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 ASYMPTOTICS OF THE REPEATED MEDIAN SLOPE ESTIMATOR

 BY OLA H6SSJER,1 PETER J. ROUSSEEUW AND CHRISTOPHE CROUX

 Lund Institute of Technology and University of Antwerp

 The influence function is determined for (twice) repeated median estima-

 tors with arbitrary kernel functions, and more generally in the case where
 the two medians are replaced by a general class of estimators. Asymptotic

 normality is then established for the repeated median estimator of the slope

 parameter in simple linear regression. In this case the influence function is

 bounded. For bivariate Gaussian data the efficiency becomes 4/7r2 - 40.5%,
 which is the square of the efficiency of the univariate median. The asymp-

 totic results are compared with finite-sample efficiencies. It turns out that
 the convergence to the asymptotic behavior is extremely slow.

 1. Introduction. Consider the simple linear regression model

 (1.1) yi = a+ 3xi +ei, i=1,...,n,

 where z, = (xi,yi) is the observed vector and ei represents noise. We assume that
 the random vectors (xi, ei) are i.i.d., and that xi and ei are mutually independent
 with distributions G and F, respectively. Many estimates of the slope parameter

 d are based on the pairwise slopes h(z i, zj) = (yj -yi)/(xj - xi) when xi 7 xj, and
 h(z i, zj) = 0 when x, = xj. For instance, the least squares estimator /3LS may be
 written as a weighted average,

 (1.2) /3Ls =E y I
 Ei< jwij

 with weights wi = (x j - xy)2. In a data set with n = 5 observations, Boscovich
 (1757) computed the unweighted average of the 10 pairwise slopes, as well as
 a 10% trimmed mean given by the average of 8 of these slopes [for a more
 complete historical discussion see Stigler (1986)]. The estimator of Theil (1950)
 and Sen (1968) is the median of all pairwise slopes. Frees (1991) gives a survey
 of these and related estimators.

 Another estimator, the repeated median,

 (1.3) /n = med med h(z i, zj),
 i j,j i

 was proposed by Siegel (1982). He showed that when all xi are distinct (an event
 with probability 1 if G is continuous), o3n has a finite-sample breakdown point
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 REPEATED MEDIAN SLOPE 1479

 E= [n/2]/n, that is, if fewer than [n/2] vectors zi are changed, the estimate
 remains bounded. This is the maximal possible value of En for any regression

 equivariant estimator [Rousseeuw (1984)] and it yields an asymptotic break-
 down point of 0.5. [A regression equivariant estimator is one which satisfies

 Oln ({(xi, yi + c + dxi)}) = 7L ({(Xi, Yi)}) + d,

 for any c and d.] Siegel also showed that on is a Fisher consistent estimate of 3.
 The purpose of this paper is to derive the influence function (Section 2) and

 to prove asymptotic normality (Section 3) of the repeated median slope, given
 some regularity conditions on F and G. These findings are compared with Monte
 Carlo variances in Section 4. In Section 5, we discuss some possible extensions.

 The influence function is actually determined quite generally, for an arbitrary
 kernel function h(zi, Z2), and with the two medians in (1.3) replaced by arbitrary

 estimators T1 and T2. However, a strict proof of asymptotic normality is given
 only for the repeated median, and the kernel function corresponding to the

 pairwise slope. With oin indicating the estimate for sample size n, our main
 result (Theorem 3.1) is that

 1n
 (1.4) 4(n (3-3 ) = Z IF (z i) + o(1) -`dN(0, ,2) as n -oo

 where the influence function is given by

 sgn( [y - a - F-1(0.5) - OG-1(0.5)]/ [x - G-1(0.5)] - /)

 2f (F-1(0.5))EG (IX - G-1(0.5)1)

 and

 O, 2=j IF(x,ca+/,x+e)2 dK(x, e)

 (1.6) 1

 =~~~~~~~~~~~~~

 4f(F-1(0.5))2 (EG X - G-1(025)'I

 with K = G x F. [Formula (1.4) is linked to Hampel's (1974) definition of the
 influence function by means of a von Mises expansion.] We see from (1.5) that
 the influence function is bounded, giving another illustration of the robustness
 of the repeated median. Actually, it follows from (1.4) and the Bahadur approx-
 imation of sample medians by a sum of i.i.d. variables that

 (1.7) On - 3MED = op(n
 where

 (1.8) /MED = med xYi - a - F-'(O 5) 3,"G-'(O 5)

 which in general is not computable, since a and 3 are unknown. The influence
 function for 3MED is also given by (1.5). In the special case of simple linear
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 1480 0. HOSSJER, P. J. ROUSSEEUW AND C. CROUX

 regression through the origin (a = 0), when F N(0, V) for some V > 0 and
 G is symmetric, /MED = med(yi/xi), and this estimator has minimal gross-
 error sensitivity

 (1.9) a* = sup JIF(z)
 z

 within a large class of estimators including all GM-estimators [cf. Ronchetti and
 Rousseeuw (1985), Hampel, Ronchetti, Rousseeuw and Stahel (1986), Section
 6.3, and He and Simpson (1993)].

 For bivariate Gaussian data, the asymptotic efficiency of f3n becomes 4/ir2
 40.5%. However, the finite-sample efficiencies vary between 53% and 62% for
 sample sizes between 20 and 40,000 (see Section 4). The Theil-Sen estimator
 (obtained by taking the median of all pairwise slopes) has a much higher effi-

 ciency of 91.5%, but a lower breakdown point of 1 - 1/2 - 29% and a higher

 gross-error sensitivity. The Ll-estimator also has a higher asymptotic efficiency
 (in fact, 2/7r 63.7%) at bivariate Gaussian data, but an unbounded influence
 function and a 0% breakdown point.

 Our results are restricted to simple linear regression. Repeated medians can
 also be used for estimating the slope parameters in multiple linear regression,
 using kernel functions with more than two arguments [Siegel (1982)1. However,
 these estimators are not affine equivariant when the number of slope parame-
 ters is two or more, that is, they do not transform properly under affine trans-
 formations of the carriers. The asymptotic properties of the repeated median
 estimator in higher dimensions form an interesting area for future research.

