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Abstract

We consider detection and identi�cation of a moving target, using a net-
work of sensors. The target emits a signal; a stationary stochastic pro-
cess corrupted by additive noise, independently across sensors. Before inter-
sensor communication, all sensors reduce external data as energy over dis-
joint frequency bands and time blocks. One sensor, the internal fusion center
(IFC), gathers feature vectors from the other sensors, possibly after message
passing. Using Bayesian decision theory, it decides for presence or absence of
the target and computes a maximum posterior estimate of target (trajectory
and spectral) parameters. The main novelties of the paper are: 1) To apply
statistical theory of missing data to an inter-sensor communication protocol
which censors weak signals before transmission and an imperfect channel in
which some transmitted signals are lost. A Naive Bayes approximate detector
is de�ned, which requires recursive computation of reception probabilities.
2) To derive asymptotic approximations of the distribution of the spectral
feature vectors and a Laplace type approximation of the detector. The per-
formance of the proposed Bayesian detector is shown in a simulation study
to be only slightly inferior to that of an ideal Bayesian detector (with no
missing data), as well as superior to a naive detector.
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ternal fusion center, missing data, routing, periodogram, sensor network.
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1 INTRODUCTION

Over the last decades, decentralized signal processing with fusing of infor-
mation has gained considerable attention, as reviewed in [2], [30], [32] and
[33]. The original applications were in radar ([28]), driven by the need to de-
crease communication cost. More recent applications involve wireless sensor
networks ([5]). A distributed network consists of a number of sensors which
quantize/compress received data locally before transmitting it to a common
internal fusion center (IFC), which in this paper is one of the sensors. The
IFC gathers information in order to detect a signal from a target, so called
distributed detection ([29],[30]) and possibly also estimates attributes of
the target, so called distributed estimation ([7]). This may include posi-
tion and velocity (target tracking) and emitted frequencies (target identi�ca-
tion). An alternative strategy, when no IFC exists, is to exchange messages
between sensors in order to reach consensus about a common decision ([27]).

Our motivating application is underwater surveillance, although the method-
ology applies more widely. In more detail, the objective is short-term time-
critical underwater exploration and protection of an area surrounding e.g.
a harbor or other installation, using a network of wireless acoustic sensors.
The target represents a potential threat, such as a submarine or diver. Other
potential applications are detection and localization of chemical spills or de-
tection of changes in wildlife populations.

To this end, we propose a model for combined distributed detection and esti-
mation of a moving target by means of a network of synchronous sensors that
individually lack array-processing capacity. The sensors receive attenuated
time delayed versions of a possible stationary signal emitted from a target,
corrupted by additive noise. The IFC operates within a time window, during
which the target is assumed to move linearly, and employs Bayesian decision
theory, incorporating the possibility to discriminate between several possible
types of targets. The framework is quite general, since it involves both data
compression of raw sensor measurements, data communication, detection and
estimation. Data compression is achieved by dividing the time window into
short time blocks, and sensors convert raw data into feature vectors during
each time block. These are functions of the periodogram and contain esti-
mated signal energies over disjoint frequency bands in the spectral domain.
For the underwater application, raw signals are typically sampled at rate 103

Hz; time blocks are of the order 1 second and the time window of the order
10 seconds.

After feature vector extraction, distributed detection incorporates two types
of missing data:
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a) In order to increase life-time of power supply, feature vectors are censored
and transmitted only when they signify presence of a target.

b) The communication channel is unreliable due to additive noise, multi-
plicative fading or lost messages.

The censoring problem a) has been studied, for instance, in [1] and [26]. For
distributed detection, each sensor should optimally censor messages based on
the likelihood ratio when the pure noise and target signals are independent
across sensors, with a known distribution. If the target signal distribution
involves unknown parameters, a robust minimax or a generalized likelihood
ratio approach can be employed, provided data is independent across sen-
sors. We apply a somewhat simpler and intuitively appealing censoring rule:
Signals with large enough energy over the studied spectral domain are trans-
mitted, which under certain assumptions is asymptotically optimal. In [25],
locally optimal and feedback censoring rules are derived for hierarchical sen-
sor networks.

For distributed estimation, [10] and references therein consider optimal linear
data compression of raw data, using various types of regression models. Some
rather general results on optimal data reduction are obtained in terms of
minimizing sum of variances of estimated parameters. Optimal censoring
rules are derived in [21] for linear models, within a maximum likelihood
and Bayesian maximum aposteriori framework, using optimization with the
amount of transmitted messages as side constraint. These results are not
directly transferable to our setting though, since our spectral feature vectors
are nonlinear functions of raw data and we consider distributed detection
and estimation jointly.

As reviewed in [6], there are various ways of handling b), depending on
whether sensors have complete, partial or no knowledge of the channel. In our
case we assume that the additive noise distribution is estimated from training
data, with some lost messages. We therefore employ message passing within
the network, not only for transmitting messages to the IFC, but also for for
reducing transmission losses. To this end, we use a simple routing protocol
with four rules by which no sensor forwards the same feature vector twice,
too old messages are not forwarded and a binary routing matrix prescribes
which pairs of sensors that forward each others feature vectors.

The �rst novelty of our approach is to apply the statistical theory of miss-
ing data, as outlined in [18] and [11], to distributed detection. Since our
routing rules are independent of transmitted feature vectors, data with no
censoring is Missing Completely at Random (MCAR). Then the missingness
mechanism can be ignored and it su�ces to know the distribution of feature
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vectors. Alternatively, if some messages are censored, data is Not Missing
at Random (NMAR). Then reception probabilities of feature vectors have
to be included in the likelihood. To this end, we devise a recursive algo-
rithm for computing these probabilities in Appendix E. Dependence across
sensors makes the Bayesian detector much more complicated, requiring sum-
mation over all possible sent but lost messages. For this reason we make a
simplifying so called Naive Bayes independence assumption. Even though
this involves some loss of information, it is known that NB classi�ers often
perform surprisingly well ([8],[13]).

As a second novelty we provide new results on the asymptotic multivariate
normal distribution of periodogram based feature vectors, as detailed in Ap-
pendix C. These are used to de�ne an approximation of the optimal Bayes
detector and maximum a posteriori (MAP) estimator. We then introduce
a second layer of approximation: Within our joint detection and estimation
framework, the null hypothesis (no target) is simple, whereas each of the
the alternative hypotheses (presence of a target of one of several possible
types) is composite. The Bayes detector therefore requires numerical evalua-
tion of a high-dimensional integral, which is facilitated using a Laplace type
approximation (Appendix D).

In a simulation study, we compare detection and estimation performance of
the Bayes detector with 5% sent feature vectors, the ideal detector with a
full data set at the IFC and a naive detector, also with 5% sensor activity,
but sensors only communicate individual decisions to the IFC, not feature
vectors.

In Section 2 we introduce the statistical model for emitted and received sig-
nals. Data compression, message passing and data transmission is presented
in Section 3, whereas distributed detection and estimation is treated in Sec-
tion 4. The simulation study is presented in Section 5, possible extensions
are discussed in Section 6 and the technical results are gathered in the ap-
pendices.

