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1 Introduction

The logistic model is an elegant way of modelling non-linear relations, yet the be-
haviour and interpretation of its effect estimates is more complex than for coefficients
in linear regression. Mood (2010) explained why coefficients, i.e., odds ratios (OR) or
log-odds-ratios (LnOR) from logistic regression cannot be compared across regression
models or groups using the same intuition as for linear regression. The reason is that
these coefficients reflect not only the effects on the outcome, but also unobserved het-
erogeneity, which may differ across groups or models. Since the publication of Mood
(2010), there has been a widespread change of practice in reporting, with OR and
LnOR giving way to effect measures expressed on the probability scale. While this
is desirable, the understanding of the underlying rationale is lagging behind prac-
tice. Many researchers still see unobserved heterogeneity as a mysterious concept
that is hard to grasp, and in this article I seek to de-mystify the concept in order to
help empirical researchers better understand what unobserved heterogeneity is, how
we can measure it, and why we normally want effect measures unaffected by it. I
show that an LnOR can be seen as consisting of three parts: The average percentage
unit effect (AME), the proportion with the outcome (base rate), and the proportion
unexplained variance. These components can be manipulated to adjust LnOR for
unobserved heterogeneity but I argue that this is seldom particularly useful given
that measures based on percentage units normally speak better to our questions.

The argument here is not that the logistic model or its associated OR and LnOR
are wrong or problematic in themselves.1 The problems related to unobserved hetero-
geneity lie entirely in the interpretation of the results, and the gist of the problem is
the discrepancy between the questions we normally purport to answer and the ques-
tions that the LnOR and OR respond to. Too often, researchers are concerned with
choosing the method that is ”right” in some general sense, while the concern should
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1I make this very clear statement early so that even casual readers get this point, because critique

concerning how logistic regression is used is often misconstrued as critique of the model itself.
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rather be to make it very clear what the actual question is, and thereafter choose a
method and way of reporting that best speak to this question. Very often, we can-
not do what we think (or, increasingly, thought) we can do with logistic regression,
and to solve this discrepancy we must either adapt our analysis to correspond to our
questions, or re-formulate our questions so that they match the answers provided.
Although the first strategy is in my view often the soundest, one can envisage cases
where the questions should be reconsidered. The crucial point is that the analytical
output and questions must be aligned.

2 What logistic regression does

A common way of explaining unobserved heterogeneity in logistic regression is in
terms of the omission of one variable from a true model, where the true model is
normally defined in terms of a latent variable. For example, the true model may be:

y∗i = α + β1x1i + β2x2i + εi (1)

where i indexes individuals, y∗ denotes the value of the (unobserved) latent vari-
able, x1 and x2 are independent variables that are uncorrelated with each other, β1
and β2 are effects (to be estimated) on the latent variable for a one unit change in the
respective independent variable, and ε is an unobserved individual error term with a
standard logistic distribution with variance 3.29. The omission of x2 from equation
(1) would lead us to estimate β1R, an underestimation of β1, according to equation
(2) (for more details, see Mood (2010), p.69):

β1R = β1

√
3.29√

3.29 + β2
2var(x2)

(2)

This is a useful way of explaining the logic behind, but it is not so helpful in practice.
The latent variable formulation has a mystical flavor that many find intimidating - we
measure effects on something that is not observed or measured, does not have a known
scale, and which perhaps does not even exist. In addition, the framing of unobserved
heterogeneity in terms of the deviation from a true latent model works well in theory
and in simulations, but does not reflect the reality faced by the empirical researcher.
In many cases it is difficult to say if there is such a thing as a latent propensity, and
even when this may be warranted we rarely know which variables that would go into
the true model. For the rare case where we think that we know the true model in
theory, we are seldom able to observe all the variables that go into it. This means that
in practical research with real data, we almost always face unobserved heterogeneity,
and unlike in simulations we cannot determine how our coefficients compare to those
of the (presumably) true model.

There is however an alternative and, I think, both more intuitive and more useful
way of explaining the problem, which I develop in this article. I show how we can
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understand unobserved heterogeneity in terms of the observed empirical data with-
out any appeal to underlying latent variables. In this approach, the focus is on the
predictive capacity (or explained variance) of the model, which is measurable and
hence opens up possibilities to quantify the unobserved heterogeneity and to esti-
mate its impact on effect estimates. Using this perspective, the term unexplained
variance is more apt than unobserved heterogeneity, and henceforth I use these terms
interchangeably.

The normal reason that researchers choose logistic regression is that the scale of
the dependent variable is binary, taking either of the values 1 (does have the outcome)
or 0 (does not have the outcome). Yet what we estimate from logistic regressions are
effects on log-odds, odds or probabilities of having the outcome, and these are not
observed on the individual level. Let y1 represent the binary (0/1) dependent variable
and pi the probability that individual i has (y1 = 1), and consider a logistic regression
of the form:

ln
pi

1− pi
= α + β1x1i + β2x2i (3)

Where x1 and x2 are observed independent variables (continuous or categorical)
and α, β1 and β2 are parameters to be estimated. The lefthand side here is not the
individual-level observed value of y1 but a prediction of the model – the logarithm
of the odds of having the outcome (y1 = 1) vs. not having it (y1 = 0). If we
exponentiate this predicted logged odds of having the outcome, we obtain the odds
of having the outcome vs. not having it, but what we are ultimately interested in
is normally neither the log-odds nor the odds, but rather the probability of having
the outcome. To obtain this, we translate the predicted log-odds from Equation 3 to
predicted probabilities through equation (4):

pi =
exp(ln(pi/(1− pi))

1 + exp(ln(pi/(1− pi))
(4)

So the three scales – log-odds, odds and probabilities – represent three ways of
expressing the likelihood of an outcome, and each can be transformed to another
(except for probabilities of 0 and 1, that cannot be expressed as an odds or log-odds).
None is observable on the individual level.