 2. Influence functions. In this section we give a heuristic derivation of

 the influence function, in order to motivate the results of the next section, even
 though the setup is more general here.

 Given a Euclidean space X, define the kernel function h: X x X -1R. Assume
 also that z1,..., Zn are i.i.d. observations from X with common distribution K.
 Let T1 and T2 be two estimators that may be written as functionals of the

 empirical distribution. For each z, put H(z) = T1(Lz), where Lz = CK(h(z, Z))
 and let 0 = T2(L), where L = fK(H(Z)), be the functional that we want to

 estimate. In order to estimate 0 we first estimate H(z i) by H(z i) = T,(Lz,, n - 1),
 where Lz -1 is the empirical distribution formed by {h(z i, zj); j $ i, i fixed}.
 Then set

 (2.1) On = T2(Ln)7

 where Ln is the empirical distribution formed by H(z1), . . . , H(zn). Note that 0Jn
 reduces to a U-statistic if both T1 and T2 are sample means, and to a repeated
 median estimator if both T1 and T2 are sample medians.

 Assume next that T1 is differentiable at Lz for all z and that T2 is differ-
 entiable at L, and introduce the influence functions IF,(z1, Z2) = IF(h(zl, Z2),
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 REPEATED MEDIAN SLOPE 1481

 T1, L,1) and IF2(x) = IF(x, T2, L). Provided that IF2 is differentiable, the esti-
 mate On may be expanded as

 n

 On - 0 E IF2(H(zi)) +R
 i= 1

 (2.2) = E IF2 (H(z i) + _1E IF1(Z i,z) Z+Ri) + R

 =-EIF2(H(zIi)) + ( 1) E (zi,(z,)+R,
 i=1 i,j,i -j

 where h(zl, Z2) = IF'(H(zl))IF,(zi, Z2). (If T1 and T2 are both sample means,
 we have R- 0.) When the remainder term R is op(n-1/2) (which has to be
 determined for each case separately) and the kernel of the U-statistic in (2.2)

 is square integrable, that is, if EK x Kh(Zl, Z2)2 < oX, we may use the method of
 projection of a U-statistic [cf. Serfiing (1980), Section 5.3] to obtain

 i= 1

 where

 (2.4) IF(Z) = IF2 (H(z)) + EK [IF/ (H(Z)) IF1(Z, z)].

 The central limit theorem then yields

 (2.5) VH(0O -0) `dN(0,J 2),

 where

 (2.6) v2= EKIF(Z)2.

 Suppose now that both T1 and T2 are medians, so that On corresponds to a
 repeated median. For uniqueness, we define the median as the right-continuous
 inverse of the corresponding distribution function throughout the paper, so that

 (2.7) H(z) = LZ -(O.5) = inf {x; LZ(X) > 0.5},

 and

 (2.8) 0 = L-1(0.5) = inf {x; L(x) > 0.5}.

 Similarly, sample medians are defined as the right-continuous inverse of the
 empirical distribution formed by the sample, that is, the observation with rank
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 1482 0. HOSSJER, P. J. ROUSSEEUW AND C. CROUX

 [n/21 + 1. The influence functions are given by

 IF,(z,,Z2) = sgn(h(zi, Z2) - H(zi))

 and

 IF2(X) = sgn(x - a)
 21(0)

 where lz = L' and I = L'. Since IF' is difficult to interpret directly in (2.4), we
 rather replace T2 by an M-estimator T2, based on a score function

 (2.9) ,b (x) { sgn(x), IxI > E,

 and then we let E - 40+. Setting 0S = T2(L), formula (2.4) for the influence func-
 tion becomes

 (2.10) IF6(z) Eo/ (H(z) - 0) + E sgn (h (Z, z) - H(Z))
 LI [O O' + El I21Z (HZ))

 with Ke the conditional distribution of Z K, given that H(Z) E [06 - E, 0y + E].
 Of course, it has to be shown for each separate case that the remainder term R

 in (2.2) is negligible and that h is square integrable. Let us give some simple
 conditions for this to hold (these conditions can be weakened at the cost of more

 technical arguments). Assume that L{ [0O - E, 0S + el } > 0 and that lZ(H(z)) is
 lower bounded away from zero on the support of K. Then IF'(.) and IF1(., )

 are bounded on IR and supp(K,) x R, respectively. This implies that h(, ) is
 bounded and, in particular, square integrable. In order to handle R, set

 1 ~~1.
 Si = 1 E IF, (z i, zi),

 assume that for some < a < 1 it holds that

 (2.11) max ISiI = op(n`),

 (2.12) max IRi I = op (n- 1/2

 that R = op(n-1/2) and, finally, that L has a bounded density in neighborhoods
 of -e and E. Then the first-order Taylor approximation in (2.2) holds whenever

 Si +Ri <n- and IH(zi)l -El > n-c. Therefore, with probability tending to 1
 as n -4 oo,

 |RI < IRI +!- IF2(H(zi))Ri + 211FIEJ I IH(z iQ l - El < n ) |Si + Ri I

 = IRI + op (n-1/2) + Op(n-')n- = op (n-1/2
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 REPEATED MEDIAN SLOPE 1483

 Of all the conditions given above, the imposed positive lower bound on 1z(H(z))
 is the most restrictive.

 If now E -? 0+ implies that 00 -+ 0, L{ [0, - E, 0, + El }/e - 21(0) and K0 >d Ko,
 for some distribution Ko, and if the appropriate uniform integrability conditions
 are satisfied for the second term in (2.10) as E -* 0+, it follows that

 (2.13) IF (z)IF(z= gn(H(Z)_0) +E sgn(h(Z,z) -H(Z))
 21(0) K0 21Z (H(Z))

 To be more precise, the following two conditions justify the limit in (2.13): Let

 Z, be a random variable with distribution K. Then, suppose that

 (2.14) {1IF1(Z0, z)}0 <0< 60 is uniformly integrable,

 for some E0 > 0, and that

 (2.15) P(Zo e Cz) = 1,

 where Cz = {z'; IF1( , z) is continuous at z'} [Billingsley (1968), Theorems 5.1
 and 5.4].