2 STOCHASTICMODEL FOR OBSERVATIONS

2.1 Emitted and Received Signals

Let Xt be the signal emitted from the target at time points t ∈ Z =
{. . . ,−1, 0, 1, . . .} sampled at 103−104 Hz. We assume that Xt is a zero mean
stationary Gaussian process with covariance function CX(n) = Cov(Xt, Xt+n)
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and symmetric spectral density

SX(ω) =
1

2π

∞∑
n=−∞

e−inωCX(n), −π ≤ ω ≤ π. (1)

Stationarity tacitly requires that important characteristics of the target, such
as speed, are more or less constant during the time window along which the
detector operates. The target passes a network with N sensors during some
time interval including time point τ and

Zjt = AjXt−Dj
+ εjt (2)

is the raw data signal received by Sensor j ∈ {1, . . . , N} at time point t. The
�rst term in (2) is the target signal, attenuated by a factor Aj and delayed
by an amount Dj, and the second term εj is noise, representing the received
signal from other sources than the target. The latter is a stationary Gaussian
process with covariance function Cεj and spectral density Sεj . Moreover, all
processes X, ε1, . . . , εN are independent, requiring that the sensors are far
apart compared to the communicative range of the other noise sources.

2.2 Target Trajectory Parameters

Let xt = (xt1, xt2, xt3) denote the target position at time point t, containing
three space coordinates. For t close to τ , we will approximate the target
trajectory by a straight line

xt = (ψ1, ψ2, ψ3) + (t− τ)(ψ4, ψ5, ψ6), (3)

corresponding to a position (ψ1, ψ2, ψ3) at time point τ , and constant velocity
vector v = (ψ4, ψ5, ψ6). The vector ψ = (ψ1, . . . , ψ6) thus contains the six
target trajectory parameters from this linear representation.

We assume that the network has gone through an initial phase of cooperative
localization ([34]), so that zj = (zj1, zj2, zj3), the position of Sensor j, is
known by all sensors. The Euclidean distance between j and the target at
time t is

δj = δj,t−τ (ψ) = ‖xt − zj‖ =

√√√√ 3∑
a=1

(ψa + (t− τ)ψa+3 − zja)2.

Since the emitted signal is assumed to be isotropic, the attenuation term
only depends on δj, adjusted for delay Dj. In the simulations we focus on

Aj = Aj,t−Dj−τ (ψ) =
A

(δj,t−Dj−τ (ψ)/δ)2 + 1
, (4)
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where δ and A as �xed constants. Here δ represents the size of the target,
whereas A depends on the size and e�ectiveness of the sensors' microphones.
The attenuation model (4) is very much related to the one used in [23], al-
though we add A as an extra parameter. The exponent 2 of the denominator
is typically used in shallow water. The theoretical results only require that
Aj is a known function of δj though. In Appendix A, we derive the Doppler
e�ect delay Dj.

2.3 Spectral Parameters

IntroduceM disjoint subintervals Ω1, . . . ,ΩM of [0, π] and de�ne correspond-
ing target spectral parameters ξ = (ξ1, . . . , ξM) and noise spectral pa-
rameters ηj = (ηj1, . . . , ηjM) as

ξm = 2
∫

Ωm

SX(ω)dω (5)

and
ηjm = 2

∫
Ωm

Sεj(ω)dω, (6)

for m = 1, . . . ,M . These parameters de�ne how the expected power of the
target signal and noise is decomposed into various frequency components. In
practice, M and {Ωj}Mj=1 should be chosen based on some apriori knowledge
of the target spectral density SX . This makes it possible adjust the detector
settings for targets known to have high energy in certain frequency bands.

3 DATA COMPRESSION AND COMMUNI-

CATION

3.1 Feature Vector

Let TBq = {t; (q−1)r+1 ≤ t ≤ qr}, for q ∈ Z denote non-overlapping time
blocks consisting of r time points. The length of a time block is typically of
the order one second, so that r is of the order 103−104. This is small enough
so that target movement within a time block may be neglected. The data
Zjq = {Zjt; t ∈ TBq} collected by Sensor j during the qth time block is to be
compressed to a feature vector Yjq and sent away if Yjq signi�es presence of
a target. In this paper we use

Yjq = (Yjq1, . . . , YjqM) (7)
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where Yjqm is the energy of Zjq within frequency band Ωm, see Appendix B
for details.

The censoring rule for j is to send Yjq if

Yjq· =
M∑
m=1

Yjqm ≥ λj, (8)

where λj is a threshold and the dotted index indicates summation over m.
It is de�ned in Section 4.2 (cf. (27)) based on the requirement

P (Yjq sent|no target present) = p, (9)

so that a proportion 0 < p ≤ 1 of feature vectors are sent in absence of a
target. A transmission rule (8) is natural since Yjq· represents the average
power of the part of Zjq which belongs to the frequency band of interest;
∪Mm=1Ωm.

3.2 Transmission and Routing

When a message with feature vector Yjq has been sent by Sensor j, it will
eventually reach the IFC with some probability, possibly after routing by
other sensors. In order to model the missingness mechanism, we introduce
Pji, the probability that a message sent by Sensor j is successfully transferred
to Sensor i without any forwarding by other sensors. We regard Pji as known
and estimated from training data. When communication and data sampling
is conducted by means of acoustic microphones and speakers, see [12], [19]
and [24], it is reasonable to choose an isotropic angular distribution of sent
messages,

Pji =

{
1, j = i,
P1{‖zj−zi‖≤δmax}, j 6= i,

(10)

where 1A is the indicator function for the event A, which equals one if A
is true and zero if it is not. It follows from (10) that all messages within a
sphere of radius δmax are received with probability P and those outside the
sphere are never received. Here δmax depends on the transmission power of
the sensors as well as the amount of absorption and scattering ([19]).

Messages are forwarded or routed using a binary N × N routing matrix
F = (Fji) and a routing protocol consisting of the following four rules:

F1 A message originally from j is forwarded by i only if Fji = 1.

F2 Fjj = 0, i.e. j does not forward any of its own messages.
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F3 No feature vectors are forwarded twice.

F4 No feature vectors older than w̄ − 2 time blocks are forwarded, where
w̄ = w1 + w3 is related to the length of a time window and de�ned in
Section IV.

Based on (10) and F1-F4, we devise in Appendix E an algorithm for com-
puting reception probabilities at the IFC.

4 BAYESIAN MODEL AND DETECTOR

In this section, we consider detection of a target as well as parameter es-
timation during a �xed time window TW = {q;−w1 + 1 ≤ q ≤ w2} of
w = w1 + w2 time blocks TBq, without loss of generality centered around
a reference time block TB0. We choose w small enough so that the target
trajectory within TW can be well approximated by a linear function (3).
Typically w is of the order 10.

4.1 Hypotheses and Priors

Our model is Bayesian (cf. [31]), with prior distribution on the various hy-
potheses (target types) as well as the parameters. We formulate the hypothe-
ses to choose between as

Hu : Target of type u at time point τ = [(1− r)/2] (11)

for u = 0, . . . , ū, with [(1 − r)/2] the mid point of TB0. Here u = 0 means
absence of a target and 1 ≤ u ≤ ū presence of a target of type u. We let

πu = P (Hu is true) (12)

denote the prior probabilities of the ū+ 1 hypotheses.

Let
θ = (ψ, ξ) ∈ Θ = R6 × [0,∞)M . (13)

denote the random vector of target parameters that include information
about trajectory as well as spectral density, cf. Sections 2.2-2.3. In absence of
a target, zero power is emitted within the frequency range ∪mΩm, leading to
ξ = 0. The target parameters ψ are then unidenti�able, although it will be
convenient (and no loss of generality) to assume ψ = 0. As a consequence,

P (θ = 0|H0) = 1. (14)
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For u = 1, . . . , ū, we assume a priori independence between target and spec-
tral parameters under Hu, giving a prior density

fu(θ) = fu(ψ)fu(ξ). (15)

For the spectral parameter vector we choose independent and gamma dis-
tributed components ξm ∼ Γ(c2

um/σ
2
um, σ

2
um/cum) under Hu, where {cum} and

{σum} are �xed hyperparameters. This gives a prior density

fu(ξ) =
M∏
m=1

(cum/σ
2
um)c

2
um/σ

2
um(ξm)c

2
um/σ

2
um−1

Γ(c2
um/σ

2
um)

exp(−cumξm/σ2
um), (16)

with Γ(·) the Gamma function, cum = E(ξm) the average and σ2
um = Var(ξm)

the standard deviation of the power of the signal emitted from a target of
type u within the mth frequency band. Alternatively, we could have used a
lognormal or inverse gamma prior or some other non-negative distribution.
However, the exact form of the prior is less important, given that the mean
and variance have been speci�ed. If no apriori knowledge about ξ is available,
a �at improper prior (constant fu) may be used.