The input to the logistic model consists of individual-level observed y1-values of
zero or one in combination with the same individuals’ values on x1 and x2, so the
information content that the model has is the distribution of y1 across values of x1
and x2. Consequently, pi equals the predicted proportion of people with y1=1 at
certain values of x1 and x2. The model seeks to estimate the parameters (LnOR)
that maximizes the likelihood of observing the given empirical distributions, under
the assumption that the association between y1 and the independent variables follows
a logistic functional form.2

The logistic probability density function (PDF) is p(1− p), and it is illustrated in

2If the data contain a sufficient number of individuals for each combination of values on x1 and x2,
one can work directly with aggregate proportions in a least squares model (Berkson, 1944; Aldrich
and Nelson, 1984).
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Figure 1 along with the CDF (cumulative distribution function). The PDF is largest,
0.25, when the probability is 0.5, which occurs at a log-odds of 0.
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Figure 1: Logistic probability density function (PDF, p × (1− p)) and cumulative
distribution function, (CDF, p) by log-odds

Assuming x1 is continuous,the estimated percentage unit effect of x1 for a given
individual is β1× pi(1− pi). Thus, the estimated average percentage unit effect of x1
is simply:

1

n

n∑
i=1

β1 × pi(1− pi) (5)

Which is normally labelled the average marginal effect (AME). AME (and its
discrete alternatives, see Mood (2010)) is known to be strongly robust to differences
in unobserved heterogeneity (Cramer, 2007), and to understand why this is, consider
the case where x1 and x2 are uncorrelated. If x1 does not vary with x2, the average
probability of y1 = 1 at different values of x1 should logically be unaffected by whether
or not we observe x2 (and vice versa). Because these observed distributions are the
fixed input that the model seeks to reproduce, the predicted probabilities across values
of x1, and hence the estimated change in these probabilities for changes in x1, should
be similar whether or not x2 is in the model.

4



To exemplify, let us revisit Figure 1 in Mood (2010), here Figure 2, which shows
predicted probabilities from a logistic regression model (simulated data) of transition
to university on IQ, first in a bivariate model (model 1, bold line) and then in a
model conditional on sex (model 2, girls solid line, boys dashed line). The model also
shows the average predicted probability from model 2, across both boys and girls, at
different values of IQ (dotted line).
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(4) P(Y=1), model 2, girls (5) Mean P(Y=1), model 2

.

Figure 2: Probability of transition to university by IQ and sex (simulated data)

We see that at all levels of IQ, girls are more likely to go to university than boys.
But, importantly, the average predicted probabilities from model 2, i.e., the average
of the curves for boys and girls is at all levels of IQ as good as identical to the
predicted probabilities from model 1 (which did not include sex), as seen by the fact
that the dotted curve overlaps almost perfectly with the bold curve. The average
slopes of the bold and dotted curves give the AME from models 1 and 2, respectively,
and obviously these are also as good as identical in the two models despite a large
increase in the LnOR and OR in model 2. What we observe here is an example of
the nice feature of percentage unit differences being collapsible (Greenland, Robins,
and Pearl, 1999), that is – in contrast to LnOR and OR – they are unchanged by the
inclusion of uncorrelated predictors. Because logistic regression assumes a particular
functional form, AME are not always robust in this way, but they tend to be so if the
logistic functional form assumption is not gravely wrong (Cramer, 2007).
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If we think of x1 as IQ and x2 as sex in Equation 3, Model 1 in Figure 1 corresponds
to estimating Equation 3 without x2, i.e.:

ln
pRi

1− pRi

= α + β1Rx1i (6)

Where R is used as a subscript to show that these estimates come from a reduced
model. The corresponding AME is:

1

n

n∑
i=1

β1R × pRi(1− pRi) (7)

With knowledge of both x1 and x2, we can predict the outcomes better than when
we know only x1, so the predicted probabilities from Equation 3 are closer to the
individual outcomes (0 or 1) than the predicted probabilities from Equation 6. As a
consequence, pi(1− pi) is on average smaller than pRi(1− pRi).

So we get better predictions and smaller pi(1 − pi) with x2 in the model, but at
the same time we know that the average predicted probabilities of y1 = 1 at different
levels of x1 should be similar regardless of whether x2 is in the model, meaning that we
should also get similar end results from Equations 5 and 7. In order for the predicted
probabilities of the model to match the given distribution of y1 over x1 (remember
that these are the fixed inputs that the model adapts its estimates to) when the
predictions move closer to 0 and 1, the model must ”compensate” the smaller average
pi(1 − pi) by estimating a larger β1. So the estimated coefficients have to increase
in proportion to the difference between pi(1 − pi) and pRi(1 − pRi), resulting in the
relation:

n∑
i=1

pRi(1− pRi)

n∑
i=1

pi(1− pi)
=

β1
β1R

(8)

So, for example, if x2 reduces average pi(1− pi) by half, β1 will double. This rela-
tionship is not exact as it depends on the fit of the models to the assumed functional
form. For probit models, Wooldridge (2002) proved the equality between ratios of
derivatives and ratios of β under the assumption that the functional form is correctly
specified, but although the intuition is the same for logit models the relationship has
so far only been shown by simulation by Cramer (2007). He finds that even blatant
functional form misspecification has only a minor impact, meaning that Equation 8
can be treated as valid for most practical purposes. We can think of the logic be-
hind the sensitivity of LnOR and OR to unobserved heterogeneity as a consequence
of these quantities being what is ”flexible” in the model, that is they are what can
change in order to match what is exogeneously given – the observed distribution of
y1 over the independent variables.
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3 Predicted probabilities and explained variance

In logistic regression, the individual-level outcome of interest (y1) can only take on
values 0 or 1, and the average probability of a positive outcome is simply the average

of y1 over all individuals: p̄ = 1
n

n∑
i=1

y1i. Just as in an OLS, we can measure the

extent to which our model improves the prediction of y1 in terms of the proportionate
reduction of residual variance:

R2
E = 1−

n∑
i=1

(y1i − pi)2

n∑
i=1

(y1i − p̄)2
(9)