 Let us now specialize further to estimation of the slope parameter 3 in (1.1),

 that is, X = R22, z = (x,y) and h(zl, Z2) = (Y2 - yl)/(x2 - xl), as in Section 1. It
 follows from Theorem A.1(i) that the slope : is actually given by (2.8), that is,

 (2.16) 3=0 = med med Y2 - yl
 Z1K Z2 KX2 -X1

 Because of regression equivariance, we assume w.l.o.g. in the rest of the paper
 that a = ,3 = F-1(0.5) = G-1(0.5) = 0. Then, under the regularity conditions (F)
 and (G) in Section 3, sgn(H(z)) = sgn(xy) [Theorem A.1(i)] and 1(0) = oc (The-
 orem B.1), which implies that the first term in (2.13) vanishes. It may also be
 seen from the results in Appendix B that Ko equals the Dirac measure at (0, 0).
 The reason for this is that the set {z; JH(z)I < E} looks roughly like [cf. (B.4)]

 {z; 21 (G(x) - 0.5) (F(y) - 0.5) 1 f(Y)EG X - x I E

 and in particular, around the origin, like

 {z;2g(0)xyl < EGIXIE}.

 This implies that, given any d > 0 and Qd = [-d, d] x [-d, d],

 (2.17) P(Qd n {z; JH(z) I < E ) Elog(3), as E -- 0+,

 while

 (2.18) P( Qc n {z; H(z) I = 0(E), as E -* 0+.

This content downloaded from 130.237.198.64 on Wed, 20 Apr 2016 15:21:32 UTC
All use subject to http://about.jstor.org/terms



 1484 0. HOSSJER, P. J. ROUSSEEUW AND C. CROUX

 If now either the error distribution F or the carrier distribution G is symmetric,

 it is not hard to see that L is also a symmetric distribution, and therefore 0, = 0.
 Hence, in this special case K, is the conditional distribution of Z K on the
 set {z; IH(z) < E}, and so by (2.17)-(2.18) it converges weakly to 60 as E -t 0+.
 In the general case L need not be a symmetric distribution, but L-1(0.5) = 0

 and hence IO,I < E. This in turn implies that (2.17)-(2.18) remain valid when
 H(Z)I < e is replaced by H(z) E [0, - E, OE + E], so Ko = 60 even in the general
 case. In fact, it is quite surprising that Ko is supported on a small subset of
 {z; IH(z)W = 0} = {z; xy = 0}. Summarizing, the influence function in (2.13)
 becomes [cf. (1.5)]

 (2.19) IF(z) = sgn(h(O, z)) -sgn(xy)
 21o(0) 2f(0)EG IXI'

 where the last equality follows from (A.4). Actually, the fact that Ko is a one-
 point distribution simplifies the expression for the influence function a lot.
 Observe that our reasoning to obtain (2.19) is so far based on just plugging in

 the slope kernel expressions for Ko, H, h and 1(6) into (2.13). Our argument could
 be made rigorous by checking which of the conditions imposed above are valid
 for the slope kernel. However, we will show by different methods in Section 3

 that i, is asymptotically normal, with the influence function given by (2.19).

 3. Asymptotic normality of the slope estimator. We assume the fol-

 lowing regularity conditions:

 (F) The error distribution F is absolutely continuous, F-1(0.5) = 0, the den-

 sityf is bounded (11 f I oo < o?), strictly positive and Lipschitz continuous of order
 ,thatis,supy, Y2 If(y2)-f(y1)I/IY2-y1In = Ilf I, < oo,wherer > 0. [Actually,
 the facts that f is positive, Lipschitz continuous and integrates to 1 imply that

 limlxl X,, f(x) = 0 and, in particular, that f is bounded. We will assume w.l.o.g.
 that r < 0.5 in the following, since this will simplify some formulas, for instance,
 in Lemma 3.3 and (A.10).]

 (G) The distribution G of the carriers is continuous, G-1(0.5) = 0, and G
 has a positive and continuous density g around 0 with g(0) > 0. Moreover,
 EGIXI1+17 < 0, where r is the same number as in (F).

 The main result of the paper is:

 THEOREM 3.1. Suppose that / = O in (1.1), with the error and carrier distri-
 butions satisfying conditions (F) and (G), respectively. Then

 n

 (3.1) v'3n = =-3= IF(zi)+op(1)-*dN(0,cT2) asn--*oo,
 vln i =1

 where IF is given by (2.19) and

 (3.2) C C)E{IXI

This content downloaded from 130.237.198.64 on Wed, 20 Apr 2016 15:21:32 UTC
All use subject to http://about.jstor.org/terms



 REPEATED MEDLAN SLOPE 1485

 The theorem is proved through a series of lemmas. In all of these lemmas,
 we will tacitly assume the same regularity conditions as in Theorem 3.1. First
 we introduce some notation. We fix 0 < -y < 1, set

 (3.3) En= (log n)1/2 + -y

 (log n)-1 + llY

 and divide the plane into three regions according to

 A1 = {z; IH(z)I < En, IZI < 6n },

 A2 = {z; fH(z)I < En, IZI > 6n},

 (3.5) A3 = {z; 0.5 - P'En < Lz(En) < 0.5, yI> 11
 u {z; 0.5 < Lz(-En) < 0.5 + P'Cn, IYI > 1},

 A4 = {z; IH(z)l > En} -A3,

 where by IzI we mean (say) the L??-norm max(lxf, lyI), and p' is a positive con-
 stant whose value will be defined in the proof of Lemma 3.6. In order to analyze
 the asymptotic behaviour of /3,n [cf. (1.3) with h(, -) the pairwise slope kernel
 function], we introduce two other statistics. Let