For the trajectory parameters we use a multivariate normal distribution prior
N(mu,Σu), with density

fu(ψ) = (2π)−3|Σu|−1/2 exp(−0.5(ψ −mu)Σ
−1
u (ψ −mu)

′), (17)

under Hu, where |Σu| is the determinant of Σu.

We assume mu = (0, 0, 0,mu4,mu5,mu6) and a Block Diagonal covariance
matrix Σu = BD(Σ1:3,Σu,4:6). In this case (0, 0, 0) is a reference position
of the network, where the target is most likely positioned at time point τ ,
with prior covariance matrix Σ1:3. The a priori most likely velocity vector
(mu4,mu5,mu6) is allowed to depend on u, since di�erent targets may travel
at di�erent speed and the geometry may favour certain directions. We put
(mu4,mu5,mu6) = (0, 0, 0) when there is no apriori knowledge of target direc-
tion. When specifying the covariance matrices Σ1:3 and Σu,4:6 (of which the
latter is allowed to depend on u), the geometry of the network and perhaps
also the surrounding area should be taken into account, as well as apriori
information about target speed. In conclusion, one should make the entries
of Σ so large that fu is fairly �at over all possible trajectories of the target,
making the choice of reference position and apriori most likely velocity vec-
tor less important. Notice that the speed

√
ψ2

4 + ψ2
5 + ψ2

6 is guaranteed to be
positive, although some components of the velocity vector may be negative.
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4.2 Full Data Set

Ideally, the IFC would perform detection and estimation based on all feature
vectors

Y = {Yjq; 1 ≤ j ≤ N, q ∈ TW} = {Yjqm; 1 ≤ j ≤ N, q ∈ TW, 1 ≤ m ≤M}.
(18)

In this subsection, we will �nd useful approximations of the distribution of
Y . We assume that a time block corresponds to a duration short enough so
that movement of the target within the time block can be neglected. This
motivates the assumptions that Ai and Di are constant for t ∈ TBq, The
constant values are set to

diq = diq(ψ) = Di,rq(ψ)/r (19)

and
aiq = aiq(ψ) = Ai,r(q−diq)(ψ). (20)

The division by r in (19) assures that diq is given in block time rather than
time point units. Given these two approximations, it is shown in Appendix
C that asymptotically for large r

Y ∼ N(µ,V ) given τ = [(1− r)/2] and θ. (21)

Thus we assume that the target and noise spectra consist of frequencies large
enough to warrant that r, the sampling frequency per time block, is large
enough for a Central Limit Theorem result (21) to hold (typically, r is of the
order 103 − 104). The mean vector µ = µ(θ) = (µjqm) has components

µjqm = a2
jqξm + ηjm, (22)

the covariance matrix V = V (θ) = (Vjqm,j′q′m′) has entries

Vjqm,jq′m′ = 1{m=m′}1{q=q′}
8π

r

∫
Ωm

(
a2
jqSX(ω) + Sεi(ω)

)2
dω (23)

and

Vjqm,j′q′m′ = 1{m=m′}ρ (q′ − dj′q′ − (q − djq))
8π

r
a2
jqa

2
j′q′

∫
Ωm

S2
X(ω)dω (24)

when j 6= j′, where
ρ(d) = (1− |d|)+ (25)

can be interpreted as a correlation coe�cient, with x+ = max(0, x). It is the
fraction of overlap of two time blocks of length r at distance rd.
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Without further assumptions, we need additional parameters to characterize
the integrals in (23) and (24). However, we will make the simplifying as-
sumption that SX as well as Sεi can be regarded as constant within each Ωm.
Then

Vjqm,jq′m′ = 1{m=m′}1{q=q′}2π
(
a2
jqξm + ηjm

)2
/(|Ωm|r),

Vjqm,j′q′m′ = 1{m=m′}2πρ (q − djq − (q′ − dj′q′)) a2
jqa

2
j′q′ξ

2
m/(|Ωm|r),

(26)

making use of the de�nitions (5)-(6) of ξm and ηjm.

We can now use (21) and (23) to determine the threshold λj in (9). Indeed,
since

Yjq· ∼ N

(
M∑
m=1

µjqm,
M∑
m=1

Vjqm,jqm

)
and ajq = 0 in (26) under the null hypothesis, we obtain

λj =
M∑
m=1

ηjm + Φ−1(1− p)

√√√√2π
M∑
m=1

η2
jm/(|Ωm|r), (27)

from (9), (21) and (26), where Φ is the cumulative distribution function of a
standard normal random variable.

Under certain simplifying conditions; M = 1, asymptotic normality (21)
of feature vectors and the Naive Bayes independence assumption of Section
4.6.2, a censoring rule (9) with threshold (27) is derived from the likelihood
ratio, which, according to [1], is optimal. More generally, the optimal cen-
soring rule will depend on the unknown model parameter θ. Then (27) is a
robust choice that doesn't require any sensor to know (an estimate of) θ or
data from other sensors. In addition, such a censoring rule makes the Naive
Bayes approximation more accurate.

4.3 Received Data

Let i denote the IFC for some �xed 1 ≤ i ≤ N . The data received by i is
incomplete because of unsent, lost or not yet arrived feature vectors at the
time of detection. We assume that detection starts just after completion of
time block w3, with w3 ≥ w2, allowing for the possibility of an additional w3−
w2 time blocks to elapse outside TW before classi�cation starts. The choice
of w3 is a compromise between detector speed and detector performance. We
describe this mathematically by introducing the reception indicator variables

Rjq = 1{Yjq sent and received by i at time block w3}. (28)

Then the data available to i from TW is (R,Y rec), where R = {Rjq; 1 ≤
j ≤ N, q ∈ TW} and Y rec = {Yjq; 1 ≤ j ≤ N, q ∈ TW, Rjq = 1}.
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4.4 The Detector

Let U denote the unknown target type during TW. According to (12) we have
P (U = u) = πu. The detector operating on TW is a function Û = Û(R,Y rec)
of received data at the IFC. In order to analyze Û , we assume that Cu is the
cost of not choosing Hu when this is the true hypothesis. We wish to keep
the average cost or

Risk = E(CU1{Û 6=U})

=
∑ū
u=0CuπuP (Û 6= u|Hu)

= C0π0P (Û 6= 0|θ = 0) +
∑ū
u=1 Cuπu

∫
Θ P (Û 6= u|θ)fu(θ)dθ,

(29)
as small as possible, where Θ is the parameter space de�ned in (13) and in
the last step we used (14) and (15). The optimal Bayes detector (see e.g.
[14], Ch. 4.2) minimizing Risk is

Û = arg max{C0π0, Cuπu

∫
Θ

Λu(θ)dθ; u = 1, . . . , ū}, (30)

with
Λu(θ) = fu(θ)L(θ)/L(0) (31)

and
L(θ) = P (R,Y rec|τ = [(1− r)/2],θ) (32)

the apriori weighted likelihood ratio and likelihood function of data received
by Sensor i. The Bayesian detector (30) takes both cost, prior information
and observed data into account, and an algorithm for computing the integral
in (30) based on a Laplace type approximation, is outlined in Appendix D.
Whether Sensor i detects a target or not during TW, a Maximum a posteriori
estimate

θ̂u = (ψ̂u, ξ̂u) = arg max
θ∈Θ

Λu(θ) (33)

of θ is computed for all types of targets u = 1, . . . , ū.

