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Abstract

Suppose we have a function A with m arguments and i.i.d. random variables { X, 1% with marginal
distribution F. Let M be the distribution of A(.X),..., X,»), m > 2. We consider on-line schemes
for estimating quantiles of Hp. Such an estimator is based on a design D,,, whicli is a small subset of
all n!/(n—m)! possible index vectors I = (i1,...,%,) having distinct entries not exceeding n. When
a new observation X, arrives, v = |D, \ D,_;| new vectors (X,,,...,X,,) with [ € D, \ D,
are used to modify the current estimate. When 7 — oo, the asymptotic relative efficiency of
the recursive estimator compared to the off-line estimator (U-quantile) tends to one. The on-line
estimator is closely related to incomplete U-quantiles (Hossjer, 1996), and it generalizes a recursive

quantile estimator considered by Holst (1987) for m = 1.

1 Introduction

Assume we have a sequence {X;}:2, of (1. F)-measurable random variables that are independent
and identically distributed (i.i.d.) with common distribution F. Let h: ™ — R be a measurable
function, and define another distribution function Hg(t) = P(h(X,..., X,) < t), which depends

on F and h. We consider estimating the quantile

6 = Hp'(p) = inf{t; Hp(t) > p},
given some fixed 0 < p < L. For each I = (iy,....1,), introduce the short-hand notation h( X}
h(X;,, ..y X, ) Letalso Sa(m) = {I = (i1, im); L <4, Sty £ 4p il7 # 7'} be the collection
of all n!/(n—m)! possible multi-indices [ with entries not exceeding n. For any design D, C S.(m)
of multi-indices, we may define the distribution function

1
.(1) - MT) Z Inixy<es

IeDn
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which is an empirical analogue of [, llere N(n) is the number of elements contamed v D, A

natural estimator of 0 is

If D, = S.(m), f, is a U-quantile (UQ). The most well known UQ is the Hodges-Lehmann
estimator, which is the median of all (.Y, + .¥;)/2in the location model (Hodges and Lelimann, 196.)
The UQ based on the kernel h(z,,z,) = c|ry — 75 results in a measure of spread, with ¢ = ¢(p)
a constant that ensures consistency if we want to estimate the standard deviation, interquartile
range or some other scale functional (cf. Bickel and Lehmann, 1979, Choudhury and Serfling, 1988
and Rousseeuw and Croux, 1993). Another UQ is the Theil-Sen estimator of slope in simple linear
regression (Theil, 1950 and Sen, 1968)

If D, # Sa(m), 6, is an incomplete U-quantile (IUQ). This notion was introduced in Hossjer
(1996), but an [UQ estimator was already considered by Brown and Kildea (1978) for the Hodges-
Lehmann kernel. By generalizing quantiles to arbitrary L-functionals we obtain so called generalized
L-statistics (Serfling, 1984) when D, = S,(m) and incomplete generalized L-statistics (Héssjer,
1996) for general D,.

There are several advantages of using an incomplete design D,. Since [S,(m)] = O(n™), the
computation of f, may be intractable for large n and m > 2. On the other hand, it is possible
to choose designs with N(n) = O(n) and asymptotic relative efficiency (ARE) arbitrarily close to
one w.r.t. the corresponding UQ. This phenomenon was first noted by Blom (1976) for incomplete
U-statistics (defined as [ zdH,(z)). Certain IUQ can be used for estimating the scale parameter
in nonparametric regression with homoscedastic errors, and they can also be used in time series
applications (Héssjer, 1996).

In this paper, we will focus on another application of incomplete designs: On-line estimation of
6. Following Hossjer (1996), we refer to a design as recursive and on-line (RO) if

D,_,CD,foralln>2
[Da\ Dna| = O(1).