 (3.6) f3n = med {H(zi) + (, = medH(zi) + (,
 L i

 where

 (3.7) E =_ IF1(O, z i),
 i=l

 and

 (3.8) 13n = med {H(zi) + + Wi,

 with

 ol ~~~~Zi EA4, (3.9) Wi = {I%ZH
 tH(zj) - H(zj) -( zi VA4,

 and

 H(z i) = med h(z i, zj)

 (3.10) A

 (3.10) ~ =H(zi) + n E IF,(z j,zj) +Ri =H(z i) +Si + Ri.
 J,j #

 The idea of the proof is that taking the median of all H(z j) is asymptotically
 equivalent to taking the median of all H(z ) + (, as in (3.6). With probability

 tending to 1, bothH(zi) and H(z i) + ( are too far away from 0 for all zi E A4 to in-
 terfere with any of the two medians (Lemma 3.6). The remaining, "interesting,"
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 observations z i 4A4 give values of H(z i) close to 0. Among these observations,
 H(zi) H(zi) + ( when zi E A1 (Lemmas 3.2-3.3). In addition, the number of
 observations from A2 and A3 becomes negligible in comparison with the number
 of observations from A1 [Lemma 3.4; cf. also (2.17)-(2.18)], so the approxima-
 tion above is valid for a majority of the "interesting" observations. Finally, 1n
 is asymptotically equivalent to ( (Lemma 3.1), which is what we want to prove.
 This is because of (3.12), which corresponds to the fact that l(O) = oc.

 LEMMA 3.1. Let /3 be given by (3.6) and IF by (2.19), then

 (3.11) 7n = -E IF(Z ) + op 1 112)

 PROOF. Since IF1(O, z) = sgn(xy)/(210(0)) and lo(O) = f(O)EGIXI according to
 (A.6), it follows that IF1(O, z) = IF(z). It therefore suffices to show that

 (3.12) On = medH(z ) = op(n-1/2

 Given z i, let ui have a uniform distribution on [L(H(z )-), L(H(zi))], indepen-
 dently for each i. Then u1,. . ., un is an i.i.d. sample from a uniform distribution
 on [0, 11. Denote by {H(z)(i)} and {u(i)} the ordered samples. It then follows
 from Theorem B. 1 (with C1 denoting the same constant as there) that, for large
 enough ;t and any E > 0,

 P( K;1> E)

 =P(H(Z)([n/2+1]) >

 (3.13) < P (u(rf/2+lI) ? L(t-vEn) or U([n/2+ 11) > L Q -))

 -<P U(W(/2 +11])!<L f-2v-) or UQ[n/2 + 11) >_ L( L))

 ( 1~~~~ e/2- (2i an-40

 < P (U([n/2 + 1]) - I > Cl C log (?/2 ) as n oc), 2 /Tn E/2

 since lU([n/2+ 1]) -1 = Op(n-1/2). 0

 In the next two lemmas, we show that iWiI = ISi + Ri - 41 is small when
 z i C A1. We introduce

 (3.14) max ISi -1l
 z, Al
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 REPEATED MEDIAN SLOPE 1487

 Since z i is close to (0, 0) when z i c A1, we expect this quantity to be small.

 LEMMA 3.2. As n oc, the quantity S of (3.14) satisfies

 (3.15) S O=p( OP((l gfl> 1/2)

 PROOF. We first observe that

 < max ISi-
 i, IziI < 6n

 since Iz-I < 5n for each zi E A1, and that

 Si - IF = -nn- + (IF(z , zj) - IF(0, Zj)).
 Hence

 (3.16) S< 1 + max I
 -2(n -1)lo(0) 1?<i?<n

 where

 A(Z)) (IQzll n) (IF(zi,z) - IF(O,Zj))
 j1 , j #i

 A I(Zil < n) 8
 n-1i E ij

 j, j 7)

 With zi fixed, A(zL) 0 O when IziI > 6,, and if IziI < 3n, all Yij, j$i, are i.i.d.
 with zero mean. Suppose in the rest of the proof that n is so large that 6n < d,
 where 0 < d < 1 is chosen so small that Theorem A.1 holds with this choice of
 d, and also that G has a bounded density on [-d, d]. Then

 (3.17) PQ(Yij < M) = 1,

 where

 M= 1 1 1 1

 m + < ~~~ + -K<COI
 210(0) 2infz,jzI<dlz(H(z)) - 210(0) 21

 where the last inequality follows from (A.8), with e = 0. Now introduce the re-

 gion Bz = {z'; h(z, z') > H(z)}. Then if Izf? 6n,

 lYiji < 1I I(zj E Bz,A Bo)

 +2I(1 (H( )) -l Io))sgn(h(zj,zj)-H(z )) 2 \\z,(H(zi)) 10(O J\J
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 and hence

 E(Y2z) ? (I )2 PK(Z e BZiA BO) + 2 - l)(0))

 (3.18) < 1 (0)2PK(Z E Bz, A Bo) + 14 QIZ (H(z )) - lo(O))

 < C(Izjl + IZK127,) < 2CIz,127,

 for some constant C > 0. The last inequality in (3.18) holds since ziI < 6,, < 1
 and 0 < < 0.5, and the second-last inequality follows from (A.10) and the fact
 that

 PK(Z E Bz. A Bo) < PK (sgn(h(O,Z)) sgn(h(zj,Z)))

 + PK (I h(zj, Z)I < JH(zj) 1)

 ? IG(xi) - G(O)I + I F(yi) - F(O)j + Lz{ [-H(Zi)H(zi)]

 < Clzil,

 where the last inequality follows since both F and G have bounded densities
 on [-d, d], IH(z )t < C'lz iI by Theorem A.1(i) and (iii) and the fact that l(z, t)
 is bounded on Qd [cf. (2.17)], since L(z, t) is a C'-function on Qd according to
 Theorem A.1(ii).