Asymptotically, as the number of time points in TW grows, the Bayes de-
tector (30) is consistent (P (Û = U) → 1). Therefore, asymptotically, the
estimator (33) behaves as if U was known, and then it is asymptotically op-
timal both in a Bayesian and frequentistic (see for instance Section 6.8 of
[17]) setting.

4.5 Likelihood Function

In this subsection, we give an explicit expression of the likelihood function
(32), which is quite complicated because of the missing data problem. We
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start by describing the model for missing data. To this end, de�ne send
indicator variables

Sjq = 1{Yjq sent} = 1{Yjq·>λj}

and variables indicating successful transfer,

Iqnji =

{
1, i = j,
1{Yjq received by i after time block n|Yjq sent}, i 6= j.

We assume that all Iqnji are independent for �xed (q, n) but varying (j, i),
with

P (Iqnji = 1) = Pn−q,ji, (34)

i.e. the probability of successful transfer only depends on the pair of sensors
(j, i) and the time delay n − q. In Appendix E we show how to compute
Pn−q,ji. The independence assumption on {Iqnji} can of course be questioned.
It corresponds to a situation when the channel state between sensors varies
slowly with time.

The reception indicator variables (28) are now de�ned as

Rjq = SjqIq,w3,ji, (35)

where w3 is the time block after which detection starts (cf. Section 4.3).
In vector form, we rewrite (35) as R = S · I, where S = {Sjq; 1 ≤ j ≤
N, q ∈ TW}, I = {Iq,w3,ji; 1 ≤ j ≤ N, q ∈ TW} and · denotes elementwise
multiplication. Whereas R is known, both S and I are unknown. Indeed,
a non-received feature vector is either not sent or sent and then lost during
transfer. We therefore compute the likelihood by summing over all S ≥ R,
where S ≥ R is interpreted componentwise, i.e. Sjq ≥ Rjq for 1 ≤ j ≤ N
and q ∈ TW. This yields

L(θ) = P (R,Y rec)
=

∑
S;S≥R P (S)P (R|S)P (Y rec|S,R)

=
∑
S;S≥R P (Y ∈ AS)P (R|S)P (Y rec|Y ∈ AS,R)

(36)

where
P (R|S) =

∏
j,q

P
Rjq

w3−q,ji(1− Pw3−q,ji)
Sjq(1−Rjq), (37)

w3 − q is the time delay between sending and detection and

AS = {y = (yjqm);
M∑
m=1

yjqm
≥
<
λj if Sjq =

1
0
}
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is a subset of RNwM , corresponding to all full data sets (18) consistent with
S. Given that a feature vector is sent, we assume in (37) quite naturally that
transmission losses are independent of the feature vectors sent.

The statistical model, with all parameters, hidden variables and observed
data, is summarized in a Directed Acyclic Graph in Fig. 1.

4.6 Simpli�cations of the Likelihood

In most applications the likelihood (36) is intractable, due to the summation
over S. This has to do with the way data is missing. The statistical theory
of missing data, as outlined in the book [18], can be applied to describe this.
On one hand, transmission losses I result in data Missing Completely at
Random (MCAR). This is known not to complicate statistical analysis. On
the other hand, losses due to censoring depend on the unsent feature vectors,
cf. (8). This is referred to as data Not Missing at Random (NMAR), which
is known to complicate statistical analysis. In order to obtain a manageable
detector, we will consider two di�erent simpli�cations of the likelihood.

4.6.1 All Feature Vectors Sent

By putting p = 1, we get P (S = 1) = 1, where 1 = (1, . . . , 1). Then data
is only MCAR due to transmission losses, meaning that the missing data
can be ignored in the analysis. This is re�ected in the likelihood (36), which
simpli�es to

L(θ)
p=1
= P (R|S = 1)P (Y rec|R)
∝ P (Y rec|R)
∝ |V rec|−1/2 exp (−0.5(Y rec − µrec)(V rec)−1(Y rec − µrec)′) ,

(38)
where the proportionality constants are independent of θ and cancel out in
the likelihood ratio (31). In the last equation, µrec is the subvector of µ
and V rec the submatrix of V corresponding to received feature vectors R.
As a result, the transmission probabilities of Appendix E are not needed
(the �rst proportionality constant in (38)) and this considerably increases
the robustness of the detector/estimator. The disadvantage of p = 1 is the
increased communication and energy resources.

4.6.2 Ignoring Dependence Between Feature Vectors

Assuming a diagonal V , we ignore dependence between feature vectors, a so
called Naive Bayes approach. This implies that all Yjq (and hence also all
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Sjq) are regarded as independent, which involves some loss of information.
However, much of the information on coexistence of target signals at di�erent
sensors is still retained in the mean vector components (22), since they involve
the attenuation terms ajq. Let

Qjq = Qjq(θ) = P (Yjq· ≥ λj|τ = [(1−r)/2],θ) = 1−Φ

(λj −
M∑
m=1

µjqm)/

√√√√ M∑
m=1

Vjqm


denote the probability of sending Yjq. The independence assumption implies
that P (Y ∈ AS)P (Y rec|Y ∈ AS,R) in (36) can be written as a product∏

jq

(1−Qjq)
(1−Sjq) (Qjq(1− Pw3−q,ji))

Sjq(1−Rjq) (Pw3−q,jiP (Yjq))
SjqRjq .

By inserting this expression into (36) and interchanging the order of sum-
mation over S and product over 1 ≤ j ≤ N and q ∈ TW, we arrive at the
approximation

L(θ)
V diagonal

=
∏
jq(1−QjqPw3−q,ji)

(1−Rjq) (Pw3−q,jiP (Yjq))
Rjq

∝ ∏
jq(1−QjqPw3−q,ji)

(1−Rjq)P (Yjq)
Rjq

(39)

of the likelihood, where

P (Yjq) = (2π)−M/2|Vjq|−1/2 exp
(
−0.5(Yjq − µjq)V −1

jq (Yjq − µjq)′
)
, (40)

and µjq = µjq(θ) and Vjq = Vjq(θ) are the relevant 1 ×M subvector and
M ×M submatrix of µ and V respectively. Notice that data is NMAR in
(39), implying that the transmission probabilities of Appendix E have to be
taken into account.

5 SIMULATIONS

In this section we present simulation results showing detection performance
and estimation accuracy for a network during one time window TW. Some
general system parameters included in all simulations are listed in Table
1. We have used a network with 5 sensor nodes and maximal amount of
routing (Fij = 1 when i 6= j), cf. Fig. 2. Although the network is small we
believe the results are quite relevant for a larger network since a weak target
rarely will be observed by more than 5 sensors at a time and stronger targets
are easy to detect anyhow. Fig. 2 also shows the tracks of three di�erent
targets (numbered 1,2, and 3) during one time window. The average speed
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Table 1: General systems parameters used in all the simulations.
Symbol Value Description

r 10 000 Sampling rate per time block

w 10 Number of time blocks in a time window (w1 = 10, w2 = w3 = 0)

M 1 Number of frequency bands

N 5 Number of sensors

δ 1 m Target size

p 0.05 Communication activity

δmax 50 m Maximum internode distance for direct comm.

