

How attention to speech pitch is guided by its linguistic function

Bettina Braun E (University of Konstanz) (U

Elizabeth K. Johnson (University of Toronto)

4th International Conference on Tone and Intonation in Europe 10.09.2010

The puzzle

- Speech stream contains
 - segmental information (cued by spectral changes)
 - suprasegmental, prosodic information (cued by duration, intensity, pitch)
- How are these two layers of information processed and integrated?
 - in production
 - in perception
 - in first language acquisition

Research question

- How do listeners process and attend to segments and pitch information?
- Is processing of pitch information influenced by language experience
 - listeners from tonal and non-tonal languages

Previous work on pitch processing

- Similarities between listeners from tonal & non-tonal languages
 - segments weighed more heavily than pitch (Cutler & Chen 1997, Ye & Connine 1999)
 - classification rate for non-speech f0-variation (Bent et al. 2006)
 - orthogonally varied pitch slows down speed of segmental classification (Repp & Lin 1990, Lee & Nusbaum 1993)
 - ...
- Differences regarding
 - processing of pitch level vs. contour tones (Gandour 1983)
 - lateralization of pitch processing (Wang, Jongman & Sereno 2001)
 - mismatch negativity in tone processing (Chandrasekaran et al. 1997)
 - perception of tones from another tone language (Francis et al. 2008)

4

Do we need yet another study?

- Yes: Tacit assumption that lexical tones are meaningless (= non-linguistic) for listeners from an intonation language
- Is that really the case?

Different results for different tones ...

- No, pitch movements may be interpreted as
 - postlexical (question vs. statement, cf. Broselow 1987)
 - paralinguistic (ignorance, sadness, cf. Braun et al. 2010)

Research question refined

- How do listeners process and attend to segments and pitch information?
- Is processing of pitch information influenced by language experience
 - listeners from tonal and non-tonal languages
- Is processing of pitch information influenced by the role pitch plays in a given stimulus?
 - lexical information (lexical tone)
 - postlexical information (e.g., sentence type)
 - non-linguistic information

Current study

- When in conflict, do listeners rely more on segments or on pitch information?
- Is there a difference in reliance on these sources if pitch signals
 - potential lexical information
 - postlexical information
 - non-linguistic information

- ABX match-to-sample task (Dupoux et al. 1997)
 - congruent trials: X matches one of standards in segments and pitch (different token of same type)
 - incongruent trials: X matches one of the standards in pitch and the other one in segments

- Processing of pitch rises that
 - are non-linguistic (Dutch listeners)
 - signal potential lexical information (Chinese listeners)

- Processing of pitch rises that
 - are non-linguistic (Dutch listeners)
 - signal potential lexical information (Chinese listeners)

- Processing of pitch rises that
 - are non-linguistic (Dutch listeners)
 - signal potential lexical information (Chinese listeners)
- Two listener groups
 - 8 native Dutch listeners (non-tonal dialects)
 - 8 native Mandarin Chinese listeners
- Two segmentally similar nonword pairs:
 - denu zemu
 - mova noba

Example of the Procedure

- ABX task order of A and B counterbalanced
 - congruent condition (16 trials)
 e.g., mova-fall
 denu-rise
 mova-fall
 - incongruent condition (16 trials):
 e.g., mova-fall denu-rise denu-fall

Example of the Procedure

- ABX task order of A and B counterbalanced
 - congruent condition (16 trials)
 e.g., mova-fall
 denu-rise
 mova-fall
 - incongruent condition (16 trials):
 - e.g., mova-fall denu-rise

e denu-fall

Rationale and Hypothesis

Responses:

- most responses along segmental dimension

• Reaction times (RTs):

- RTs in congruent trials as baseline
- increase in RT in incongruent trials suggests that pitch is attended to and competes with segmental information (interference)

• Hypothesis:

- the more linguistically relevant pitch, the stronger the interference

non-linguistic ◀ ► lexical

Results: response type

→ in congruent trials, no difference across languages

non-linguistic - lexical

Results: response type

→ in congruent trials, no difference across languages

¹⁵ → in incongruent trials, Chinese listeners responded less along segmental dimension

(only responses along segmental dimension)

→ in congruent trials, no difference across languages

(only responses along segmental dimension)

- → in congruent trials, no difference across languages
- 17 → in incongruent trials, Chinese listeners slowed down more than Dutch listeners

- Chinese listeners (pitch is potentially lexical)
 - significant decrease in responses along segmental dimension in incongruent stimuli
 - increase in RTs in incongruent stimuli
- Dutch listeners (pitch is non-linguistic)
 - no difference in responses across conditions
 - increase in RTs in incongruent stimuli (but less than for Chinese listeners)

Follow-up question

- Is processing of postlexical pitch information (also linguistically meaningful) comparable to processing of potential lexical information?
- Replication of Experiment 1 with modified materials and another set of
 - 8 Dutch listeners
 - 8 Chinese listeners

- Processing of pitch rises that signal
 - paralinguistic information (Dutch listeners)
 - potential lexical information (Chinese listeners)

paralinguistic + lexical

Results: response type

- → significant interaction: Chinese listeners show effect of trial type
- 21 (congruent vs. incongruent), Dutch listeners not

paralinguistic +> lexical

Results: reaction times

→ in congruent trials, again no difference across languages

paralinguistic + lexical

Results: reaction times

- → in congruent trials, again no difference across languages
- ²³ → in incongruent trials, Chinese listeners slowed down more than Dutch listeners

- Chinese listeners (pitch is potentially lexical)
 - significant decrease in responses along segmental dimension in incongruent trials
 - increase in RTs in incongruent trials
- Dutch listeners (pitch is postlexical)
 - no difference in responses across conditions
 - increase in RTs in incongruent trials
 - but less than for Chinese
 - more than for non-linguistic pitch rises (Experiment 1)

Conclusions

• Increase in RTs in incongruent trials is modulated by linguistic function of pitch in stimuli

- non-linguistic < postlexical < lexical

Discussion

- Non-linguistic (unfamiliar) pitch movement also increases RTs and therefore
 - is attended to
 - is stored in short-term memory
 - interferes with processing
 - → Dutch listeners not 'tone-deaf'
- Chinese listeners even *classify* stimuli along pitch dimension
- Even though stimuli are *nonwords*
 - pitch stored prelexically in Chinese? (Hallé et al. 2004, Lee 2007)

Discussion

- Ability to process and store pitch information in short-term memory is dependent on
 - linguistic experience
 - precise linguistic function of pitch in stimuli
- In conflict, segments outweigh pitch information
- Although meaningful, postlexical pitch information processed differently than potential lexical information
- Future work:
 - how does sensitivity to segments and pitch develop in L1?
 - can learners of tone language acquire native-like mechanisms?
 - how is paralinguistic information processed?

tz

Thank you for your attention