R2
E in Equation 9 defines what is normally labelled Efron’s R2 (e.g., Mittlböck

and Schemper, 1996), and is analogous to the standard R2 in OLS in terms of the

use of squared deviations, with
n∑

i=1

(y1i− pi)2 representing the residual sum of squares

(RSS), i.e. the total variance around the regression predictions, and
n∑

i=1

(y1i − p̄)2

representing the total sum of squares (TSS), i.e., the total variance around the mean.
Another way to express the total variance in a binary variable (TSS) is p̄(1− p̄),

which is also the logistic probability distribution function (PDF) at the average of
y1. If the logistic functional form is correct, the residual variance is the average of
pi(1 − pi), that is, the average of the PDF at the predicted probabilities from the
model, averaged over all individuals. So, assuming the logistic functional form is
correct, Efron’s R2 in Equation 9 is identical to Equation 10:

R2
G = 1−

n∑
i=1

pi(1− pi)
p̄(1− p̄)

(10)

which has been labelled Gini’s concentration R2 (Mittlböck and Schemper, 1996)
(I will here refer to it as Gini’s R2 for short). To understand the logic behind, consider
a sample with mean y1 = 0.4. At this point p̄(1− p̄) is 0.24, i.e., (0.4× (1− 0.4)). Say
that we estimate a model with a dummy independent variable that is associated to y1,
resulting in predicted probabilities that are 0.2 and 0.6 (in equal proportions), giving
pi(1 − pi) of 0.16, i.e., (0.2 × (1− 0.2)); and 0.24, i.e., (0.6 × (1− 0.6)), averaging
to 0.20, i.e., smaller than the 0.24 we started with. The R2

G would in this case be
1− (0.20/0.24) = 0.17.

If the true functional form is not logistic, R2
G will differ from R2

E, with R2
E giving

the correct reflection of the explained variance by the model but an underestimation
of the explained variance that we would get with a more correct functional form. If
the two R2 differ, it is thus a sign that the logistic functional form is inappropriate,
and that, if we want to draw substantive conclusions from this model we need to
test other functional forms. In practice, however, the two R2s are normally close
(Mittlböck and Schemper, 1996).
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So changes in R2 reflect the decrease in the proportion residual variance, which
– if the logistic specification is correct – is the same as the ratio of the PDF at the
model’s predicted values to the PDF at the average of the outcome. Given Equation
8, we can then express the relation between β1 and β1R as:

β1 = β1R

n∑
i=1

pRi(1− pRi)

pi(1− pi)
(11)

Which can also be written as:

β1 = β1R
1−R2

GR

1−R2
G

(12)

Thus, there is a straightforward relationship between the predicted probabilities,
the explained variance and the LnOR at a given base rate.

The above also shows that the better the predictive capacity of the model, the
larger will the difference be between AME and marginal effects evaluated at the mean
of y1. The PDF has its maximum at the mean of y1, meaning that marginal effects
are largest when evaluated at this point. Hence, marginal effects at the mean of y1
can be misleading if used to approximate the AME.

4 What an odds ratio or log-odds ratio consists

of and the consequences for comparisons across

models, groups, etc.

An OR gives the multiplicative effect on the odds of an outcome, and an LnOR gives
the additive effect on the log of this odds. The natural scale for a 0/1 outcome is
however the probability, and a given average effect on the probability can correspond
to different LnOR and OR. Above we saw that the size of the LnOR or OR is affected
by the predictive capacity of the model. This mechanism is a manifestation of the
more general principle in logistic regression that the LnOR ”weighs” the percentage
unit effect by the relative difficulty of getting an effect of this size given the logistic
PDF. If we have an outcome that is very rare (e.g., only 5 percent have a positive
outcome) or very common (e.g., 95 percent have a positive outcome), the logistic
slope is flatter and hence a given percentage unit effect requires a higher OR or
LnOR than a same-sized percentage unit effect on an outcome that is more close to
a 50/50-distribution. But if we can predict the outcome with the 50/50 distribution
very well, so that our predicted probabilities lie close to 0 or 1, we are again at places
in the logistic distribution where the slope is flatter, and a one percentage unit effect
will correspond to a higher LnOR and OR than if our model has weak predictive
power. Both these mechanisms reflect the non-linear shape of the logistic PDF, seen
in Figure 1.

Combining these insights, it is easy to show that OR and LnOR estimating the
effect of x1 on y1 can vary because of: (1) Differences in percentage unit effects of
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x1 on y1; (2) Differences in base rates (i.e. averages of y1), and (3) Differences in
explained variance. We can see this by noting that the average of pi(1− pi) is equal
to p̄(1− p̄)× (1−R2

G), and rewriting Equation 5 as:

β1=
AME1

p̄(1− p̄)× (1−R2
G)

(13)

The numerator is the AME, and the denominator consists of the total variance
p̄(1 − p̄) (determined by the base rate of the outcome) multiplied by the proportion
unexplained variance. In other words, the denominator is the total unexplained vari-
ance in absolute terms, so one can also simply say that the LnOR is equivalent to the
estimated average percentage unit effect divided by the total unexplained variance in
the outcome. The total unexplained variance can under no condition be higher than
0.25, a maximum which will occur only if the base rate is 0.5 and the R2 is close to
zero.3

Equation 13 shows how effect estimates depend on different communicating parts,
and we can manipulate these parts in different ways depending on our purposes:
For example, we can calculate what LnOR a given AME would correspond to, or
what AME a given LnOR would result in, at a higher explained variance and/or a
higher base rate. When the base rate is constant, e.g., when we compare different
OR and LnOR from nested models in a given sample, differences can be due only
to differences in AME, or in the proportion unexplained variance. So changes in
LnOR when introducing an additional variable x2 to a model can be due either to
this variable being correlated to both x1 and y1, and hence acting as a confounder or
suppressor when not included, or to the increase in explained variance that x2 gives
rise to. If we want to neutralize the effect of differences in explained variance, we
can use Equation 14 to estimate what a given LnOR (β1) would be if we had the
proportion explained variance of another model.