P 0.95 Probability of correct internode communication.

is relatively low, in the range 0.1-0.14 m/s, and therefore we neglected the
Doppler e�ect. The number of the target indicates how many nearest sensors
that are located at approximately the same distance from the target, and the
other sensors are located further away. The target is restricted to move in
two dimensions, corresponding to shallow water. Otherwise the prior of the
trajectory is fairly �at (see Table 2) with a standard deviation of 40 m and
2 m/s of the position and velocity along each of the �rst two coordinates.

We assume that all noise processes have the same distribution, η1 = . . . =
ηN =: η = (η1, . . . , ηM), kept �xed in all simulations. The spectral param-
eters have a rather �at prior, with a coe�cient of variation σ/c = 0.82 (see
Table 2). De�ne signal strength by means of the Target Signal-to-noise
Ratio

TSNR(dB)(ξ) = 10 log10

(∑M
m=1 ξm∑M
m=1 ηm

)
and the Sensor Received Signal-to-noise Ratio

SNRjq(dB)(θ) = 20 log10(ajq(ψ)) + TSNR(dB)(ξ)

of Sensor j during time block q. Since SNRjq includes both target signal
strength and closeness, it varies with time and between sensors. Since the
targets in all three scenarios do not move so much during one time window,
the SNR is almost constant. The SNR-values in the results below refer to the
largest value over all sensors and measurements periods in each simulation.

5.1 Detection Performance

In order to evaluate the performance of the proposed detection method,
Monte-Carlo simulations have been performed on the three scenarios in Fig.
2. Data from 10 consecutive time blocks are collected and routed to the upper
middle node, the IFC, with a packet loss probability of 5% within a sphere of
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Table 2: Target a priori distribution parameters.
Symbol Value Description

ū 1 Number of possible target types

m 0 Position and velocity mean.

Σ diag(402, 402, 0, 22, 22, 0) Position and velocity covariance matrix.

c 1.8 Mean signal power.

σ2 2.2 Variance of signal power.

radius 50 m, i.e. P = 0.95 and δmax = 50. The best SNR (over all sensors and
time blocks) varies between -25 dB and -10 dB, and sensors located further
away will of course experience lower SNR-values. Detection performance is
presented using receiver operating characteristic (ROC) curves, where de-
tection probability PD = P (Û = 1|H1) is plotted versus probability of false
alarm PFA = P (Û = 1|H0). Arbitrary PFA can be achieved by adjusting
C1π1/(C0π0), i.e. by varying the cost of false alarm and/or missed target

For hypothesis H0 50000 simulations have been performed, which gives a
satisfying accuracy when estimating the false alarm rate PFA. For H1, i.e.,
when a target is present, 1000 simulations have been made. The results
are presented as ROC-curves in Fig. 3-4 for di�erent SNR-values and target
scenarios. Two curves are plotted for each scenario. One curve shows the
performance of an ideal detector without data censoring where the sensors
always transmit data from all time blocks with no delay or packet loss. The
energy e�cient detector has p = 0.05, which means that it only transmits
5% of the data packets under H0. For this detector we use the independence
approximation of Section 4.6.2, with reception probabilities calculated as in
Appendix E.

Another way of presenting the results is to plot PD as a function of SNR for
a �xed PFA. This is shown in Fig. 5-7 for PFA = 0.001. These graphs also
include a third curve, which represents a trivial detector that decides H1 if
the total signal energy exceeds a certain threshold more than once during a
time window (counted over all sensors and time blocks). The trivial detector
also has 5% transmission activity under H0. In these �gures we can see that
the price for saving 95% of the communication energy consumption is a 1 dB
loss in detection performance. The trivial detector is 2 dB worse than our
(approximation of the) optimal detector.

Fig. 7 shows the detection performance for all three target scenarios in the
same graph. This graph also shows the performance for a case where the
channel deviates from the 1/δ2

j model in (4) by a log-normal variation with
2 dB standard deviation. This deviation can represent shadow fading, non-
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isotropic sources etc. A very interesting result is that the detector, designed
for a 1/δ2

j channel, performs just as well or even better when the channel
deviates from the model with a moderate log-normal fading variation. This
can be interpreted as robustness of the detector against model misspeci�ca-
tions, and is particularly apparent for weak target signals, when occasional
increase of received SNRs due to fading is particularly bene�cial. We can
also see that a target that is close to only one sensor requires 2 dB higher
receiver SNR than a target located close to three sensors in order to achieve
the same detection probability.

5.2 Localization Performance

The detection method indirectly yields a MAP-estimate (33) of the target
position (and power spectral parameters). Fig. 8-13 show how the accuracy
of the position estimate is a�ected by: SNR, the number of closely located
sensors, log-normal channel variations, and the data censoring (energy sav-
ing). Only estimates that correspond to a detected target have been used in
the simulations. Observe that the SNR-scale ranges from -20 dB to +5 dB
in these simulations, and that the scale in the graphs that show mean square
error (MSE) is in decibel. Hence, in absence of bias, an MSE of -20, 0 and 20
dB correspond to a standard deviation of 0.1, 1 and 10 meters respectively.

In Fig. 8 and 9 we can see that the energy saving does not cause any signi�-
cant degradation to the position estimate. In general, accuracy improves with
increasing SNR and number of nearest sensors. The slight non-monotonicity
of some curves for small SNRs is due to the conditioning on target detection.
However, if the channel has a log-normal deviation from the 1/δ2

j -model, the
position estimate does not improve with increasing SNR, which can be seen
in Fig. 10-11. This is because log-normal channel variation is a multiplica-
tive perturbation, so a stronger signal yields a larger disturbance caused by
the channel mismatch. However, more observations of the target, either over
time or by more sensors, will give better estimates even if the channel is not
an ideal 1/δ2

j -channel.
Fig. 12 shows the bias of the position estimate, and Fig. 13 shows the ratio
of estimated and true signal power. For low SNR-values the method tends
to over estimate the signal power, and this is strongly correlated with the
bias of the position estimate. When the method believes that the target is
farther away than in reality (positive bias) the estimated signal power must
also be higher than in reality if the measured signal powers shall match the
modeled channel attenuation.
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6 CONCLUSIONS

We have proposed a framework for Bayesian distributed detection and esti-
mation of a linearly moving target. In particular, our method handles missing
data that is either not sent (to save energy) or sent and lost (due to imperfect
communication between sensors). In a simulation study, we studied the im-
pact of missing data compared to an ideal (approximately) optimal detector
with no missing data and a naive detector with much higher data reduction.
The proposed detector performed well, not very much worse than the ideal
one. This indicates that the simplifying Naive Bayes assumption of Section
4.6.2 did not severely reduce performance. In addition, our detector was
robust towards multipath fading.

Within the proposed model, several extensions are possible: It is of interest
to conduct more extensive simulations based on multiple targets (ū > 1)
and/or multiple frequency windows (M > 1). Moreover, the performance of
detector under various real data scenarios (such as for instance described in
[9]) should be investigated.

