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Logistic regression estimates do not behave like linear regression estimates in one

important respect: They are affected by omitted variables, even when these variables are

unrelated to the independent variables in the model. This fact has important implications

that have gone largely unnoticed by sociologists. Importantly, we cannot straightforwardly

interpret log-odds ratios or odds ratios as effect measures, because they also reflect

the degree of unobserved heterogeneity in the model. In addition, we cannot compare

log-odds ratios or odds ratios for similar models across groups, samples, or time points,

or across models with different independent variables in a sample. This article discusses

these problems and possible ways of overcoming them.

Introduction

The use of logistic regression is routine in the social
sciences when studying outcomes that are naturally or
necessarily represented by binary variables. Examples
are many in stratification research (educational transi-
tions, promotion), demographic research (divorce,
childbirth, nest-leaving), social medicine (diagnosis,
mortality), research into social exclusion (unemploy-
ment, benefit take-up), and research about
political behaviour (voting, participation in collective
action). When facing a dichotomous dependent
variable, sociologists almost automatically turn to
logistic regression, and this practice is generally

recommended in textbooks in quantitative methodol-
ogy. However, our common ways of interpreting
results from logistic regression have some important
problems.1

The problems stem from unobservables, or the fact
that we can seldom include in a model all variables
that affect an outcome. Unobserved heterogeneity is

the variation in the dependent variable that is caused

by variables that are not observed (i.e. omitted

variables).2 Many sociologists are familiar with the

problems of bias in effect estimates that arise if

omitted variables are correlated with the observed

independent variables, as this is the case in ordinary

least squares (OLS) regression. However, few recognize

that in logistic regression omitted variables affect

coefficients also through another mechanism, which

operates regardless of whether omitted variables are

correlated to the independent variables or not. This

article sheds light on the problem of unobserved

heterogeneity in logistic regression and highlights three

important but overlooked consequences:

(i) It is problematic to interpret log-odds ratios

(LnOR) or odds ratios (OR) as substantive

effects, because they also reflect unobserved

heterogeneity.

(ii) It is problematic to compare LnOR or OR

across models with different independent
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variables, because the unobserved heterogene-

ity is likely to vary across models.

(iii) It is problematic to compare LnOR or OR

across samples, across groups within samples,

or over time—even when we use models with

the same independent variables—because the

unobserved heterogeneity can vary across the

compared samples, groups, or points in time.

Though some alarms have been raised about these
problems (Allison, 1999), these insights have not
penetrated our research practice and the inter-
relations between the problems have not been fully
appreciated. Moreover, these problems are ignored
or even misreported in commonly used methodology
books. After introducing and exemplifying the behav-
iour of logistic regression effect estimates in light of
unobserved heterogeneity, I outline these three prob-
lems. Then, I describe and discuss possible strategies of
overcoming them, and I conclude with some recom-
mendations for ordinary users.

The Root of The Problems:
Unobserved Heterogeneity

In this section, I demonstrate the logic behind the
effect of unobserved heterogeneity on logistic regres-
sion coefficients. I describe the problem in terms of
an underlying latent variable, and I use a simple
example with one dependent variable (y) and two
independent variables (x1 and x2) to show that the
LnOR or OR of x1 will be affected in two different
ways by excluding x2 from the model: First, it will
be biased upwards or downwards by a factor deter-
mined by (a) the correlation between x1 and x2 and (b)
the correlation between x2 and y when controlling
for x1. Second, it will be biased downwards by a factor
determined by the difference in the residual variance
between the model including x2 and the model
excluding it. For readers less comfortable with algebra,
verbal and graphical explanations of the problem and
extensive examples are given in the following sections.