β1alt = β1
(1−R2

G) in model

(1−R2
G) in alternative model

(14)

There is however a problem here: A different R2 for a given model is not com-
patible with the observed distribution of the independent and dependent variables
in a given sample, so the underlying rationale for Equation 14 must therefore be in
terms of addition to the model of an unexplained variance parameter, correlated to
the dependent variable but uncorrelated to the independent variable, which drives
the R2 up to the level of an alternative model.

In the case of comparisons of LnOR more generally, i.e., across groups, samples,
outcomes, etc., we additionally need to take differences in base rates into account.
Here, it also becomes important to distinguish between the bivariate and the multi-
variate case. In his seminal contribution on unobserved heterogeneity and compar-
isons across groups, Allison (1999) did not make this distinction, but the implications
of unobserved heterogeneity is quite different in these two cases. If we estimate an

3LnOR divided by 0.25 is the definition of the Lambda effect measure (see Hellevik (2009), which
thus essentially gives the maximum percentage unit effect that a given LnOR can correspond to.
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LnOR in a bivariate model, i.e., studying associations between x1 and y1 with no
further independent variables), differences across groups depend on differences in (1)
the effect size of x1 in percentage units, (2) variances in x1 (affecting the spread in
predicted values and hence residual variance) and (3) averages of y1 (determining
total variance). Thus, in the bivariate case OR and LnOR can be used as a measure
of association, combining the effect size and the explained variance attributed to the
independent variable.

The multivariate case is however different, because LnOR and OR for any given
variable will be affected by the variance explained by all independent variables. For
example, in a model with x1, x2 and y1, the LnOR or OR for x1 will depend also
on (1a) the effect size of x2 and (2a) the variance in x2, as these contribute to the
explained variance. If our question concerns the association between x1 and y1, it
matters whether the coefficient for x1 is higher because of x1 or because of x2, yet
the coefficient itself cannot tell us the difference.

5 Unobserved heterogeneity and a special case turned

upside up

One argument sometimes raised is that OR or LnOR in a regression of y1 on x1
are only affected by unobserved heterogeneity caused by an omitted variable x2 if
there is a correlation between x1 and x2 conditional on y1. This argument, it turns
out, is merely an upside-down perspective on the general principle described above.
It is upside-down from a theoretical and causal point of view because we presume
x1 and x2 to affect y1 and not the other way around, meaning that the correlation
between x1 and x2 given y1 is not an independent feature of the process. If x1 and
x2 are uncorrelated in the population, and if both have independent effects on the
prediction of y1, there will be a correlation between x1 and x2 conditional on y1,
and this correlation is caused by the independent effects of x1 and x2, respectively,
on y1. The observed correlation between x1 and x2 given y1 shows that both x1
and x2 contribute independently to the prediction of y1, and it is this independent
contribution of x2 to the prediction of y1 that is the mechanism behind the change
in OR and LnOR – the lack of a correlation between x1 and x2 given y1 is just a
secondary effect of it.

The simple principle is that the size of any increase in the LnOR and OR for
x1 when including x2 in the model depends on how much x2 increases the ability to
predict y1 (i.e. how much we reduce the unobserved heterogeneity in y1 as compared
to when only x1 was in the model). If the LnOR and OR for x1 are not affected when
including the uncorrelated x2 in the model, it means that x2 does not add much to our
ability to predict y1 once we know x1. Thus, the correlation between x1 and x2 given
y1 is not the condition for the attenuation of the LnOR for x1, but the correlation
and the attenuation are common outcomes of the contribution of x2 to the prediction
of y1.

For example, consider Figure 2 above (or Figure 1 in Mood (2010)), where IQ
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and sex have independent effects on the transition to university. Among those who
go to university (y1 =1), women will have on average lower IQ than men because it
takes a higher IQ for a man to go to university, so we have an association between
sex and IQ at y1=1. At the same time, men who choose not to go to university
have on average higher IQ than women who choose not to go to university, so we
will have an association between sex and IQ at y1=0 as well. In fact, men will on
average be more intelligent than women both among those who go to university and
those who do not do so, but men are not more intelligent than women on average in
the population. This seeming paradox is caused by the independent effects of IQ and
sex on the transition to university.

6 Understanding the impact of unobserved het-

erogeneity: Example analyses

In order to illustrate how one can measure unobserved heterogeneity and assess its
role on the effect estimates of interest, I use the dataset on careers of biochemists
that has previously been used in the literature about unobserved heterogeneity in
logistic regression (Allison, 1999; Williams, 2009; Long, 2009).4 The dataset is lon-
gitudinal, consisting of person-years, and the dependent variable here is whether an
assistant professor is tenured (1) or not (0), and the particular question in focus in
Allison (1999) was whether men and women had different payoff of their number
of published articles on their chances of tenure. He additionally included variables
measuring time since the start of the assistant professorship (duration in years, also
included in squared form), the selectivity of the college where the undergraduate
degree was obtained (range 1-7), and the prestige of the current department (range
0.65-4.60). For a more detailed description of data and variables, see Allison (1999,
p.187). Table 1 reproduces the results from Allison (1999:188, Table 1), but also
bivariate models, information about AME (estimated by Stata’s margins command),
proportion observations with a positive outcome in each group, and R2 (Gini’s and
Efron’s). Statistical significance is reported using the same criteria as in Allison’s
article.

LnOR give the additive effects on the natural log of the odds of being tenured,
so for example, in the bivariate model for men, we see that the log of the odds of
being tenured increases by, on average, 0.102 units for each article. If we think that
it is appropriate to see tenure as generated by a latent propensity for tenure, we can
also interpret this as saying that the latent propensity to be tenured increases by,
on average, 0.102 units for each article. This effect size does not tell us about the
differences in the probability of being tenured, and it is difficult to give it a substantive
interpretation, because the scale has no upper or lower bound. As put by Aldrich
and Nelson (1984, p. 41) the LnOR has only ordinal, not cardinal meaning, so if we
show only the LnOR the reader can only conclude that number of articles increases
the probability of tenure, but not by how much in any substantive sense.