A number of model extensions are also possible. The assumed independence
of ε1, . . . , εN could be relaxed, implying that the covariances (24) include
noise terms as well. We conjecture that this would not degrade the per-
fomance of the Naive Bayes detector a lot, since it assumes independence
across sensors anyway. For target identi�cation, we have concentrated on
feature vectors (B.2) based on the periodogram, which is simple and well-
established in signal processing. However, other feature vectors can easily
be incorporated into the detector (to handle e.g. cyclostationarity), once the
(asymptotic) distribution (21) is worked out. Simultaneous detection and
parameter estimation of several targets could be achieved by enlarging the
dimensionality of the parameter vector θ. In order to make such an approach
computationally feasible one could for instance drop the velocity parameters,
assuming each target to be �xed during a time window. We have ignored
sending, reception and computational times in comparison to transmission
times. If these assumptions fail, the transmission probabilities in Appendix E
are a�ected, because of increased delays. We have also assumed that feature
vectors are observed with perfect accuracy, ignoring the impact of quanti-
zation ([4]). Optimal fusion rules are derived in [15] and [23] for binary
quantized data when complete or partial channel information is available to
the sensors. Another extension is explicit modeling of lognormal channel
variation due to multipath propagation ([16]). The simulations suggest that
this could improve parameter estimation, whereas detection performance is
marginally a�ected by channel variation. Finally, sequential detection is pos-
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sible, using decisions and parameter estimates from several possibly overlap-
ping time windows {TWk}, where parameter estimates from TWk−1 are used
as input for the IFC at TWk. This would allow for nonlinear target trajec-
tories, using di�erent linear approximations within di�erent time windows.
See [20] and [21] for Kalman �ltering approaches when some information is
lost e.g. due to inter-sensor communication.

APPENDICES

A Signal Delay

We will verify that

Dj = Dj,t−τ (ψ) =
v · (zj − xt)
v2
water − ‖v‖2

+

√√√√( v · (zj − xt)
v2
water − ‖v‖2

)2

+
δ2
j,t−τ

v2
water − ‖v‖2

,

(A.1)
where · is the scalar product in R3, v the velocity vector of the target and
vwater the sound speed in water. To this end, we solve Dvwater = ‖xt−D−zj‖
with respect to D > 0. Squaring both sides of this identity and rewriting,

D2v2
water = ‖xt−D − zj‖2

m
D2v2

water = ‖(xt − zj)−Dv‖2

m
D2v2

water = D2‖v‖2 + 2D(zj − xt) · v + δ2
j,t−τ ,

we get a quadratic equation in D whose only positive solution is (A.1).

B De�nition of Feature Vectors

The feature vector (7) of the received signal at Sensor j and time block q is
based on the energy spectrum of the received signal after FFT, although other
choices are possible. In more detail, we start estimating SZj

(ω) = SAjX(ω)+
Sεj(ω) from time block q by (2π)−1 times the periodogram ([3]) at the Fourier
frequency ωu = 2πu/r closest to ω, where u ∈ {−[(r− 1)/2], . . . , [r/2]} is an
integer. That is,

ŜZj ,q(ω) =
1

2πr

∣∣∣∣∣∣
∑
t∈TBq

Zjte
−itωu

∣∣∣∣∣∣
2

, (B.1)
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for all ω ∈ (ωu − π/r, ωu + π/r]. Then de�ne

Yjqm = 2
∫

Ωm

ŜZj ,q(ω)dω =
4π

r

∑
u;ωu∈Ωm

ŜZj ,q(ωu). (B.2)

In the last equality we assumed for simplicity that the boundary points of
each Ωm are located halfway between two neighboring Fourier frequencies.

C Distribution of Feature Vectors

We will concentrate on (23)-(24), since (22) is much easier to establish and
asymptotic normality (21) can be deduced from the Central Limit Theorem
as r →∞. The main technical result is:

Proposition 1 Assume that {Wt; t ∈ Z} is a stationary Gaussian process

with E(Wt) = 0 and covariance function Cw satisfying∑
n∈Z
|n||CW (n)| = C1 <∞. (C.1)

Let Ω1 and Ω2 be two interval subsets of [0, π] and put Yj = 2
∫

Ωj ŜWj
(ω)dω,

j = 1, 2, where Ŝj(ω) =
∣∣∣∑r

t=1Wt+rdje
−itωu

∣∣∣2 /(2πr) is an estimated spec-

tral frequency at ωu, the Fourier frequency closest to ω and d1, d2 are �xed

numbers. Then

Cov(Y1, Y2) =
8π

r
ρ(d)

∫
Ω1∩Ω2

S2
W (ω)dω + o(r−1), (C.2)

as r →∞, where d = d2 − d1 and ρ(·) is de�ned in (25).

In the proof of Proposition 1 we will use the following result:

Lemma 1 Assume that W = (W1,W2,W3,W4) ∼ N(0,C), where C =

(Cij)
4
i,j=1. Then

Cov(W1W2,W3W4) = C13C24 + C14C23. (C.3)

Proof. Let A = (Aij) any square root of C, i.e. C = AAT . Write
W = AXT , where X = (X1, X2, X3, X4) ∼ N(0, I4) has a four-dimensional
standard normal distribution. Then

E(W1W2W3W4) = E
(∏4

i=1

∑4
j=1 AijXj

)
=

∑4
j1,...,j4=1A1j1A2j2A3j3A4j4E(Xj1Xj2Xj3Xj4)

= C12C34 + C13C24 + C14C23,
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where the last step follows after some computations using that E(Xj1Xj2Xj3Xj4)
equals 3 if j1 = j2 = j3 = j4, 1 if j1 = j2 6= j3 = j4, j1 = j3 6= j2 = j4 or
j1 = j4 6= j2 = j3 and 0 otherwise. Finally, the lemma follows from

Cov(W1W2,W3W3) = E(W1W2W3W4)− C12C34.

2

Proof of Proposition 1. Without loss of generality we put d1 = 0 and
d2 = d. Notice that

Cov(Ŝ1(ωu), Ŝ2(ωv)) = 1/(4πr2)
∑
t1,...,t4=1 Cov (Wt1Wt2 ,Wt3Wt4) e

i(t1−t2)ωu+i(t3−t4)ωv

= 1/(4πr2)
∑
t1,...,t4=1CW (t4 − t1)ei(t1ωu−t4ωv)CW (t3 − t2)ei(t3ωv−t2ωu)

+1/(4πr2)
∑
t1,...,t4=1CW (t3 − t1)ei(t1ωu+t3ωv)CW (t4 − t2)e−i(t2ωu+t4ωv)

= |Fuv|2 + |Guv|2,
(C.4)

where 1 ≤ t1, t2 ≤ r, rd + 1 ≤ t3, t4 ≤ rd + r and in the second equality we
used Lemma 1. In the last equality

Fuv =
1

2πr

∑
t1,t4

CW (t4 − t1)ei(t1ωu−t4ωv)

and

Guv =
1

2πr

∑
t1,t3

CW (t3 − t1)ei(t1ωu+t3ωv),

where 1 ≤ t1 ≤ r, rd+ 1 ≤ t3, t4 ≤ rd+ r and |z| =
√
x2 + y2 is the modulus

of the complex number z = x+iy. Since SW is piecewise constant on intervals
(ωu − π/r, ωu + π/r), we �nd that

Cov(Y1, Y2) = (4π/r)2∑
u,v Cov(Ŝ1(ωu), Ŝ2(ωv))

=:
∑
a I(a) + II,

(C.5)

where the double sum is over all (u, v) such that ωu ∈ Ω1, ωv ∈ Ω2 and

I(a) = (16π2/r2)
∑
u,v;v−u=a |Fuv|2,

II = (16π2/r2)
∑
u,v |Guv|2.