 It then follows from Bernstein's exponential inequality [see Pollard (1984),
 Appendix B], (3.17) and (3.18) that

 P(IA(zi)l >t Iz) < 2exp(- (n - 1)2t2 1
 - V ~4(n - 1)C IZ, 12, + (2/3)M(n -1)tJ

 ? 2exp 4( - (n - 1)2t2)
 On - exp n)C + (2/3)M(n - 1)t

 with C the same constant as in (3.18). Since this inequality holds uniformly in
 zi [remember that A(z) 0- when IziI > 6n], we obtain

 n1/2\(Z ) ) < 4(n - )C62, +(2/3)M(n - 1)(6n/n1/2)u P(A()> 2 ?~exp(- - (n - ),n

 < 2exp (1i2)U)2
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 the last inequality holding for n large enough. This yields

 P( max lIA(zj)I > n lgnv

 <nP(|/A(zil ,7 log n
 1/2 )

 (3.19) K 2nexp ( (1/2)(logn)2v2

 4C +v lognJ

 < (2nexplogn O0 if n oo and v > 4,

 where again the last inequality in (3.19) holds for large enough n. The lemma
 now follows from (3.16) and (3.19). 0

 As for the remainder terms Ri, we have the following Bahadur representation
 result, the proof of which may be found in Hbssjer, Rousseeuw and Croux (1992).

 LEMMA 3.3. With Ri as defined in (3.10) and O <'71 < 0.5 from (F),

 (3.20) R = max IRil = O og
 zi EA, n9

 The next lemma controls the number of z i in A2 U A3.

 LEMMA 3.4. Let A2 and A3 be given by (3.5). Then

 (3.21) N = I{i; z i E A2 UA31} = op (n1/2(log n)3/4).

 PROOF. Clearly

 (3.22) N - Bin(n, PJ)

 where

 4 4 4 4

 Pn = K{A2} + K{A3} = K{A2i} + ZK{A3i} I Pni +Pni
 i=1 i=1 i=1 i=1

 A2i is the intersection between A2 and the i-th quadrant and A3 the intersection
 between A3 and the ith quadrant. The lemma will follow if we establish that,
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 for i = 1,...,4,

 (2) = ? (?nlo0(g ))

 (on)12+ylog ((log ni)Y + 1/77)
 (3.23) = O (1/2 )

 O((log n) 1/2 + -y)

 wherey < y' < 1, and

 (3.24) Pn3 = ?(En)

 We will only consider i = 1 (the other cases being similar). Formula (3.23) is
 established with similar reasoning as in (B.5)-(B.7). In order to prove (3.24), it
 follows as in the proof of Theorem B. 1 that

 A31 = {z; x > 0, y > 1, 2(G(x) - 0.5) (F(y) - 0.5) < Lz(En) - Lz(O) + P'En}

 C {z; x > 0, 2(G(x) - 0.5) (F(1) - 0.5) < (EGIX - XI flffI + P')En}

 C {z; x > 0, G(x)-0.5 < (C1 + C2X)en}

 c {z; 0 < x < 1, G(x)-0.5 < (C1 + C2)cn}

 U {z; x > 1, (C1 + C2x)en > G(1) -0.5,

 for some positive constants C1 and C2. Hence,

 P(3) < (Cl + C2)En + PG (X > G C - C, < C'Eni

 for some positive constant C'. O

 LEMMA 3.5. With /3n and /3n as defined by (3.6) and (3.8),

 (3.25) 3n - 3n = op(n-1/2) as n -* oo.

 PROOF. Set H(s) = H(z)(1) (cf. Lemma 3.1) for short. It then follows from the

 definition of /3n and An and from (3.10) that

 (3.26) 13On-f3n I < S + R + max(H([n/2 + 1] +N)-H([n/2 + 1]), H([n/2 + 1])-H([n/2 + 1] - N))

 By Lemmas 3.2 and 3.3, the first two terms in (3.26) are op(n-1/2). It thus
 remains to investigate the last term. We confine ourselves to H([n/2+11+N) -
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 H([n/2 + 11) since the treatment of H([n/2 + 1]) - H([n/2+] - N) is similar. We first
 notice that

 IH([n/2 + 1] +N) -H([n/2 + 1])< IH([n/2 + 11) + IH([n/2 + 1] +N)I

 = op(n 1/ ) + IH([n/2+ ]+

 by (3.12). Let e > 0 be arbitrary. Then

 P (IH([n/2 + 1] +N) I > < P(N > x/n(logn)3/4) +P (H([n/2 + 1]) <

 + P (H( [n/2+l1+v&i(1ogn)3/4) > A )

 = o(1) +P (H([n/2+1]+ /v(1ogn)3/4) > ,)

 because of Lemma 3.4 and (3.12). Choose now e' such that 0 < e' < E. Then

 P H[n/2 + 1]+vf/ (logn)3/4) > An)

 < P (H[n/2 + 1]) > i) + P [n/2 1]) < H([n/2 + 1] + A/,(1ogn)3/4) > )

 < O(1) + PN(II < v(ogn)3/4),

 where N = J{i; E'/V/i < JH(zj)j <? //i}j. However, N Bin(n,16n), where

 Pn =L($=) -L(j>) > C1 log V C2i5log4 > 1c(logn)

 where C1 and C2 are defined in (B.2), and the last inequality holds for large n,
 provided E' is chosen small enough. Therefore,

 P(N < Vn(logn)3/4) -* 0 as n -o,

 and hence we have proved that

 H([n/2 + 1] +N) -H([n/2 + 1]) = op (n- 1/2). 0

 LEMMA 3.6. Let O3n and /3n be defined by (1.3) and (3.8). Then

 (3.27) /3n - 3n = op(n-12).

