How attention to speech pitch is guided by its linguistic function

Bettina Braun
(University of Konstanz)

Elizabeth K. Johnson
(University of Toronto)

4th International Conference on Tone and Intonation in Europe
10.09.2010
The puzzle

• Speech stream contains
 – segmental information
 (cued by spectral changes)
 – suprasegmental, prosodic information
 (cued by duration, intensity, pitch)

• How are these two layers of information processed and integrated?
 – in production
 – in perception
 – in first language acquisition
Research question

• How do listeners process and attend to segments and pitch information?

• Is processing of pitch information influenced by language experience
 – listeners from tonal and non-tonal languages
Previous work on pitch processing

• Similarities between listeners from tonal & non-tonal languages
 – segments weighed more heavily than pitch (Cutler & Chen 1997, Ye & Connine 1999)
 – classification rate for non-speech f0-variation (Bent et al. 2006)
 – ...

• Differences regarding
 – processing of pitch level vs. contour tones (Gandour 1983)
 – lateralization of pitch processing (Wang, Jongman & Sereno 2001)
 – mismatch negativity in tone processing (Chandrasekaran et al. 1997)
 – perception of tones from another tone language (Francis et al. 2008)
 – ...
Do we need yet another study?

• Yes: Tacit assumption that lexical tones are *meaningless* (= non-linguistic) for listeners from an intonation language

• Is that really the case?

• No, pitch movements may be interpreted as
Research question *refined*

- How do listeners process and attend to segments and pitch information?

- Is processing of pitch information influenced by language experience
 - listeners from tonal and non-tonal languages

- Is processing of pitch information influenced by the role pitch plays in a given stimulus?
 - lexical information (lexical tone)
 - postlexical information (e.g., sentence type)
 - non-linguistic information
Current study

• When in conflict, do listeners rely more on segments or on pitch information?

• Is there a difference in reliance on these sources if pitch signals
 – potential lexical information
 – postlexical information
 – non-linguistic information

• ABX match-to-sample task (Dupoux et al. 1997)
 – congruent trials: X matches one of standards in segments and pitch (different token of same type)
 – incongruent trials: X matches one of the standards in pitch and the other one in segments
Experiment 1

• Processing of pitch rises that
 – are non-linguistic (Dutch listeners)
 – signal potential lexical information (Chinese listeners)
Experiment 1

- Processing of pitch rises that
 - are non-linguistic (Dutch listeners)
 - signal potential lexical information (Chinese listeners)
Experiment 1

• Processing of pitch rises that
 – are non-linguistic (Dutch listeners)
 – signal potential lexical information (Chinese listeners)

• Two listener groups
 – 8 native Dutch listeners (non-tonal dialects)
 – 8 native Mandarin Chinese listeners

• Two segmentally similar nonword pairs:
 – denu - zemu
 – mova - noba
Example of the Procedure

• **ABX task** – order of A and B counterbalanced

 – congruent condition (16 trials)

 e.g., mova-fall **denu-rise** mova-fall

 – incongruent condition (16 trials):

 e.g., mova-fall **denu-rise** **denu-fall**
Example of the Procedure

- **ABX task** – order of A and B counterbalanced
 - congruent condition (16 trials)
 e.g., mova-fall denu-rise mova-fall
 - incongruent condition (16 trials):
 e.g., mova-fall denu-rise denu-fall

1000ms 600ms 900ms

Analysis of response type (A or B) and reaction time
Rationale and Hypothesis

• **Responses:**
 – most responses along segmental dimension

• **Reaction times (RTs):**
 – RTs in congruent trials as baseline
 – increase in RT in incongruent trials suggests that pitch is attended to and competes with segmental information (interference)

• **Hypothesis:**
 – the more linguistically relevant pitch, the stronger the interference
Results: response type

- in congruent trials, no difference across languages

Condition

% classification segmental dimension

Dutch
Chinese

non-linguistic ↔ lexical
Results: response type

- In congruent trials, no difference across languages.
- In incongruent trials, Chinese listeners responded less along segmental dimension.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Dutch</th>
<th>Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congruent</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>Incongruent</td>
<td>90</td>
<td>60</td>
</tr>
</tbody>
</table>
Results: reaction times
(only responses along segmental dimension)

- in congruent trials, no difference across languages
Results: reaction times
(only responses along segmental dimension)

- in congruent trials, no difference across languages
- in incongruent trials, Chinese listeners slowed down more than Dutch listeners
Interim Summary

- **Chinese listeners (pitch is potentially lexical)**
 - significant decrease in responses along segmental dimension in incongruent stimuli
 - increase in RTs in incongruent stimuli

- **Dutch listeners (pitch is non-linguistic)**
 - no difference in responses across conditions
 - increase in RTs in incongruent stimuli (but less than for Chinese listeners)
Follow-up question

• Is processing of postlexical pitch information (also linguistically meaningful) comparable to processing of potential lexical information?

• Replication of Experiment 1 with modified materials and another set of
 – 8 Dutch listeners
 – 8 Chinese listeners
Experiment 2

• Processing of pitch rises that signal
 – paralinguistic information (Dutch listeners)
 – potential lexical information (Chinese listeners)
Results: response type

- significant interaction: Chinese listeners show effect of trial type (congruent vs. incongruent), Dutch listeners not
Results: reaction times

- in congruent trials, again no difference across languages
Results: reaction times

- In congruent trials, again no difference across languages
- In incongruent trials, Chinese listeners slowed down more than Dutch listeners
Interim Summary

- **Chinese listeners (pitch is potentially lexical)**
 - significant decrease in responses along segmental dimension in incongruent trials
 - increase in RTs in incongruent trials

- **Dutch listeners (pitch is postlexical)**
 - no difference in responses across conditions
 - increase in RTs in incongruent trials
 - but less than for Chinese
 - more than for non-linguistic pitch rises (Experiment 1)
Conclusions

• Increase in RTs in incongruent trials is modulated by linguistic function of pitch in stimuli
 – non-linguistic < postlexical < lexical
Discussion

• Non-linguistic (unfamiliar) pitch movement also increases RTs and therefore
 – is attended to
 – is stored in short-term memory
 – interferes with processing
→ Dutch listeners not ‘tone-deaf’

• Chinese listeners even classify stimuli along pitch dimension

• Even though stimuli are nonwords
Discussion

• Ability to process and store pitch information in short-term memory is dependent on
 – linguistic experience
 – precise linguistic function of pitch in stimuli

• In conflict, segments outweigh pitch information
• Although meaningful, postlexical pitch information processed differently than potential lexical information

• Future work:
 – how does sensitivity to segments and pitch develop in L1?
 – can learners of tone language acquire native-like mechanisms?
 – how is paralinguistic information processed?
Thank you for your attention