The contribution of alignment, duration and scaling to the perception of contrastive focus in Catalan, Italian and Spanish

M.M. Vanrell1, A. Stella2, B. Gili-Fivela3 i P. Prieto4

\textit{UPF-UAB}1, \textit{Università del Salento-CRIL}2, \textit{ICREA-UPF}4

\textit{Tone and Intonation in Europe (TIE4)}
Road Map

- Introduction
- Goals
- Methodology and results in production
 - Alignment
 - Duration
 - Tonal scaling
- Methodology and results in perception
 - Gating
 - Identification
- Conclusions
There seems to be a crosslinguistic tendency to express narrow contrastive focus (CF) through the use of retracted and higher pitch peaks (Estebas-Vilaplana 2000 for Central Catalan; Beckman et al. 2002 for Spanish; Smiljanic 2004 for Serbian and Croatian; Manolescu et al. 2009 for Romanian).
Effort Code’s prediction (Gussenhoven 2002):

- “Increases in the effort expended on speech production will lead to greater articulatory precision, but also a wider excursion of the pitch movement. [...] A frequent interpretation is that the speaker is being forceful because he believes the contents of his message are important, an informational meaning”.
- “Peak delay can therefore be used as an enhancement of, or even a substitute for, pitch raising”.

![Graph of pitch vs. time with peak delay and raised pitch highlighted]
In Catalan (Prieto et al. 2005) and in Castilian Spanish (De-la-Mota 1995; Nibert 2000; Face 2001; Hualde 2002, 2003), broad focus (BF) accents have late peaks (L+H*) while narrow contrastive focus (CF) accents have earlier f0 peaks (L+H*).
According to De-la-Mota (1995, 1997) and Face and Prieto (2007), a post-focal pitch reduction or a higher f0 peak height can be found in CF utterances.
A similar contrast is found in the varieties of Italian spoken in Pisa (Gili-Fivela, 2002, 2005, 2006, 2008) and Lecce (Stella and Gili-Fivela, 2009): as for Lecce Italian, pitch accents found in BF sentence initial position, both prenuclear and nuclear, have late peaks (L+H*), while accents found in CF have earlier f0 peaks (H*+L).
Moreover, in Pisa Italian the nuclear BF accent is higher in f0 (against the prediction of the Effort Code) and duration is greater for syllables bearing the CF accent (Gili-Fivela 2005, 2006).
Goals

○ Since Romance languages show variation in their use of pitch alignment, pitch range increase, and longer vowel duration in distinguishing between BF and CF (Face 2002 and De-la-Mota 1995 and 1997 for Spanish; Frota 2010 for European Portuguese; Manolescu et al. 2009 for Romanian; Marotta 1985 among others for Italian):

 ● **Goal 1**, to find out the specific contribution of tonal alignment, duration and tonal scaling to the expression of CF in CAT, IT and SP.
 - How can the Effort Code (informational interpretation) be inferred?
 ● **Goal 2**, to contribute to the understanding of the principles and variation of Romance intonation.
Methodology: production

- **Goal**: to compare the production of BF and CF in CAT, IT and SP.

- **Participants**: 5 native speakers of Majorcan Catalan, 5 for Leccese Italian and 5 for Madrid Spanish.

- **Context**: visually presented and elicited by means of question-answer pairs.

- **Targets**: 5 sentences x 2 focus types x 2 stress positions x 3 repetitions x 5 speakers = 300 sentences per language.
Methodology: production (material)

<table>
<thead>
<tr>
<th></th>
<th>BF</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT</td>
<td>Què t’han dit? Que na Marina vendrà demà.</td>
<td>Na Tina? No, na MARINA vendrà demà.</td>
</tr>
<tr>
<td>IT</td>
<td>Cosa ti hanno detto? Che la Melania verrà domani.</td>
<td>La Tina verrá domani? No, la MELANIA verrà domani.</td>
</tr>
<tr>
<td>SP</td>
<td>Qué te han dicho? Que Marina vendrá mañana.</td>
<td>Tina? No, MARINA vendrá mañana.</td>
</tr>
</tbody>
</table>
Methodology: production (measurements)

- H distance to the end of the accented syllable
- H height
- Duration of accented syllable
Results: production (H distance to the end acc. syll.)

Effect of focus type on H distance to the end acc. syll:

- CAT: p < .001
- IT: p < .01
- SP: p < .01

(General Linear Model, univariate)
Results: production (duration)

Effect of focus type on duration of the acc. syll:

- CAT: p > .05
- IT: p < .01
- SP: p > .05

(General Linear Model, univariate)
Results: production (H height)

Effect of focus type on H height:
p > .05 p < .05 p > .05
(General Linear Model, univariate)
Results: production (summary)

- **H distance to the end acc. syll.**: statistically significant in the 3 languages (more retracted peaks in CF).

- **Duration of the acc. syll.**: statistically significant only for IT (longer syllables in CF). There is a tendency in CAT and SP to express CF by means of longer syllables.

- **H height**: constant only for IT (lower H in CF), variability between speakers in CAT and SP (tendency to higher H).
 - IT goes against the prediction of the Effort Code confirming previous findings for Pisa Italian (Gili-Fivela 2005, 2006)\(\Rightarrow\)rising-falling accent is perceptually salient.
 - The complexity of the tonal movement prevents any increase in the height of the peak.
Methodology: perception

- **Goals:**
 - To find out the *specific contribution* of each parameter in perception,
 - To test whether there is a *direct correlation* between production and perception.

- **Participants:** 20 native speakers of Majorcan Catalan, 20 for Leccese Italian and 20 for Madrid Spanish.