 PROOF. It suffices to show that for each E > 0 there exists N such that
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 Let 0 < p < 1 and subdivide A4 into A' and A- according to whether H(z) > En
 - 4

 or H(z) < -En. By definition, /n = 3n if the following conditions are satisfied:

 fTnI < (1 - P)en, for all zi C A+ the quantities H(z ) + ( and H(z ) both ex-
 ceed (1 - P)En and for all zi e Aj both H(zi) + ( and H(zi) are smaller than
 -(1 - p)En. Therefore,

 P(i3n #3n) < P(lI3nI > (1- P)en) +P(II >? Pe,n)

 (3.28) + P min H(zi) < (1- P)en)

 + P max H(zi) > -(1- P)Enn)
 zi EA-4J

 We want to show that the RHS of (3.28) tends to 0 as n x-+ o. We know from

 Lemmas 3.1 and 3.5 that 13n = Op(n-1/2), and by the definition of ( we also have
 = Op(n-1/2). Hence, the first two terms on the RHS of (3.28) tend to zero as

 n -- 00. Since the last two terms are similar, we will only study the third. We
 first show that

 (3.29) inf Lz1(0.5 - P'en) ? (1 - p)En.
 z EA4

 If z E A, then H(z) > En and either

 (3.30) Lz(en) < 0.5 - p'en

 or

 (3.31) IYI < 1.

 If (3.30) holds,

 (3.32) Lz1(0.5 - p'en) > en > (1-p)en,

 so it remains to consider those z E A+ for which (3.31) holds. For any such z,
 and if n is large enough, we claim that

 (3.33) lxl < 2
 En

 Suppose, for instance, that z belongs to the first quadrant. Since 0 < y < 1 for
 any z satisfying (3.31), x > 2/en would imply that the line though z with slope
 En intersected the x axis at a point with x-coordinate > i/en and the y axis at a
 point with y-coordinate < -1. Hence,

 Lz(en)> >G(-) + 1(0.5-F(-1))>

 for large enough n, that is, H(z) < En. Hence, (3.33) must hold if z E A+ and
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 y I < 1. For any z e A' satisfying (3.31) we have

 Lz(En) -Lz ((1 - p)E;) > PE,, i1nPf 1z(t
 <t ? En < t< ?n

 (3.34) > n 2/en > _ / Ix'-xl dG(x'),
 J-2/en

 where f is a lower bound for f on [-6, 6]. The last inequality in (3.34) follows

 from (A.6) and the fact that, for any line through z with slope t, Itl < En, those
 points with x-coordinate in [-2/En, 2/En] have y-coordinates in [-6,6] because
 of (3.33). It is not hard to see that the integral in (3.34) can be lower bounded

 by some positive constant I when En < 1 (say), uniformly for all x. Hence, for
 any z e Al satisfying (3.31),

 (3.35) Lz((1 - p)6n) < 0. 5 - fIpen < 0 5 -P'En,

 if we choose p' so that 0 < p' < fIp. Formula (3.29) now follows from (3.32) and

 (3.35). For ease of notation, set H(z) = L-1(0.5 - P'En). Our next objective is to
 show that

 (3.36) max ILZ n - 1 (H(z )) - LZ, (H(z i)) I= Op ((log n)1/2n -1/2)

 Actually, (3.36) is a consequence of Hoeffding's exponential inequality [cf. Pol-
 lard (1984), Appendix B], which in our case implies (after first conditioning on
 z i) that

 P ILz j, n - 1 (H(z i)) - Lz, (H(z i)) I > t(n - 1)- 1/2) < 2 exp (- 2t2) .

 By definition Lz, (H(z i)) = 0. 5 - P'En, so it follows from (3.3) and (3.36) that with
 probability tending to 1,

 max Lz _, n - 1 (H(z i)) < 0. 5.

 Hence, because of (3.29),

 min H(z > mm H(z) > (1- P)-n,
 zi EA+ Z EA+

 with probability tending to 1. This shows that the third term of (3.28) goes
 to 0. S

 It is now easy to complete the proof of Theorem 3.1.

 PROOF OF THEOREM 3.1. The result follows from Lemmas 3.1, 3.5 and 3.6
 together with the central limit theorem and Slutsky's lemma. C
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 TABLE 1

 Simulation results of the repeated median slope
 estimator, applied to bivariate Gaussian data

 n-fold Finite-sample
 n Bias variance efficiency

 10 -0.0035 2.615 38.2%
 20 0.0009 1.880 53.2%

 40 -0.0006 1.670 59.9%

 60 0.0015 1.666 60.0%

 100 -0.0004 1.628 61.4%
 200 0.0007 1.627 61.5%

 300 -0.0002 1.655 60.4%

 500 0.0009 1.644 60.8%

 800 0.0010 1.620 61.7%

 1000 0.0004 1.673 59.8%

 2000 0.0005 1.825 54.8%
 3000 -0.0002 1.801 55.5%

 5000 -0.0012 1.816 55.1%

 10000 0.0006 1.747 57.2%

 20000 -0.0002 1.848 54.1%

 40000 -0.0003 1.861 53.7%

 00 0.0000 2.467 40.5%

 4. Finite-sample efficiencies. Theorem 3.1 confirms that the asymptotic
 variance of the RM slope estimator is given by the expected square of its IF.
 Therefore, when both G and F equal the standard Gaussian distribution we
 obtain the asymptotic variance 7r2/4 2.467 and the corresponding asymptotic
 efficiency 4/wr2 40.5%.

 In order to check whether this asymptotic variance provides a good approxi-
 mation to the variance of the RM slope at finite samples, we carried out a Monte
 Carlo experiment. For each n in Table 1 we generated m = 10,000 samples of
 size n and computed the corresponding slope estimates 3(k) for k = 1,... , m.
 Table 1 lists the bias

 average (d(k) - n3)
 k = 1, ..., m

 where the true 3 equals 0 by construction. It also gives the n-fold variance

 n variance (k)

 which should converge (as n tends to oc) to 2.467. The last column of
 Table 1 gives the corresponding finite-sample efficiency (in the sense of the
 information inequality).