4Retrieved via code in Williams (2009) from ”http://www.indiana.edu/ jslsoc/stata/spex data/tenure01.dta”
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If we exponentiate 0.102, we get the OR, which gives the multiplicative effect on
the odds of being tenured. In this case it is 1.11, saying that for each article, the
odds of tenure increases by a factor of 1.11 for each article, or in other words, for one
extra article the ratio of tenured to non-tenured men increases by a factor of 1.11. It
is extremely common to misunderstand or misrepresent OR as a multiplicative effect
on the probability, which is only true if the outcome is rare.

The AME gives the average effect on the probability of the outcome. In the first
model, we see that each article is associated to a 1.1 percentage unit increase in the
probability of tenure, which is a substantial effect given that the average probability
of tenure among men is 13.2. For women, the corresponding effect is clearly smaller
at 0.4 percentage units, and their average probability of tenure is 10.9 percent.
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6.1 Unexplained variance across models

In the bivariate regressions, the LnOR for number of articles is 0.102 (men) and
0.047 (women). When controlling for the other independent variables, it shrinks to
0.074 (men) and 0.034 (women), suggesting that the estimated effect of articles on
the log-odds of tenure can to some extent be accounted for by these other variables.
However, the coefficients from the two models cannot be straightforwardly compared,
because they are estimates of two different parameters, one that is averaged over the
distribution of duration, undergraduate selectivity and job prestige, and one that is
conditional on these variables (cf. Mood 2010:72). If the variables added in model 2
contribute independently to the prediction of tenure, the LnOR or OR for articles in
the two models would differ even if articles was uncorrelated to the other independent
variables.

R2 increases from the bivariate to the multivariate model from 0.058 and 0.075 to
0.171 and 0.181 (men, Efron’s/Gini’s) and from 0.008 and 0.028 to 0.097 and 0.108
(women, Efron’s, Gini’s), which serves to make the LnOR and OR for articles in model
2 higher than it would be had the explained variance been the same as in model 1.5

Therefore, the extent to which duration, selectivity, and prestige account for the
bivariate association between articles and tenure is underestimated by a comparison
of coefficients between models 1 and 2. From Equation 13, we know that each LnOR
consists of three components: AME, p̄(1 − p̄) and (1 − R2

G), and these components
are shown in Table 2.

Because the base rate is the same across models in a fixed sample, changes in the
LnOR can only be driven by changes in the AME and in the proportion unexplained
variance. Here, we see that the increase in explained variance in the multivariate
model only suppresses the denominator slightly, from 0.106 to 0.094 for men, and
from 0.094 to 0.087 for women. In order to understand the impact of this reduction
in unobserved heterogeneity for comparisons across models, we can use Equation (14)
and multiply the coefficient from the bivariate model with the ratio of the unexplained
variance in the bivariate model to the unexplained variance in the multivariate model
(see Appendix for a demonstration of how this can be done in a regression framwork).

For men, this changes the bivariate coefficient for articles from 0.102 to 0.116, and
for women from 0.047 to 0.051. Relating these to the multivariate coefficients, we
confirm that the proportion of the coefficient accounted for by the other independent
variables was attenuated by unobserved heterogeneity: When re-scaling to the higher
R2, the reduction in the coefficient is 36 rather than 27 percent (men) and 34 rather
than 28 percent (women) of the bivariate association. As noted above, it is important
to note that with only articles in the model, the counterfactual R2 is not compatible
with the observed distribution of tenure over articles. If articles is the only variable in
the model, R2 can only be higher if the probability of tenure is more strongly affected
by the number of articles, or if the base rate of tenure is further from 0.5. Neither
of these can be true within a given sample with given distributions of independent

5Note that Efron’s and Gini’s R2 differ substantially in the bivariate models, which suggests that
the logistic functional form is not entirely appropriate. Had we had a substantial interest in this
analysis we would investigate this more closely.
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Table 2: Components of the log-odds-ratio for articles

Men Women
Bivariate Multivariate Bivariate Multivariate

AME (numerator) 0.011 0.007 0.004 0.003
p̄(1− p̄) 0.114 0.114 0.097 0.097
1−R2 0.925 0.819 0.973 0.892
Total denominator 0.106 0.094 0.094 0.087
Resulting LnOR 0.102 0.074 0.047 0.034

and dependent variables, so we should think of this operation as an addition to
the bivariate model of an unexplained variance parameter, correlated to tenure but
uncorrelated to articles.6

6.2 Unexplained variance and group comparisons

The focus of Allison’s (1999) article was the differences between the LnOR for articles
between men and women in the multivariate model. The difference (0.074 vs. 0.034)
was statistically significant, but Allison argued that this could be due to differences in
unobserved heterogeneity, i.e., that women have more heterogeneous career patterns
than men, making unmeasured variables more important for women (note that this is
an argument about the proportion unexplained variance). He proposed the estimation
of a parameter capturing the difference in unobserved heterogeneity by means of
adding a constant weight to the interaction terms of sex with all independent variables,
and letting the model estimate the size of this weight. This method builds on the
insight that unobserved heterogeneity has a uniform effect on all coefficients, but it
is problematic in that it confers any systematic tendency for women to have smaller
LnOR only to differences in unexplained variance (cf. Williams (2009)). As discussed
above, two other factors can affect the differences in LnOR: Women can have a
different base rate of tenure, and they can have smaller percentage unit effects. So
Allison’s method controls for more than the differences in the proportion unobserved
heterogeneity, and it may therefore underestimate the difference between men and
women.

