offspring have known phase. Hence C is spanned
by all 1j , j ∈ Off2. These vectors are clearly linearly independent and hence
dim(C) = |Off2| = noff and mtest = m− noff = noff. Further, 1j /∈ C iff j ∈ Off1,
so that mest = |Off1| = noff.

When the father has unknown phase A remains the same but B = {1}. Hence C

is spanned by 1Off1 and all 1j , j ∈ Off2, so thatmtest = 2noff −(noff +1) = noff −1.
When noff = 1 there is no vector 1j outside C whereas if noff > 1 we have 1j /∈ C

iff j ∈ Off1. This gives the formula for mest in (25). ��
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Details from Example 6. Assume first that the parents have known phase. Then
A = {3 + nhet, . . . , n} and B = {3, . . . , 2 + nhet}, so that C is spanned by the
vectors 1Park , k = 3, . . . , 2 +nhet. These vectors are linearly independent since the
corresponding sets Park are disjoint. Hence dim(C) = nhet andmtest = 2noff −nhet.
It is clear that no vector 1j lies in C, so that mest = 2noff.

When the parents have unknown phase we have B = {1, . . . , 2 + nhet}, and
C is spanned by 1Off1 , 1Off2 and 1Park , k = 3, . . . , 2 + nhet. After some calcula-
tions it can be shown that these vectors are linearly independent when nhet < noff,
giving dim(C) = nhet + 2 and mtest = 2noff − nhet − 2. When nhet = noff, the
constraint 1Off1 + 1Off2 +∑nhet+2

k=3 1Park = 0 reduces dim(C) to nhet + 1 and hence
mtest = 2noff − nhet − 1. When noff = 1, both of the vectors 11 = (1, 0) = 1Off1

and 12 = (0, 1) = 1Off2 lie in C, so that mest = 0, When noff > 1, it can be shown
after some calculations that 1j /∈ C for all j and this gives mest = m = 2noff. ��
Proof of Proposition 3. By plugging (29) into (7) and (8) we get

I test = 2−m∑

w

S2
opt(w) · ε2ρ + o(ε2ρ) (A.5)

and

I est = 2−m−1
∑

w∼w′
(Sopt(w

′)− Sopt(w))
2 · ε2ρ + o(ε2ρ) (A.6)

as ε → 0. The proposition then follows by inserting (30) into (A.5) and (A.6) and
interchanging sums with respect to w (or w,w′ with w′ ∼ w) and k, l. ��
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