 The Gaussian variables in the simulation were generated by means of the
 Box-Muller transform. For n < 5000, the naive algorithm for the RM slope was
 used, with computation time O(n2). These results were also confirmed with the

This content downloaded from 130.237.198.64 on Wed, 20 Apr 2016 15:21:32 UTC
All use subject to http://about.jstor.org/terms



 REPEATED MEDLAN SLOPE 1495

 fast algorithm described in Rousseeuw, Netanyahu and Mount (1993), needing

 only O(n log2 n) time. The results for n > 10,000 could only be obtained with
 the fast algorithm. The n-fold variances in the table have a standard error of
 approximately 0.025, and that of the finite-sample efficiencies is slightly less
 than 1%.

 In addition to computing the average estimated value and the n-fold variance

 for each n, we also made Gaussian Q-Q plots of the set {f3(k), k = 1, ... ,m} of
 estimated slopes. From these it does appear that the sampling distribution of

 the estimator O3n is approximately Gaussian.
 The first three lines of Table 1 confirm the Monte Carlo results of Siegel

 [(1982), page 243] and Johnstone and Velleman [(1985), page 10511, who found
 that for n < 40 the finite-sample efficiencies are increasing with n. In the next
 lines of the table, we see that the efficiencies stay around 60%-61% for n up to
 about 1000, after which they slowly decrease. For n around 40,000, we obtain
 54%. A way to explain these high finite-sample efficiencies is by looking at the
 proof of the asymptotic normality, in which the remainder term tends to zero
 at a very slow rate. The underlying cause for this is the slow convergence of
 K6 to Ko. As a consequence, unusually large samples are needed before the
 finite-sample efficiency comes close to its asymptotic limit of 40.5%.

 In conclusion, the RM slope estimator performs much better at finite samples
 than would be expected from its asymptotics. More information on the finite-
 sample behavior of this estimator can be found in Rousseeuw, Croux and Hbssjer
 (1994), including data-based approximations to the influence function and a
 numerical study of the function H defined in the beginning of Section 2.

 REMARK. The efficiency of the RM method could still be increased by re-
 placing the outer median in (1.3) by an M-estimator. In the notation of Section
 2, T1 remains the median whereas T2 becomes an M-estimator. If T2 has a 50%
 breakdown point, so will the resulting slope estimator. We carried out a small
 simulation for n between 10 and 200 with the same setup as in Table 1, using a
 scale-equivariant one-step Huber estimator with bending constant 1.5 for T2.
 The resulting Monte Carlo variances were roughly 12% lower than those of the
 plain RM slope.

 5. Weaker assumptions on the carrier distribution. Our assumptions
 on the carrier distribution G in Theorem 3.1 are quite restrictive, and we will
 now discuss what happens when these conditions are relaxed. First of all, (3.1)
 still holds if

 (5.1) C1 Ix <? g(x) < C2 x|T

 holds in a neighborhood of 0 for some T > 0 and C1, C2 > 0. The reason is that the
 number of observations in A1 still dominates the number of observations inA2 U
 A3, and Lemma 3.2 can also be pushed through with small changes. However,
 if there exist a < 0 < b such that G{(a, b)} = 0 and G has a density to the right
 of b and to the left of a such that g(b+), g(a-) > 0, then Ko has a two-point
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 distribution concentrated at (a, 0) and (b, 0). The techniques of Theorem 3.1

 cover only the case when Ko is a one-point distribution, so a separate proof is
 needed to verify that (2.19) still holds.

 Another extension is to allow G to have point masses. In this case we have

 xi = xj for some i 7 j with positive probability and we define

 H(z )= med h(z i, zj),
 J,xj i xi

 which leads to

 (5.2) H(z) = med(h(z, Z) I X 7 x)

 with z = (x,y) and Z = (X, Y), and, after some calculations,

 (5.3) sgn(H(z)) = sgn((F(y) - ) (G(x-)+G(x) 1))

 Note that (5.2) and (5.3) agree with (2.7) and (A.3) when G({x}) = 0 [assuming
 F(0) = G(0) = 0.5 in (A.3)]. The proof of Theorem 3.1 goes through with only tech-
 nical changes when all point masses of G are outside (G-1(0.5 - 8), G-1(0.5 + 8))

 for some 6 > 0. This is because H(z i) and H(z i) are unchanged for all "interest-

 ing" data points z i E A1 provided n is so large that [-En, 6n] [cf. (3.4)] contains
 no point masses of G.

 If G has a point mass at its median the situation changes. Assume, for in-
 stance, G(0-) = 0.5 - 8' and G(0) = 0.5 + 8", with 8', 8" > 0. If 8' = 8" it follows
 from (5.3) that {z; H(z) = 01 = {z; xy = 01. It is easy to see that the points
 along the y axis will soon dominate the set {z; H(z)W < c} as E -> 0, so that
 Ko = 60 x F. In particular, the support of Ko becomes the whole y axis. If on the
 other hand 8' 6 8" it again follows from (5.3) that {z; H(z) = 01 = {z; y = 0} and
 the support of Ko becomes the whole x axis. (In this case a more refined analysis
 is needed to find the exact form of Ko.) Observe, however, that formula (2.19)
 is no longer valid when supp(Ko) contains points where G has a point mass,
 because the analysis in Section 2 requires that the double sum in (2.2) is taken

 over all i 7Lj such that IF'(H(zi)) 7 0. Therefore, a separate formula has to be
 worked out for the influence function when G has a point mass at its median.

 A further generalization is to fixed design, that is, suppose xl, . . . , xn are all
 fixed. This implies that {z i} are independent but not identically distributed
 random variables. We conjecture that if the empirical distribution

 G 1 n i n

 i=1

 converges weakly to some distribution G, the influence function of the estimator
 becomes the same as for a random design with carrier distribution G. The proof
 of Theorem 3.1 made use of Bahadur representation theorems (Lemma 3.3) and
 exponential inequalities (Lemmas 3.2 and 3.6) for independent and identically
 distributed random variables. In the fixed-design case one has to use similar
 theorems for independent and nonidentically distributed random variables.
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 APPENDIX A

 In this appendix we establish a number of properties of the distribution L,
 introduced in Section 2. Its distribution function may be written

 (A. 1) Lz(t) =P P(h(z, Z) < t) = L(z, t).