This means that D, is generated from D,_; by simply adding a number of multi-indices, and this

number doesn’t increase with n. The two designs considered here are (cf. Hossjer, 1996, Section 2)

(D1) RO design based on cyclic permutations: Given a positive integer v € Z*, define vectors
i=(i,..,0), di = (dir,---,dim),--,dy = (dy1, ., dym) of length m, so that all d;x -
dyek # k' are different, 0 < dji < ... < djm and din < ... < dym. Then put D, =
{i+d;;1<j<7y,1<i<n—djn}}. Examples are:

m=2de = (0,k)k=1,...,7.
m=3,v=1andd, =(0,1,3).
m=4,7=1and d, = (0,1,4,6).
m=3,vy=2,d, =(0,1,3) and d, = (0,4,9)
(D2) RO design, m =2: D, = {(i,j)i1<i<j<n j-i<7}forsomeye€Z’
In fact, both (D1) and (D2) satisfy

ID-\ND. | =~ forn>m, (1.1)
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with m — 1 ¢ d.,, for (D1) and /1 = 1 + v for (D2) Mence, the number of added I:s remains fixed

for large n. We imposed that all d,; — d, s are different for (D1) to ensure that estimators based on

this design have a tractable asymptiotic variance. A detailed account of various des

been used in the incomplete U-statistics literature may be found in Lee (1990, Chapter 4)

Before introducing our recursive estimator, notice that §, may be wiitten as an M -cstimator

> v(rxn-d.) -0,

1€DA

Dy >0,
T) =
¥(s) {p—l, z <0.

with score function

To define a recursive estimator of 8, let m_1 and M be fixed numbers, and put

b6, = én_.+n—7b—— ST w(A(X1) = 0ay) (1.2)

"=l rep\D..;

o = hoo1 4 L Z (n'[\" (n'(h(X,) - é,,)) - h,,,l) ,

n
Y 1eDa\Pa-,

o
3
|
—
—
w
=

for n > m, with
_ vlogn
T
Here v,p > 0 are fixed numbers, [z], = max(a, min(z,b)) and &, is a recursive density estimator of
hgp(8). Finally, I is a non-negative function that integrates to one and r a fixed positive number.

Ifm=1and D, = S,(1), 6 is essentially the recursive estimator of 8 considered by Holst (1987).

In Section 2, we first review some asymptotic theory for (incomplete) U-quantiles and then, in
Section 3, we consider the asymptotic behaviour of 6,. Our main result (Theorem 1) is that 6, is
asymptotically equivalent to an IUQ based on the same design ({D1) and (D2) respectively). The
(ARE) of 6, w.r.t. the corresponding U-quantile approaches 1 as y — oo. Hence, we have found an
on-line estimator of § with negligible loss in asymptotic efficiency. Finally, the proof of Theorem 1

is given Section 4.

2 Asymptotics results for incomplete U-quantiles

Serfling (1984) considered generalized L-statistics (and in particular U-quantiles) as statistical
functionals, operating on the U-process H,. This approach was also adopted by Hossjer (1996) for

incomplete generalized L-statistics. The linear, first order von Mises expansion of 6, is

= 1
0, =60+ —— A(X)) + R, (2.1
' N(n) /3, )
with A(z;) = p(h(z;) — 0)/hp(0). Here R, is a remainder term of Bahadur type. It has been
analyzed by Choudhury and Serfling (1988) and Arcones (1995) for U-quantiles. The linear
main term in (2.1) is an incomplete U-statistic. Asymptotic normality of 6, is established using
asymptolic theory of incomplete U-statistics and proving that R, is negligible. To this end we need

some notation:

Let
o2 = E(A(X/)A(X,),
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oo
with [, is a cyclic rearrangement of (1,...,m) with 1 in position 7, and J, is a cyclic rearrangement
of (L,m i1, .,2m— 1) with 1 in position j Let also
m
7 _ 2
o Z 914
1y =1
and

o = EAX,).

The following result is a special case of Theorem 4.1 in Hossjer (1996):

Theorem 1 Suppose 02 > 0 and that Hr has a positive derivative hgp(8) at 6. Then, an IUQ
based on design (D1) or (D2) has an asymptotically normal distribution,

Va6, —8) 5 N (0,5%(7)
with asymptotic variance given by

2 _ym g2
o) = a4 Im Z.=101..A
Y
Notice that o%(y) — 0% as ¥ — oo, which is the asymptotic variance for U-quantiles (Serfling,
1984). By choosing 7 sufficiently large, we obtain an asymptotic relative efficiency arbitrarily close

to one.