- **Tasks:** gating and identification task (taking RT measurements) by means of E-prime (Psychology Software Tools Inc., 2009).

- **Tokens:**
 - Gating (2 sentences x 4 conditions x 6/7 gates x 5 blocks = 240/280 tokens).
 - Identification (7 steps x 4 conditions x 5 blocks = 140 tokens).
Methodology: perception (gating)

<table>
<thead>
<tr>
<th></th>
<th>CAT</th>
<th>Na Ma- (3/4)</th>
<th>Na Mari- (final)</th>
<th>Na Marina (1/2)</th>
<th>Na Marina (final)</th>
<th>Na Marina vendrà demà</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>La Mela- (1/2)</td>
<td>La Mela- (3/4)</td>
<td>La Mela- (final)</td>
<td>La Melania (1/2)</td>
<td>La Melania (final)</td>
<td>La Melania verrá domani</td>
</tr>
<tr>
<td>SP</td>
<td>Ma (3/4)</td>
<td>Mari- (final)</td>
<td>Marina (1/2)</td>
<td>Marina (final)</td>
<td>Marina vendrá mañana</td>
<td></td>
</tr>
</tbody>
</table>

“Normal” or “correction” declarative?

BF }/ CF
alignment | duration | scaling
BF }/ CF
alignment | duration | scaling
BF }/ CF
alignment | duration | scaling

Praat (Boersma and Weenink 2010)
Results: gating (ALI and ALI+DUR)

(Effect of the manipulated parameter on the subject responses, General Lineal Model-univariant)
Results: gating (ALI+SCA and ALI+SCA+DUR)

(Effect of the manipulated parameter on the subject responses, General Linear Model-univariate)
Methodology: perception (identification)

<table>
<thead>
<tr>
<th>CF → BF</th>
<th>alignment</th>
<th>duration</th>
<th>scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF → BF</td>
<td>alignment</td>
<td>duration</td>
<td>scaling</td>
</tr>
<tr>
<td>CF → BF</td>
<td>alignment</td>
<td>duration</td>
<td>scaling</td>
</tr>
</tbody>
</table>

“Normal” or “correction” declarative?

Praat (Boersma and Weenink 2010)
Results: Identification and RT

<table>
<thead>
<tr>
<th>ALI</th>
<th>ALI+DUR</th>
<th>ALI+SCA</th>
<th>ALI+DUR+SCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>p<.001</td>
<td>p<.001</td>
<td>p<.001</td>
<td>p<.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(General Lineal Model, univariant)
Results: Identification (slope values-logistic regression)

<table>
<thead>
<tr>
<th></th>
<th>CAT</th>
<th>IT</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALI</td>
<td>0.445</td>
<td>0.4</td>
<td>0.570</td>
</tr>
<tr>
<td>ALI+DUR</td>
<td>0.320</td>
<td>0.364</td>
<td>0.394</td>
</tr>
<tr>
<td>ALI+SCA</td>
<td>0.237</td>
<td>0.557</td>
<td>0.439</td>
</tr>
<tr>
<td>ALI+DUR+SCA</td>
<td>0.208</td>
<td>0.460</td>
<td>0.373</td>
</tr>
</tbody>
</table>
Results: Identification and RT (boundary values and RT peak)

<table>
<thead>
<tr>
<th></th>
<th>CAT</th>
<th>IT</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALI</td>
<td>2,67 / 2</td>
<td>3,86 / 4</td>
<td>1,61 / 4</td>
</tr>
<tr>
<td>ALI+DUR</td>
<td>3,24 / 3-5</td>
<td>4,06 / 3-6*</td>
<td>3,51 / 3-6</td>
</tr>
<tr>
<td>ALI+ALT</td>
<td>3,86 / 3-5</td>
<td>4,18 / 3-7</td>
<td>3,47 / 3-7</td>
</tr>
<tr>
<td>ALI+DUR+ALT</td>
<td>4,20 / 4*</td>
<td>4,02 / 3-5</td>
<td>4,22 / 3-5</td>
</tr>
</tbody>
</table>
Results: perception (summary)

- **Gating**: no need for the post-focal region to distinguish the two focus types
 - Italian listeners can recognize the focus type earlier (1/2 way through the syllable) than Catalan and Spanish listeners
 - While alignment seems to be a robust cue in production, it is the integration of the three cues what allows listeners to recognize the focus type even at the second gate.

- **Identification**: it is only with the combination of the three prosodic features that we obtain clear S-shaped curves.
 - Preferences? CAT: ALI+DUR+SCA; IT: ALI+DUR; SP: ALI+DUR+SCA.

- The results of production are highly correlated in perception (importance of Italian CF).
Conclusions

- The three languages use alignment, duration and scaling to distinguish between CF and BF:
 - Retracted peaks and longer syllables for CF accents in the 3 languages,
 - Higher peaks for CAT and SP CF accents but complex rising-falling accents as a substitute for a “salience” marker in IT (Effort Code).

- For a full understanding of how CF works in different languages, it is necessary to determine the perceptual role of the different cues involved in production.
References

Acknowledgments

A preliminary version of this work was presented at the Workshop sobre entonació del català i Cat_ToBI in Barcelona, we are grateful to the audience of these talk for their helpful comments and discussion.

All the subjects who participated unselfishly in the experiments as listeners and speakers deserve a special mention.

This research has been funded by projects FFI2009-07648/FILO and CONSOLIDER-INGENIO 2010 CSD2007-00012 (awarded by the Ministerio de Ciencia e Innovación) and by a short research stay of the Subprograma de Ayudas FPI.