Using the approach discussed here, we can straightforwardly measure the three
different components and assess their contribution to the difference in the LnOR
for articles. First, R2G tells us that there is indeed a difference in the proportion
unexplained variance: 89 percent of the variance in tenure among women is due to
unobserved factors, with the corresponding number being 82 percent for men. Second,
the base rate differs slightly, with tenure observed in 13.2 percent of the observations
among men and 10.9 percent among women. Third, the AME differs strongly: Among
men, the probability of tenure increases by an average of 0.7 percentage points for

6Although they do not frame it in terms of explained variance, this procedure operates in the
same way and gives the same result as the method proposed by Karlson, Holm, and Breen (2012)
for comparisons of changes in coefficients across models.
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every article, and among women it increases by only 0.3 percentage points. Using the
same procedure as in Table 2, we can see that:

The LnOR for articles among men equals: 0.7
0.132×(1−0.132)×0.819

The LnOR for articles among women equals: 0.3
0.109×(1−0.109)×0.892

The AME, the numerator, contains the information that is often of fundamental
interest: Do men, on average, get a higher payoff on their number of articles in terms
of the probability of getting tenure?7 We see, as before, that indeed they do (and the
difference in AME is also statistically significant at P < 0.05). But the difference in
LnOR reflects more than this, because there are also differences in the denominator,
i.e., in the total variance (which is a direct function of the base rate), and in the
proportion of this total variance that is unaccounted for by the model.

We can test to which extent the difference in LnOR between men and women
is due to men’s lower level of unexplained variance through comparing men’s LnOR
with a counterfactual LnOR for women, where their R2 is set to the same level as for
men (see appendix for how to do this in a regression framework).

β1w =
AME1w

p̄w(1− p̄w)× (1−R2
m)

(15)

The resulting counterfactual LnOR is 0.037, so the adjusted sex difference is 0.074-
0.037=0.037 as compared to the original difference (0.074-0.034=0.040). Thus, less
than 8 percent of the sex difference in LnOR is due to differences in unexplained
variance. As noted above, this counterfactual comparison is equivalent to adding
an unobserved heterogeneity parameter to the regression for women, uncorrelated to
articles, that lifts their R2 to the same level as men.

If we would also like to assess what the difference would be if women had both the
same R2 and the same base rate as men, we can calculate the counterfactual LnOR
as:

β1w =
AME1w

p̄m(1− p̄m)× (1−R2
m)

(16)

This gives an LnOR of 0.031, and a larger gap between men and women than
the observed one. So the higher coefficient for men is almost entirely driven by their
higher AME, and to a small extent by their lower unobserved heterogeneity – but it
is suppressed by their higher base rate.

The above calculations adjust for differences in the proportion explained variance
regardless of its source. Our interest, however, may be in adjusting for differences
only in the part of R2 that is due to variables other than the one in focus. As
discussed above, if LnOR is higher for men because articles explain more of the
variation in tenure, we can still discuss the differences between men and women in

7For a discussion about the linear probability model as an alternative to AME, see Mood (2010)
and Hellevik (2009).
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Table 3: R2 and its components

Men Women
R2, only articles 0.075 0.027
R2, all variables except articles 0.143 0.096
R2, all variables 0.181 0.108

R2-components
Due to articles only 0.038 0.012
Due to other variables only 0.106 0.081
Due to overlap 0.037 0.015

terms of differences in the impact of articles, but if men’s LnOR for articles is higher
because duration, selectivity and prestige explains tenure better among men this is
no longer true.

In order to discern to which extent the LnOR for one variable reflects the predictive
capacity of other variables in the model, we can further decompose the LnOR in a
multivariate model to:

β1=
AME1

p̄(1− p̄)× (1−R2art−R2oth−R2overlap)
(17)

with R2art being the part of R2 due only to the variance in articles, R2oth being
the part of R2 that is due only to the variance in variables other than articles, and
R2overlap is the part of R2 due to the variance in articles that overlaps with the
variance in one or more of the other variables. We can get these different components
through successive comparisons in R2, shown in Table 3.

The R2 components are obtained through simple subtraction. For example, for
men we obtain the component due to articles only given by 0.181-0.143=0.038; the
component due to all variables except articles by 0.181-0.075=0.106; and the com-
ponent due to their overlap by the remainder 0.181-0.106-0.038=0.037. If we would
have only articles in the model, we would capture the contribution of articles and the
contribution of the overlap, so the part of R2 due to other variables is the increase
in explained variance we get when we move from a bivariate to a multivariate model.
This increase is due only to variation in the other variables that is uncorrelated to
articles, and its impact on the LnOR for articles comes from the better predictions
and hence the reduction of p(1− p).

To see how much of the difference in the LnOR for articles between men and
women that is accounted for by other independent variables in the model, we can
estimate a new counterfactual coefficient for women:8

β1w =
AME1w

p̄w(1− p̄w)× (1−R2artw −R2othm −R2overlapw)
(18)

8We can of course estimate a counterfactual LnOR for men instead, and compare this to the
observed LnOR for women)
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With w denoting women and m denoting men. In this case, we find that if other
variables would explain women’s tenure to the same (higher extent) as for men, all
else (including the AME for articles) being equal, their LnOR would be slightly higher
at 0.035 rather than 0.034. Thus, if we would compare men and women with both
having R2 from other variables set to men’s value, we would get a difference of 0.039,
which is very close to the observed difference of 0.40. Hence, in this case, the difference
in the LnOR for the variable of interest across groups was not driven by the other
variables in the model.

The above tests can be straightforwardly done in a regression framework (see
Appendix). However, I believe that there are few questions that motivate these
or other kinds of rescaling of LnOR and OR, because these quantities are seldom
interesting as endpoints in themselves but only as intermediary steps in the analysis
(cf. Greenland, 1986), and the quantities that are normally of ultimate interest are
identified without rescaling (cf. Long, 2009; Angrist, 2001). With binary outcomes,
the observed scale is 0-1, and the substantive meaning of the results is for most
purposes best conveyed on this or the equivalent 0-100 scale – in our example, the
ultimate interest is generally in the probability of tenure rather than in the odds or
logged odds of tenure.

The most straightforward percentage unit measure is AME, which gives us the
average percentage unit effect. This is almost always a good starting point, as it
neatly summarizes the substantive effect. If our question is whether men have a higher
payoff of articles than women do, the fact that the average increase in the probability
of tenure for each article is 0.7 percentage units for men and 0.3 percentage units
for women clearly speaks directly to that question. The AME says which increase in
the proportion women or men with tenure that we can expect for a one unit increase
in number of articles, given the values of other observed variables in the respective
group. This tells us the average effect given the actual situation that exists in the
population (if the sample is representative).