If h is symmetric w.r.t. permutation of indices, the asymptotic variance simplifies to

2
2, Om —
o}(y) = 0® 4 P,
7

3 On-line estimator

Consider now the recursive estimator 8, defined in Section 1. We will prove below that 6, & 8 and

ho B hp(8). In fact, h, is a recursive kernel density estimator of hp(6). Heuristically, this means

- - 1
oo+ — Y AX))
"7 1D \Da-s
In view of (2.1), this motivates why 6, is asymptotically equivalent to an IUQ based on the same

recursive design.

We will impose the following regularity conditions:

(A) 6y,. . 0m_1,ky, ... hs_y are arbitrary finite numbers.

(B) In some neighbourhood U of § and for some 0 < &5 < 1, Hp = hp exists and is Holder

continuous of order &y, i.e. for some L < 00, lhe(y) — hp(z)| < Liz — y|*® whenever z,y € U.

(C) Hp is Holder continuous of order 3, 1/2 < 7 < 1, i.e. [Hp(y) - Hp(z)] < Liz - y|? for all
z,y € R, with L < oo.
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(D) Forsomee; >0,0<¢e, <1 <1/2.

(E) The kernel function & satisfies [ K()dt =1, has compact support, is non-negative. bounded

el tunction £ satishes

and Lipschitz continuous, i.e. for some L < oo we have |K(z) - K(y)| < L]z — yl.

Theorem 2 Assume a design of type (D1) or (D2), that Hp has a positive derivative at 8, and

that (A)-(E) hold. Then 6, has an asymptotically normal distribution,
Va(d, - ) 5 N (0,0%(7)),

with 0%() as defined in Theoremn 1.

4 Proof of Theorem 2

Throughout this section, C will refer to a constant whose value may change from line to line.
Unless otherwise stated all convergence — means 5, i.e. convergence almost surely. To simplify

the notation, introduce Yy = (Xacmiir-- - Xn)s ¥n = (Tncmirs-- > In) and

1
My == Y W(h(z)-0),
T1€Da\Dny
so that .
0= 6,1+ M(Ba-r, Yn) (4.1)
nbn_1

for n > m. Notice that {Y,}a»m is an m-dependent sequence. Let also F, be the o-algebra

generated by Xi,..., X,. With

Ce(61,6,) = Cov (M(8,,Yn), M(61,Ya i), (4.2)
it may be shown that
1 mol
o} y) = C(8,8 4.3
0= g, L G0) (4.3)

This relation will be useful later on in the proof. We will start by proving a series of Lemmas. The
proof of the first lemma is simple and therefore omitted. The proofs of Lemmas 2 and 3 are similar

to the proofs of Theorem 3.1 and Theorem 3.2 in Holst (1987).
Lemma 1 Assume n > 2m and 0 < k < m. Then

16, — 6._¢] < Cntlogn (4.4)

and
1

| < Cn""'(logn)* (4.5)

bn

o

n—k

Lemma 2
9, — 0 asn — oo.

Proof. Assume n > 2. After some manipulations, using (4.1) and E (M(é"_,;‘, Y,,)|]:,,v,;,)) =
p— Hp(lnm), we get
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for any € > 0, so S, converges. Since St is a non-decreasing sequence, (4.14) follows. Put now

60 = Ru 4 V,/(nba_m) + w,. Then, by (4.10), (4.11) and (4.13),

S~ 6 converges. (4.17)
k=2m
Choose now a, — 0 s.t.
> an/(nbay) = oo (4.18)
n=2m
This is possible since b,_; < vlog(n — 1). Define 3, = Ca,, with ' so large that |z — 6] > B,

implies |p — Hp(z)| > @, for all but finitely many n. Then

6, -0>p,=>0,-60<8,_,—0- —‘1»—+6
B~ 0< —fn =0, —0> 0,1~ 0+ 22—+ 6.