 For the slope kernel function this becomes:

 Lz(t) = j (1 - F(y + t(x' - x)) dG(x')

 (A.2)

 + j F(y + t(x' - x)) dG(x').

 We then have the following theorem.

 THEOREM A.1. Suppose that a = = O in (1.1), with the error and carrier
 distributions satisfying conditions (F) and (G) of Section 3.

 (i) The function H(z) then satisfies

 (A.3) sgn(H(z)) = sgn(xy),

 and

 (A.4) L-1(0.5) = med H(Z) = 0.
 Z-K

 (ii) Moreover, there exists d > 0 such that L(z, t) is a Cl-function on Qd X R
 [cf. (2.17)], with

 ax t J f (y + t(x' - x)) dG(x')

 - t jf (y + t(x' - x)) dG(x') + (1 - 2F(y))g(x),

 (A.5)
 DL(z, t) _ x"G'

 ay =- f (y + t(x' - x)) dG(x
 0.0

 + f (y + t(x' - x)) dG(x')
 x

 and

 (A.6) &L(z, t) 7 t) = Ix -xlf(y+ t(x' - x))dG(x'), at 00~~~~x -X,~y Xi
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 and, in particular, 1(0,0) = f(O)EGIXI. Moreover, for each z e R2, (A.5)-(A.6)
 hold; l,( ) is the density of Lz( ); and lz(t) > 0 for all t.

 (iii) The function H is C'-differentiable on Qd, with

 (A.7) (AH(z) aH(z) a (&L(z, t)/9x &L(z, t)/Oy
 *Ax ' Dy J &9L(z, t)/9t' aL(z, t)/&t t _=_H

 (iv) The density function lz(H(z)) is continuous onQd.

 (v) If 0 < E < 0.5 and lI = [0.5 - E, 0.5 + E], there exist positive numbers L and
 L such that

 (A.8) 1 = inf Ilz (L;1(u)) I> 0
 (Z, U) E Qd X IE

 and

 (A.9) = sup sup l(t2) - lz(tl)l <
 Z E Qd tlit2 t2 tl l

 (vi) If rq is defined as in (F), there exists a positive constant C such that

 (A. 10) llz(H(z)) - lo(O)l < Clzl'?

 as soon as lzl <d.

 For the proof we refer to Hossjer, Rousseeuw and Croux (1992).

 APPENDIX B

 In this Appendix we consider the distribution

 (B. 1) L(t) = PK(H(z) < t),

 and we formalize the statement, made in Section 2, that the density of L is
 infinite at 0:

 THEOREM B.1. Under the same assumptions as in Theorem A.1, there exist
 positive constants C1 and C2 such that, for small enough E > 0, it holds that

 1 1
 C1e log - < L{ [0, El} < C2E log -,

 (B.2) C
 1 1

 C1elog- < L{[-E,0] } < C2E log0
 C C

 PROOF. Given E > 0, letA = {z; JH(z) < E} and let A.4 be the intersection
 between A, and the ith quadrant. Since sgn(H(z)) = sgn(xy), it suffices to show
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 that

 (B.3) CpElog- <K{Ajj} < -C2elog- fori= 1, ..., 4,
 6 - 2 6

 with C1 and C2 the same positive constants as in (B.2). We confine ourselves to
 A61 (the other cases being similar). Suppose therefore in the rest of the proof
 that z lies in the first quadrant. Then H(z) > 0 by Theorem A. 1(i), and H(z) < E

 is equivalent to L(z, 6) > 0. 5, since lz( ) > 0 by Theorem A.1(ii). Moreover, since

 L(z, 0) = (1 - G(x))F(y) + G(x)(1 - F(y))

 = 0.5 - 2(G(x) - 0.5) (F(y) - 0.5),

 it follows that

 (B.4) A,1 C {z; x,y > 0, 2(G(x) - 0.5) (F(y) - 0.5) < L(z, 6) - L(z, 0)}.

 Choose d > 0 so small that G has a density lower-bounded by g > 0 and upper-

 bounded by g < oo on [-2d, 2d]. Let also f > 0 be a lower bound for f on
 [-2d, 2d]. From (B.4) we obtain [since l(z, t) < ?1 f IIoOEGIX - xI by (A.6)],

 A6i C { z; x,y > 0, 2(G(x) - 0.5) (F(y) - 0.5) < II f looEGIX - xI6}

 C {z;0<x,y<d,2gfxy< IfIjocEGtX-dte}

 u {z; 0<x<d,y>d, 2g(F(d)-0.5)x< llfllooEGIX-dl6}

 U {z; x > d, 0 < 2(G(d) - 0.5)(F(y) -0.5) <lflloo(EGXl +x)E}

 1A I UA2 UA3.

 Clearly, with C = Il fl oEGX - dI/(2gf), and E so small that E < d2IC,

 KfAj I < F lJ (O,dA5 X]g(x) dx

 (B.5) x
 Cel /dd d 1

 < 11 f Ilod] g(x) dx + 11 f lloC -g(x) dx
 O C~~~~~El/d X

 d2 ~~~1
 ?< lIf IIC9CE + laf1j ,|kCelog - < C'E log-.

 If instead C = lI f t o1EG IX - d 1 /(2(F(d) - 0. 5)g), then

 (B.6) K{A2} < G{ [0, CE] } < gCe.
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 Next, we can find constants C3, C4 > 0 such that 0 < F(y) - 0.5 < (C3 + C4x)E

 whenever z C A3, and hence

 (B.7) KtA3} < j(C3 + C4x)9g(x)dx < (C3 + C4EGIX) E

 The second inequality in (B.3) now follows from (B.5)-(B.7). The first inequality
 is established in a similar manner. First, a positive lower bound for l(z, t) is

 obtained for z e (O,d) x (0, d) and 0 < t < c. Then one shows that K{Aej n
 (0,d) x (0,d)} > C1 log(1/e), for some constant C1 > 0. More details can be
 found in Hossjer, Rousseeuw and Croux (1992). 0
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