We can however complement our original question and ask, e.g,: What is the
difference in the payoff per article for men and women in equally prestigious depart-
ments, or with an equal number of years since PhD, or perhaps with equal values on
all independent variables except articles? These questions may all be relevant, but
they require a range of estimates for different values of the relevant variables, and they
tell us what increase in the probability of tenure that we would expect for a change
in output only among those in this specific situation. Another potential question is:
What would the difference be in the counterfactual state of women having men’s base
rate or men’s level of explained variance? This can be estimated using the reverse
of the procedure used above to rescale LnOR (in this case holding the LnOR rather
than the AME fixed).

The best choice of effect measure, or set of measures, can only be determined
in light of the research question, and it is important to clearly distinguish between
average and conditional percentage unit effects and the questions that they speak to
in the case at hand. Long (2009) discusses different ways of comparing groups using
effects on the probability scale, and Stata’s margins command allows great flexibility
for estimating percentage unit effects and testing for differences across groups under
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different scenarios. Given that we can easily work directly with measures on the
probability scale, I see few cases where techniques that rescale LnOR and OR are
needed.

7 Relation to latent variables and ”true models”

I noted in the beginning that the perspective promoted here differs from the alter-
native of assuming an underlying ”true model”, expressed in latent variable terms.
In the latent variable perspective, we think of the observed binary outcome as gener-
ated by an unobserved continuous variable, as in Equation 1. In the above example,
we would think of tenure as generated by an underlying propensity for tenure, de-
noted as y∗, and assuming that we believe that the bivariate model reflects the true
data-generating process we would write the ”true” models for men and women as:

Men:
y∗i m = αm + β∗

1marticlesi + εi (19)

Women:
y∗i w = αw + β∗

1warticlesi + εi (20)

The total variance of y∗i consists of two parts: (1) The variance of the predictions
from the model, y∗i, resulting from the β∗

1 and the variance in articles, and (2) The
variance of ε. These components may differ in size, meaning that there is no fixed
variance and no fixed scale for y∗i . So even when the two ”true” β∗

1 have the same
numerical value for men and women, they can mean quite different things because
the underlying propensity can be measured in different units. For example, if the
variance in εi is larger among women than among men, while the variance in the
predicted values is similar, the ”true” scale of y∗i is larger among women. A given
β∗
1 therefore represents a weaker association between articles and the propensity for

tenure among women (and, consequently, a smaller R2 if we could estimate the latent
model).

In the latent variable perspective, these are the ”true” underlying models, and at
some threshold value of the y∗i (normally assumed to be 0), the observed binary out-
come changes from 0 to 1. When we use logistic regression to estimate these models,
however, we force the variance of ε to be the same in the two groups, which means that
the variance in y∗i can only differ due to differences in the strength of the association
between articles and the propensity for tenure. Any difference in scale between men
and women that is due to the absolute size of the error variances is thus eliminated,
and in order to reflect the same association between articles and y∗i , the coefficients
must change in proportion to this change in scale. The coefficients in the ”true”
model and the logistic model thus estimate the same association between the inde-
pendent and the dependent variable, and their substantive implications are the same.
To say that the coefficients of the underlying model are ”true” and the coefficients of
the logistic model ”biased” implies that we think that men’s and women’s propensity
of tenure should be measured with different rather than standardized scales, which
I believe is hard to justify. It would be akin to saying that in a linear regression of
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number of articles on earnings, with men’s earnings measured in dollars and women’s
earnings in hundreds of dollars, these raw coefficients are ”true” and those expressed
on a common scale are biased.

So in a bivariate model, the logistic regression coefficients can be interpreted as
measures of association between the independent and dependent variable (but as
noted above they are not intuitive as effect measures). The problem comes when
we move to multivariate models. This is because the scale of y∗i is still not fully
standardized: Differences in the absolute size of the error variances are neutralized,
but the scale can vary between men and women because of the size of the variance
in the predicted values, caused by different effects of, and different variances in, the
independent variables in the model. When the variance in predicted values increase,
the total variance (and thus the scale) increases and the proportion unexplained
variance decreases. With more than one independent variable in the model, all these
affect the scale of the dependent variable and hence the coefficient for any given
variable.

For example, say that we compare the coefficients β1 and β1R in Equations 3 and 6
above, with var(xb) and var(xb)R being the variances in the predicted values. Then,
still under the assumption that the logistic functional form is correct:9

β1
β1R

=

√
3.29 + var(xb)− var(xb)R

3.29
(21)

So we reach the same conclusion as above: The coefficients increase in response
to changes in the proportion unexplained variance. The substantive implications
of unobserved heterogeneity are thus the same whether we have a latent variable
perspective or not. However, my experience is that the latent variable motivation
for logistic regression tends to lead to a reification of the unobserved variable and its
arbitrary scale. This often makes us forget what the actual information content of
the model is, and what the results mean in terms of the probability of having the
outcome of interest.

8 Conclusions

This article has provided an intuitive explanation of what unobserved heterogeneity
in logistic regression is, when it matters and how. I have demonstrated how LnOR
can be seen as consisting of three different components, and that these components
have different information about the association and the model. Laying out these
different parts, we can see that unobserved heterogeneity can be measured, and its
impact on LnOR or OR can be straightforwardly assessed if we so wish.

9We can note that this is slightly different from the relation assumed by y-standardization. Y-
standardization is discussed in Mood (2010) but with an error in the definition: On p.73 in Mood
(2010) the definition of the standard deviation in y* should read ”The total estimated sdY is the
square root of (1) the variance of the predicted logits and (2) the assumed variance of the error term

(which is always 3.29)”, meaning that the assumed relation is: β1

β1R
=

√
3.29+var(xb)
3.29+var(xb)R
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The total variance in a binary variable is a direct function of the mean, and unex-
plained variance is – under the assumption that the logistic functional form is correct
– the same as the average derivative at the predicted probabilities of the model. This
means that the mean of the dependent variable and the spread of predicted probabil-
ities around this mean gives us the information we need to understand why and when
unobserved heterogeneity matters for LnOR and OR in logistic regression. Thus, the
fundamental limitation of binary variables, that their means and variances are not
separately identified, is in fact the key to understanding unobserved heterogeneity in
logistic regression.