In order to analyze I(0), we notice that

Fuu = (1/(2πr))
∑
t1,t4 CW (t4 − t1)e−iωu(t4−t1)

= (1/(2π))
∑r
n=−r(1− |n|/r)CW (rd+ n)e−i(rd+n)ωu

= (1− |d|)+SW (ωu) +O(r−1),

where 1 ≤ t1 ≤ r, 1+rd ≤ t4 ≤ r+rd, t4−t1 = rd+n and in the last step we
used the de�nition (2) of spectral density. Because of (C.1), the remainder
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term is O(r−1) uniformly in u. Summing over all u such that ωu ∈ Ω1 ∩ Ω2

we get

I(0) =
16π2(1−|d|)2+

r2
(
∑
u |SW (ωu)|2 +O(1))

= 8π
r
· (1− |d|)2

+ ·
∫

Ω1∩Ω2 SW (ω)2dω + o(r−1).
(C.6)

In order to analyze I(a) for a 6= 0, we notice that

Fuv =
1

2πr

r−1∑
n=−r+1

fuv(n)CW (rd+ n), (C.7)

when u 6= v, where

fuv(n) =
∑
t1,t4;t4−t1=rd+n e

i(t1ωu−t4ωv)

= ei(ωu−ωv)e−iωvrd(ei(ωu−ωv) − 1)−1(−1){n<0}(e−inωu − e−inωv).
(C.8)

Inserting (C.8) into (C.7), we get

|Fuv|2 = (2πr|ei(ωu−ωv) − 1|)−2|∑r−1
n=−r+1(−1){n<0}(e−niωu − e−niωv)CW (rd+ n)|2

= 1{|d|≤1}(r|ei(ωu−ωv) − 1|)−2
(
|erdiωvSW (ωv)− erdiωuSW (ωu)|+O(r−1)

)2

= 1{|d|≤1}(r|ei(ωu−ωv) − 1|)−2|erdiωv − erdiωu|2S2
W (ωu)(1 +O(|u− v|/r)),

(C.9)
where in the last step we used |S(ωu)−S(ωv)| ≤ C1|ωu−ωv|, with C1 the same
constant as in (C.1). When summing over all u, v such that v−u = a, it turns
out that the remainder term on the right-hand side of (C.9) is asymptotically
negligible as r →∞. Since ωv−ωu = ωa and |e−iωa−1|| ∼ 2πa/r as r →∞,
we thus �nd that

I(a) ≈ 1{|d|≤1}16π2|erdiωa − 1|2/(r4|e−iωa − 1||2) ·∑u S
2
W (ωu)

= 1{|d|≤1}16 sin2(daπ)/(ar)2 · (∑u S
2
W (ωu) + o(r))

= (8π/r) · 1{|d|≤1}(sin(daπ)/(πa))2 ·
∫

Ω1∩Ω2 S2
W (ω)dω + o(r−1)

(C.10)
when a 6= 0, summing over all u such that ωu ∈ Ω1 and ωu+a ∈ Ω2. In order
to show that II is asymptotically negligible as r →∞, we notice that

Guv =
1

2πr

r−1∑
n=−r+1

guv(n)CW (rd+ n), (C.11)

where

guv(n) =
∑
t1,t3;t3−t1=rd+n e

i(t1ωu+t3ωv)

= ei(ωu+ωv)eiωvrd(ei(ωu+ωv) − 1)−1(−1){n<0}(e−inωu − e−inωv),
(C.12)
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and the second equality is valid when 0 < u+ v < r/2. Inserting (C.12) into
(C.11) we get

|Guv|2 = (2πr)−2|ei(ωu+ωv) − 1|−2 ·
∣∣∣∑r

n=−r+1(−1)n(e−inωu − e−inωv)CW (rd+ n)
∣∣∣2

≤ (2πr)−2 · (r/(4a))2 · (2C0)2

= C2
0/(16π2a2).

(C.13)
for 0 < u+v < r/2, with a = min(u+v, r−(u+v)) and C0 =

∑
n |CW (n)| <∞

according to (C.1). In the inequality of (C.13) we utilized |eix − 1| ≥ 2|x|/π
for 0 ≤ x ≤ π. Let II(a) = (16π2/r2)

∑
u,v |Guv|2, the sum taken over all

u, v such that min(u + v, r − (u + v)) = a. It is easy to see that |G00|2 =
|Gr/2,r/2|2 = C2

0/(4π
2) and hence II(0) = 8C2

0/r
2. Combining this with

(C.13) and the de�nition of II, we get

II =
∑r/2
a=0 II(a)

≤ 8C2
0/r

2 + (C2
0/r

2)
∑r/2
a=1 n(a)/a2

≤ 8C2
0/r

2 + (2C2
0/r

2) log(r/2 + 1) = o(r−1).

(C.14)

where n(a) = |{(u, v); ωu ∈ Ω1, ωv ∈ Ω2,min(u + v, r − (u + v)) = a}| ≤ 2a.
Combining (C.5), (C.6), (C.10) and (C.14), we �nd that (C.2) holds, with

ρ(d) = (1− |d|)2
+ + 1{|d|≤1}

∑
a6=0

sin2(dπa)

π2a2
= (1− |d|)+,

where the last equality follows from
∑
a>0 sin2(πda)/(πa)2 = d(1 − d)/2 for

0 ≤ d ≤ 1. This is a consequence of Parseval's identity, applied to the Fourier
expansion of f(x) = 1{|x|≤d}, −1 ≤ x ≤ 1. This completes the proof. 2

Corollary 1 Assume that the covariance functions of the target signal and

noise processes satisfy ∑
n |n||CX(n)| < ∞,∑
n |n||Cεi(n)| < ∞. (C.15)

Then, up to remainder terms of order o(r−1) as r → ∞, Vjqm,j′q′m′ =

Cov(Yjqm, Yj′q′m′) is given by (26) when j 6= j′ and by (25) when j = j′

and q = q′. If also

djq − dj,q+1 = o(1) as r →∞, (C.16)

then (25) holds for q 6= q′ as well.
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Proof. Recall the de�nition of Yjqm in (B.1)-(B.2). We apply Proposition 1
in order to �nd Cov(Yjqm, Yj′q′m′), with Ω1 = Ωm and Ω2 = Ωm′ . An impor-
tant observation, used throughout the proof, is that the process observed by
Sensor j within TBq is

Zj,t+r(q−1) = ajqXt+r(q−1)−rdjq + εj,t+r(q−1)

for t = 1, . . . , r. This is a consequence of the simplifying assumptions (19)
and (20).

We treat three cases separately. First, when (j, q) = (j′, q′), we let Y1 = Yjqm,
Y2 = Yj′q′m′ , Wt = Zj,t+r(q−1) and d1 = d2 = 0. Independence of X and εj
implies SW = ajqSX + Sεi and ρ(d2 − d1) = ρ(0) = 1. Hence (25) follows
from (C.2), noticing that Ω1 ∩ Ω2 equals Ωm if m = m′ and ∅ if m 6= m′.

Secondly, when j 6= j′, we putWt = Xt, d1 = q−1−djq and d2 = q′−1−dj′q′ .
Then Zj,r(q−1)+t = ajqWt+rd1 + εj,t+r(q−1) and Zj′,r(q′−1)+t = aj′q′Wt+rd2 +
εj′,t+r(q′−1). Independence of the εj and εj′-processes implies that

Cov(Yjqm, Yj′q′m′) = a2
jqa

2
j′q′Cov(Y1, Y2).

Hence (26) follows from (C.2), since SW = SX .