Also, find 7, — 0 s.t. |z — 8] < B, implies |z — 8 + (p— Hr(z))/(nbaz1) + b,] < 4n. Then, for large

enough n,

(6 = 6); < max (Yo, (faer = 0)s = 225 + 6

(6 - 8)- < max (ya, (s — )= — 72 - &
The lemma now follows from (4.17), (4.18) and Lemma 1 in Derman and Sacks (1959). 0
Lemma 3

h, — hp(0) as n — oo.

Proof. Let, for z € U (cf. (B)),
Ro(r) =" / K (n"(y - 2)) dHr (1)

and
2m —1
hom- 1+—Zh (Oe-m)-

k=2m

Conditions (B), (D) and (E) imply lim I_l,,(z) = h(#) as n — co and = — 6. Hence, by Lemma 2,

Up =

v, — hp(8) (4.19)
Now
n = Un = Z Uk + - Z Ry,
M f—2m k=2m
with

U=t Y (WK (e~ b)) - E(FK (K (he(X0) i) 1 Fin)

T IeDx\Dx-1
and .
Re=t S k(K (Khe(e) — b)) = K (K (helen) = b)) -
v IeDx\Di-n

Observe that E(Uy|Fi_m) = 0, so {Uy} are mixingale differences. McLeish (1975, Corollary (1.8))

and Kronecker’s Lemma gives

%Zukao,



Downloaded by [Stockholm University Library] at 01:07 06 February 2016

126

HOSSJER

using the fact that r < 1/2 Finally, (E) and (4.4) imply |R,| < Ck*~Vlogk, which results in

1o
=3 -0
n k=2m
Lemma 4 For any é < 1/2,
n®(6, — 8) — 0.

Proof. In view of (B) and (4.6),

n*(d, - 6)

(n=1)* (s - 011 -

/

& n
R, + n)s
+ n’( Y + w,)

he(6)
nb,

+ —f; + O(n"))

with R,,V, and w, as in Lemma 2. It follows as in Lemma 2 that the three sums 35 k*Ry,

S kWi /by and 35, k*w, converge as n — oco. (For the second sum, use McLeish (1973,

Corollary (1.8)) since 355, k%~ *(log k)* < 00.) The lemma now follows from Lemma 1 in Venter

(1967) and the fact that
he(6)

n-1

lim inf( —§)>0

by Lemma 3.

Lemma 5 For some e, > 0,
n3 (h, — he(8)) — 0.

Proof. We will see below that the choice

) 1
€, < min | €01, €46, 7” r

will do, where 6 is any admissible number in Lemma 4. Choose now Ky > 0 so that supp(kK') C
[= Ko, Ko). Then, if [z + Kon="] C U, if follows from Assumption (B) that

lha(z) = h(8)] < C (12 - 6] +n7"0)..

Hence, by (D) and Lemma 4,
n? (v, — hp(8)) — 0.

Next, by Kronecker’s Lemma,

n‘3(h, —v,) = 0,

provided (35 _ym Us) /027! and (3f_,m Rie) /2! converge. This follows as in the proof of Lemma

3, since Yoo k7777 < 00 and

1

[
n E=2m

——— 3[R < Cn* ' logn - 0.
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Proof of Theorem 2 Define the sequence {6,}%,. | through fys_, = 6o, and

. - 1 Vi _
B, ~0=(0,_, -0 - =)+ n > 2m
n nbl,_ . -

with U, = max(p,b,). We will first show that 4, is asymptotically equivalent to 0. that 1s
6, — 0, (4.20)

with 6, = /n(. — 0,). Observe that {6,}57, satisfy the recursion

2rh

6= J1- 16 VnR +f~+(1 ! )V“HMA"(KE 9
n = n n-1 1 nit, nuw,, bn_ﬁ, - o \/ﬁ 1 )
with i
() -p
" bai(fnr - )
As in the proof of Lemua 2, one shows that
Z VEkw, converges (4.21)
k=2
and .
ST VR < 0. (4.22)
k=2m

By Lemma 3, b, = b, for all but finitely many n. Hence,

- 1 1 Vi
Z ( ) —ki converges. (4.23)

—_—
koom \bkom i

mnly
mply

140 =11 < C (1bums = hp(O)] + By — 01°¢).