In this perspective, it also becomes clear that the robustness of AME to unobserved
heterogeneity uncorrelated to the respective variable is an intrinsic feature of the
model, because what the estimation does is to strive to reproduce the observed (fixed)
distributions of the dependent variable across the independent variables. If AME
are found not to be robust to inclusion of uncorrelated controls, it means that the
functional form is severely misspecified in at least one of the models and one should
then seek to re-specify the model. In practice, however, logistic regression is robust
even under rather extreme misspecifications (Cramer, 2007), and the robustness of
AME is exactly what forces the log-odds ratios or odds ratios to be non-robust,
because they are the quantities that the model can change in order to match the
given observed distribution when information about other independent variables is
added to the model.

Building on this understanding we could easily rescale a given LnOR to reflect
what it would be under a different base rate, a different level of unexplained variance,
or a different level of unexplained variance due to all variables but the one of interest.
However, I see these counterfactual exercises primarily as a way of making unobserved
heterogeneity in logistic models visible and understandable. Even if we adjust for
unobserved heterogeneity, the log-odds or the odds scales are seldom the ones of
ultimate interest, nor are they intuitive. The choice of scale for reporting of effects
should be based on how it corresponds to the question we have, and on how the
answers to our research questions are best expressed in order for their substantive
meaning to be understood by ourselves and our readers. For most research questions,
measures based on effects on the probability are to prefer over LnOR and OR (cf.
Greenland, 1986). AME are easy to interpret and robust to omitted variables in
the same way as coefficients in linear regression, and it is normally a good standard
measure that gives an overall summary of the effect size on the scale of ultimate
interest. In addition, exploring the effects on probabilities for different type cases or
under different counterfactual distributions of independent variables can give a rich
and thorough understanding of the substantive meaning of nonlinear relationships,
something that is often hard to convey with a single OR or LnOR.

I do not suggest that OR and LnOR should never be reported. For some research
questions they may be appropriate, but in these cases it is crucial not to apply the
logic of interpretation from linear regression. For example, a larger LnOR or OR
for a given variable in one group than in another may reflect a larger effect of this
variable but also a larger effect of some other variable in the model. Clearly, this is
in many cases an undesirable feature of an effect estimate, and in cases where OR
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are deemed appropriate one should be clear about what drives any differences in OR
across groups.

Finally, the fact that it is extremely common to misinterpret OR as relative risks
(ratios of probabilities) means that anyone reporting OR must take great care to safe-
guard against this misunderstanding. I am inclined to agree with Schwartz, Woloshin,
and Welch (1999) that OR are ”bound to be interpreted as risk ratios”, because this
misinterpretation is so prevalent also among experienced researchers. Reporting of
OR as relative risks (RR) (e.g., using wordings such as ”times more likely”) is very
common in several disciplines10, in spite of recurring critique of this practice (e.g.
Davies, Crombie, and Tavakoli, 1998; Osborne, 2006; Deeks, 1998; Sackett, Deeks,
and Altman, 1996; Sinclair and Bracken, 1999; Schwartz, Woloshin, and Welch, 1999)
and in spite of most textbooks clearly pointing out the distinction between OR and
RR.11 This is a sign that even if OR have nice mathematical properties, they are
probably too hard to handle for the general empirical researcher.

9 Appendix

The test of whether differences in LnOR across model and groups are due to differ-
ences in unexplained variance can be straightforwardly done in a regression framework
similar to the setup in Allison (1999), by adding a constant weight to all the inde-
pendent variables. In this case, however, we would not let the model estimate this
weight as Allison did, but define it in terms of the R2 (Gini’s).

Consider a set of nested logistic models:
(1) log-odds of tenure = α + β1articlesi (giving R2

1)
(2) log-odds of tenure = α + β1articlesi + β2prestigei (giving R2

2)
(3) log-odds of tenure = α + β1articlesi + β2prestigei + β3selecti (giving R2

3)

To adjust for differences in unexplained variance, we would construct the following
weights:

w1 = (1−R2
3)/(1−R2

1)
w2 = (1−R2

3)/(1−R2
2)

And then re-run the models with these weights:
(1) log-odds of tenure = α + β1(articlesi × w1)
(2) log-odds of tenure = α + β1(articlesi × w2) + β2(prestigei × w2)
(3) log-odds of tenure = α + β1articlesi + β2prestigei + β3selecti

10Some recent examples of this practice in high-profile papers is Fryer (2016) [Economics], Sandefur
(2015) [Sociology], Trinquart, Johns, and Galea (2016) [Epidemiology] and O’Brien and Klein (2017)
[Psychology]. These are just random examples that I have stumbled upon, and my reference to them
does not mean that the problem is more severe in these papers than in others, and I do not judge
the overall merit of these papers

11To argue that ”times more likely” can refer to odds as well as probabilities (e.g., DeMaris 1993)
is a mere play with words encouraging deceptive reporting that inflates the perceived effect sizes.
OR and RR are not equivalent and it is extremely unlikely that anyone would interpret ”times more
likely” as ratios of odds rather than ratios of risks, so a responsible researcher should shun such
terminology.
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Now consider comparing the same model for men and women:
log-odds of tenurew = α + β1articlesi + β2prestigei + β3selecti (giving R2

w)
log-odds of tenurem = α + β1articlesi + β2prestigei + β3selecti (giving R2

m)

We construct a weight for women: ww = (1−R2
m)/(1−R2

w)

And we re-run the model for women with weights:
log-odds of tenurew = α+β1(articlesi×ww)+β2(prestigei×ww)+β3(selecti×ww)

We can also estimate a common model for men and women, showing us the statistical
significance of the difference in LnOR for men and women:

log-odds of tenurew = α+β1marticlesi+β2mprestigei+β3mselecti+β1w(articlesi×
ww) + β2w(prestigei × ww) + β3(selecti × ww) + β4female
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