Finally, when j = j′ and q 6= q′, Zj,r(q−1)+t and Zj,r(q′−1)+t for t = 1, . . . , r
involve time indexes of the X- and εj-processes with di�erence of magnitude
at least |q′ − q|r ≥ r between Sensors j and j′. For the X-process, this is a
consequence of (C.16). Similarly as in the proof of Proposition 1, one then
proves that Cov(Yjqm, Yj′q′m′) = o(r−1). 2

D Laplace Type Approximation of Integrand

in (30)

Our goal is to �nd an approximation of integral
∫

Θ Λu(θ)dθ of dimension
M ′ = 6 + M appearing in the Bayesian detector (30). We use a quadratic
Taylor expansion of log(Λu) and get

Λu(θ) ≈ Λu(θ̃u) exp
(
−0.5(θ − θ̃u)Ju(θ − θ̃u)′

)
,

with θ̃u = arg maxθ∈Rp Λu(θ) and the M ′ ×M ′ matrix Ju = −(log Λu)
′′(θ̃u)

gives the curvature of − log Λu at θ̃u. Introducing the multivariate normal
random variable ϑ = (ϑa)

M ′
a=1 ∼ N(θ̃u,J

−1
u ), we get the Laplace type approx-

imation∫
Θ Λu(θ)dθ ≈ Λu(θ̃u)

∫
Θ exp

(
−0.5(θ − θ̃u)Ju(θ − θ̃u)′

)
dθ

= (2π)M
′/2|Ju|−1/2Λu(θ̃u)

∫
Θ fϑ(θ)dθ

= (2π)M
′/2|Ju|−1/2Λu(θ̃u)P (ϑ ∈ Θ),
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where fϑ is the density of ϑ and

P (ϑ ∈ Θ) = P (ϑa > 0, a = 7, . . . ,M ′). (D.1)

An analytical expression

P (ϑ ∈ Θ) = Φ

(
θ̃u · u
|uJ−1/2

u |

)

for (D.1) is possible when M = 1, with u = (0, . . . , 0, 1) the unit vector in
R7 with last entry one. When M > 1 we use a Monte Carlo approximation

̂P (ϑ ∈ Θ) =
1

B

B∑
b=1

1{ϑ(b)∈Θ}

of (D.1), with {ϑ(b)}Bb=1 an i.i.d. sample from N(θ̃u,J
−1
u ) of size B.

E Reception Probabilities

It will be convenient to introduce Iqn = (Iqnji)
N
i,j=1 and P n−q = (Pn−q,ji)

N
j,i=1.

Then (34) may be written in matrix form as

E(Iqn) = P n−q. (E.1)

Below, we describe an algorithm of simulating {Iqn}n+w̄−1
n=q recursively with

respect to n, where w̄ = w1 + w3, as in routing rule F4. Repeating this
B times we get sequences {I(b)

qn}n+w̄−1
n=q for b = 1, . . . , B and Monte Carlo

estimates

P̂ n−q =
1

B

B∑
b=1

I(b)
qn .

Introduce the reception indicator matrices Iq = (Iq,ji)
N
j,i=1, where

Iq,ji =

{
0, j = i,
1{SMjq received (without routing) by i at some time > qr|SMjq sent}, j 6= i.

Notice that all Iq,ji are independent, with

P (Iq,ji = 1) =

{
0, j = i,
Pji, j 6= i.

(E.2)

We also need the N × N 'delay' matrices Dv = (Dv,ji), for v = 0, 1, 2, . . .,
where Dv,ji is one if it takes between between v − 1 and v time blocks for a
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message sent from j to arrive at i without routing, and zero otherwise. We
recall from the introduction that only the �nite sound propagation in water is
assumed do cause delays. Hence, the time delay for pair ji is tji = δji/vwater
time point units, and consequently

Dv,ji = 1{(v−1)<tji≤v}.

Notice in particular that D0 is the identity matrix of order N .

The algorithm for generating Iqn starts by �rst generating all matrices Iq, . . . , Iq+w−1

from (E.2). Then put Iqq = D0 and recursively compute

Iqn = min

1, Iq,n−1 + Iq ·Dn−q +
n−1∑
ν=q+1

((Iqν − Iq,ν−1) · F ) (Iν ·Dn−ν)


(E.3)

for n = q+1, . . . , q+w̄−1, where 1 is anN×N -matrix with 1 entries andA·B
and min(A,B) refer to elementwise multiplication and minimum of matrices
A and B. The matrix Iq · Dn−q corresponds to messages transmitted at
time qr that arrive without forwarding between time (n − 1)r and nr. The
term ((Iqν − Iq,ν−1) · F ) (Iν ·Dn−ν) corresponds to messages sent at time qr
that arrive for the �rst time between (ν−1)r and νr, are forwarded, and the
forwarded messages arrive between time (n− 1)r and nr. When no routing
occurs (F = 0), (E.3) simpli�es to the explicit expression

Iqn = D0 + Iq ·
n−q∑
ν=1

Dν ,

so that
Pn−q,ji = Pji1{tji≤(n−q)r}.
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Figure 1: A Directed Acyclic Graph of the distributed detection problem
during a time window TW. Random quantities (random parameters or hid-
den variables) are depicted as circles, and �xed quantities (hyperparameters
or data known to the IFC) as squares. Arrows indicate probabilistic or
deterministic relationships, ξ and ψ denote target trajectory and spectral
parameters, η noise spectral parameters, m and Σ trajectory hyperparam-
eters, c = {cm}, σ = {σm}, M and Ω = {Ωm} spectral hyperparameters,
z = {zj} sensor locations, A, δ signal attenuation parameters, D = {Dj,t−τ},
A = {Aj,t−τ} delays and attenuation of received signals, r time block length,
w1, w2 time window length parameters, F, P, δmax data transmission param-
eters, w3 detector delay, X = {Xt} emitted target signal, ε = {εjt} received
noise at sensors, Z = {Zjq; 1 ≤ j ≤ N, q ∈ TW} received raw signals at
sensors, Y compressed feature vector data for ideal detector, p proportion of
sent feature vectors, S and I sent and successfully transferred feature vec-
tors, Û �nal decision on presence/type of target and {πuCu/(C0π0)}ūu=1 the
false alarm thresholds (shown for ū = 1).
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Figure 2: Simulation scenario: The red markers indicates the position of the
sensor nodes (numbered from upper left to lower right) and the tracks of
3 di�erent targets during one measurement window are indicated with the
number 1-3. The scale is in meters.

Figure 3: ROC-curves for all three scenarios, with -20 dB receiver SNR.
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Figure 4: ROC-curves for all three scenarios, with -17 dB receiver SNR.

Figure 5: Detection performance as function of receiver SNR with PFA =

0.001 for Scenario 1.
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Figure 6: Detection performance as function of receiver SNR with PFA =

0.001 for Scenario 3.

Figure 7: Detection performance as function of receiver SNR with PFA =

0.001, for all three di�erent target scenarios. The curves labeled 1h, 2h, and
3h show the performance for a scenario where the channel exhibits a log-
normal variation with 2 dB standard deviation, and the number indicates
which scenario it is.
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Figure 8: Mean square error of estimated position in the x-direction (unit 1
m2) as function of receiver SNR for all three target scenarios. Here the ideal
detector is compared with the energy e�cient (that uses data censoring).

Figure 9: Mean square error of estimated velocity in the x-direction (unit 1
(m/s)2) as function of receiver SNR for all three target scenarios. Here the
ideal detector is compared with the energy e�cient (that uses data censoring).
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Figure 10: Mean square error of estimated position in the x-direction (unit 1
m2) as function of receiver SNR. The curves labeled 1h, 2h, and 3h show the
performance for a scenario where the channel exhibits a log-normal variation
with 2 dB standard deviation, and the number indicates which scenario it
represents.

Figure 11: Mean square error of estimated velocity in the x-direction (unit
1 (m/s)2) as function of receiver SNR. The curves labeled 1h, 2h, and 3h
exhibit channel fading (see Figure 10).
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Figure 12: Bias of estimated position in the x-direction as function of receiver
SNR. The curves labeled 1h, 2h, and 3h exhibit channel fading (see Figure
10).

Figure 13: Ratio between estimated and true signal power as function of
receiver SNR. The curves labeled 1h, 2h, and 3h exhibit channel fading (see
Figure 10).
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