On-Line Perception of Topic-Change Intonation

Meg Zellers & Brechtje Post
Research Centre for English and Applied Linguistics, University of Cambridge
Sound to Sense Project 8: Prosodic Structure and Fine Phonetic Detail
Discourse topic: a fuzzy concept from a structural point of view

- “What the unit of discourse is about”
- Could be an entity, a proposition, etc.
- Many theories exist but details don't affect this study (cf. Grosz & Sidner 1986; Wichmann 2000)

For today’s purposes: is the speaker still talking about the same thing or something different?
Background: Prosody & Topic

• Previously: production study of how speakers vary prosody in relation to topic organization of discourse – testing predictions of 2 models
 – F0 fall size (Zellers & Post, to appear)
 – Height of F0 peak? (Wichmann 2000 and others)
 – Choice of pitch accent? (Zellers et al. 2009)
Listening to Topic Prosody

• Many studies using listening paradigms to look for phonetic variation related to topic structure (e.g. Sluijter & Terken 1993, Swerts 1997)
 – Listeners identify topic boundaries fairly consistently (though never with 100% agreement); more consistent than people reading same text
 – So we know listeners are sensitive to phonetic cues correlated with topic
Psycholinguistic Approaches

• So far no on-line studies of topic structure prosody
 – What cues do listeners attend to?
 – What happens at moment listeners hear prosodic variation?

• A challenging task since many typical psycholinguistic paradigms would introduce confounds
Experimental Method

• Developing a novel method for testing processing of topic structure prosody (size of F0 falls) (cf. Zellers 2009; Zellers & Post, to appear)

• 3 tasks: different levels of processing
 – Pause detection: immediate on-line sensitivity to prosody (cf. Mattys & colleagues)
 – Sentence rating: on-line comprehension of prosody
 – Sentence memory: integration of prosodic information (cf. Almor & Eimas 2008)
Experimental Method

2x2 Latin square in two intonation conditions (high and low F0)

Listen to Context sentences

Listen to Target sentence: Topic Change Intonation

Listen to Target sentence: Topic Hold Intonation

Read sentence: Consistent w/ Topic Change

Read sentence: Consistent w/ Topic Hold

1. Pause detection

match or mismatch w/ intonation

2. Sentence rating

3. Memory task: read Target sentence, remember Read sentence
Hypotheses

Sentence ratings should be better with matched prosody

- Sentences with match to prosody should be easier to process
- They should therefore be accepted faster than sentences with mismatch to prosody
Pilot Results

• Initial sentence rating task on scale of 1 to 5: too hard
• No discernible difference in acceptability ratings, BUT for “acceptable” ratings (4 or 5 on scale), faster with matched prosody
Main Results (sentence ratings)

• Distribution of “acceptable” versus “unacceptable” apparently unrelated to prosody match
Main Results (II)

• Even if sentences are still ranked acceptable (in written form all were acceptable), perhaps mismatch of prosody influences how quickly this decision is made
 – i.e. easier to choose that it’s acceptable when it matches prosody
Main Results (III)

- Slight effect of match/mismatch when Topic Change sentence heard; only interaction significant
- No other categories significantly different (despite mismatch apparent in figure)
- Difference is small – in range of 30-70ms
Discussion

• Different results in pilot (less controlled) versus main experiment
 – Multiple prosodic cues to topic change were present in pilot (larger F0 movements, variations in speech rate and pausing)
 – More cues = more natural?
 – More cues = more certainty about what's being signalled?
Discussion (II)

- Time-course problem: for how long is prosodic information available?
 - Andruski et al. (1994): 250ms for segmental-phonetic info, so possibly decay by time of task
 - But scope of prosodic meaning is longer
- Perhaps measuring at different point in time course would yield different result
 - Referent resolution?
 - Eye-tracking experiment planned
Conclusion

• Appears to be a measurable effect of prosody, even if not where expected: listeners are sensitive to topic structure even when not asked about it explicitly.

• Difference between pilot and main experiment shows importance of using multiple cues.

Thank you!
Acknowledgements

Thank you to...
Sven Mattys
John Williams
Catherine Kitsis
Hannah Goodman
S2S researchers

This research was supported by the EC Marie Curie Research Training Network/Sound to Sense/(MRTN-CT-2006-035561).
Results: F0 Peak Height

- Height in semitones (st) from speaker’s baseline pitch
- Significant main effect of **position in utterance group**
 1>2=4>5 (ANOVA: F(3, 370)=11.74, p<0.01; no main effect or interaction with topic)
F0 Fall Range

- Distance between H* and following L valley in semitones
- Significant main effect of topic structure T>A=E>C (ANOVA: F(3, 423), p<0.01; no interactions with position, but model improved by including individual speaker differences)
Topic Structure: Hierarchy

• Grosz & Sidner (1986)
 – Topic structure = simple hierarchy
 – Discourse Segments have Discourse Segment Purposes (DSPs)
 – DSPs contribute to overall Discourse Purpose
 – “Topic” would have to be mapped to one level in an arbitrary way; could be weakness or strength of this theory
Nakajima and Allen (1993)

4 levels:
Topic Shift, Topic Continuation, Elaboration, Speech Act

• Main difference: order of categories (due to source data?)

• Wichmann (2000)
 – 4 levels (slightly different to N&A)
 Topic, Continuation, Elaboration, Reformulation
Sentence Acceptability: Statistics

<table>
<thead>
<tr>
<th>Condition</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t-value (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1403.72</td>
<td>41.13</td>
<td>34.13 (0.000)***</td>
</tr>
<tr>
<td>MatchY</td>
<td>47.83</td>
<td>31.02</td>
<td>1.54 (0.1236)</td>
</tr>
<tr>
<td>SoundTopT</td>
<td>54.57</td>
<td>31.06</td>
<td>1.76 (0.0794)</td>
</tr>
<tr>
<td>MatchY:SoundTopT</td>
<td>-109.40</td>
<td>44.14</td>
<td>-2.48135 (0.0)*</td>
</tr>
</tbody>
</table>