According to Lemma 4-5 this yields n¢(1 — An)(6, = 8) — 0 for some ( > 1/2. Therefore,

3

(- 46, - )

< . 4.24
2 > (424

Now (4.21)-(4.24) and Lemma 1 of Venter (1967) imply (4.20). By Slutsky’s Lemma, it remains to
prove asymptotic normality of 6. Observe that
_ 9m =1 -

b0 = by - O) + -

n n

1 & Ve

— -1 _—

= O+~ > e

k=2m “k-m

IZ“: Ve

k=2m k=

Hence, it suffices to prove that

£ N(0,0%(7)). (4.25)
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Actually, (4.25) follows from a Central Limit Theorem for mixingales in MelLeish (1977), with

Xow = V(Wb a(y)if 2 < i< n, Xy = 00f 1 <7 < 2m =1, k(i) [nt], 0f, = 1/n.
For = Fau e = 1] Mo/ (polr) ) for 0 < k < moand = 0 for b > (cf (4.2). M|« =

sup, , |M(z,y)|). Notice that {Xn./0,:)} are uniformly bounded in n and ¢. because of the choice
of {b,}%,. Conditions (2.2)-(2.5) in McLeish (1977) are casily checked. It remains to check (2.6),

which requires that forany s <t <u <1

Ea(u)
(( > X-n)zlfh(:)) —(U~'):

i=ka(1)

|
‘ E

where ||-|I; denotes the L,-norm. Assume that n is so large that ka(t) > 3/ and k()= ka(s) > 2m.
In view of (4.3),

|2 (ke X1 Fes) = (=)

—0 asn— x. (4.26)

Iy

kn(u Ci—,(8.,8
= HZ.,(k ) (COV(Xnilfk.(:),anlfkn(:)) ey ’(’A))l} +0(3) (4.27)
<Thi |COV X il Ferors Xosl Fro)) — sty |, + 0.

i-jl<m

since ék(ﬂ,ﬂ) = 0 for |k| > m and Cov(XnilFios)s XnjlFeuisy) = 0 for i = j| > m. To proceed
further from (4.27), we will show below that

C'-,' (0x Zﬁnéj—hﬁ)

n0?(7)b;_ambj _2m

Cov(Xnil Fia(s)s Xnjl Finis) = E ( lfk.(:)) +n7 'O +57°), (4.28)

for some ¢ > 0, and with the O-term holding uniformly for k,(t) < 4,7 < ka(u),]i — jl < ™.
Now (z, 2, 23, Z4) — Ci(z3,24)/(max(z,, p) max(z,, p)) is a continuous and bounded function for
|k|] < 7. This is because p > 0 and since Condition (C) implies continuity of the Ci-factor. Putting
(z1,T2, 23, 24) = (b,—_zﬁ.,b,»_z,,,,0;_2m,@j-zm) implies, via Lemma 2 3 and (4.28), that the RHS of
(4.27) tends to zero as n — oo. Finally, (4.28) is deduced by introducing
1 ‘/‘l
X0t = Tt amo ()

if 2m < i < n, with
= M(b—2m.Ya) = E (M (62| Fiozm)) -

Then, because the m-depencence of the sequence {Y,}, and since k,(s) < min(z, j) ~ 2m,

C'_J (é, ﬂﬁz,éj_zﬁn)|}_ )
TN T kals)

n02(y)b, b

Cov( Xl Fis)s X1 Feais)) = E (
r—amb j—2m
when |i — j| < m. Finally, the proof is completed by noting that
[COV(X il Feaays Xy | Fra(s)) = Cov(X il Frngers Xnjl Frao)l S Cn7M (@7 +577)
for any € < min(1 - r,7), which follows from Lemma 1 and Condition (C), using estimates similar

to (4.12). @]
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