One can think of logistic regression as a way
of modelling the dichotomous outcome (y) as the
observed effect of an unobserved propensity (or latent
variable) (y�), so that when y�40, y¼ 1, and when
y�50, y¼ 0. The latent variable is in turn linearly
related to the independent variables in the model
(Long, 1997, section 3.2). For example, if our observed
binary outcome is participation in some collective
action (yes/no), we can imagine that among those who
participate, there are some who are highly enthusiastic

about doing so while others are less enthusiastic, and

that among those not participating there are some

who can easily tip over to participation and some who

will never participate. Thus, the latent variable can in

this case be perceived as a ‘taste for participation’ that

underlies the choice of participation.
For simplicity, we assume only one independent

variable. The latent variable model can then be

written as:

y�i ¼ �þ x1i�1 þ "i ð1Þ

where y�i is the unobserved individual propensity, x1i

is the independent variable observed for individual i,

� and �1 are parameters, and the errors "i are

unobserved but assumed to be independent of x1. To

estimate this model, we must also assume a certain

distribution of "i, and in logistic regression we assume

a standard logistic distribution with a fixed variance of

3.29. This distribution is convenient because it results

in predictions of the logit, which can be interpreted

as the natural logarithm of the odds of having y¼ 1

versus y¼ 0. Thus, logistic regression assumes the logit

to be linearly related to the independent variables:

Ln
P

1� P

� �
¼ aþ x1ib1 ð2Þ

where P is the probability that y¼ 1. For purposes of

interpretation, the logit may easily be transformed to

odds or probabilities. The odds that yi¼ 1 is obtained

by exp(logit), and the probability by exp(logit)/

[1þ exp(logit)]. The logit can vary from �1 to

þ1, but it always translates to probabilities above 0

and below 1. Transforming the logit reveals that

we assume that yi¼ 1 if the odds is above 1 or, which

makes intuitive sense, the probability is above 0.5.

Results from logistic regression are commonly pre-

sented in terms of log-odds ratios (LnOR) or odds

ratios (OR). Log-odds ratios correspond to b1 in

Equation 2, and odds ratios are obtained by eb1, so

LnOR gives the additive effect on the logit, while OR

gives the multiplicative effect on the odds of y¼ 1 over

y¼ 0. In other words, LnOR tells us how much the

logit increases if x1 increases by one unit, and OR tells

us how many times higher the odds of y¼ 1 is if x1

increases by one unit. While the effect on probabilities

depends on the values of other independent variables

in a model, LnOR and OR hold for any values of the

other independent variables.
The total variance in y� in Equation 1 consists

of explained and unexplained variance. When we use

Equation 2 to estimate this underlying latent variable

model we force the unexplained (residual) part of the

variance to be fixed. This means that any increases in
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the explained variance forces the total variance of the

dependent variable, and hence its scale, to increase.

When the scale of the dependent variable increases, b1

must also increase since it now expresses the change in

the dependent variable in another metric. So because

the residual variance is fixed, the coefficients in (2)

estimate the effect on the dependent variable on a scale

that is not fixed, but depends on the degree of

unobserved heterogeneity. This means that the size of

b1 reflects not only the effect of x1 but also the degree

of unobserved heterogeneity in the model. This can be

seen if we rewrite Equation 1 in the following way:

y�i ¼ �þ x1i�1 þ � "i ð3Þ

where everything is as in Equation 1, except for the

fact that the variance of "i is now fixed and the factor

� adjusts "i to reflect its true variance. � is the ratio of

the true standard deviation of the errors to the assumed

standard deviation of the errors. Because we cannot

observe �, and because we force "i to have a fixed

variance, b1 in the logistic regression model (Equation

2) estimates �1/� and not �1 (cf. Gail, Wieand and

Piantadosi, 1984; Wooldridge, 2002: pp. 470–472).3 In

other words, we standardise the true coefficients �1

so that the residuals can have the variance of the

standard logistic distribution (3.29).
To further clarify the consequences of unobserved

heterogeneity in logistic regression, consider omitting

the variable x2 when the true underlying model is

y�i ¼ �þ x1i�1 þ x2i�2 þ � "i ð4Þ

where "i is logistically distributed with a true variance

of 3.29 (which means that �¼ 1 in this case), and the

relation between x2 and x1 is

x2i ¼ �0 þ �1x1i þ vi ð5Þ

where �0 and �1 are parameters to be estimated and vi

is the error term (which is uncorrelated to "i in

Equation 4). The omission of x2 from Equation 4 leads

to two problems, one that is familiar from the linear

regression case and one that is not. First, just as in

linear regression, the effect of x1 is confounded with

the effect of x2, so that when (5) is substituted into (4),

the effect of x1 becomes �1þ�2�1. That is, to the

degree that x1 and x2 are correlated �1 captures the

effect of x2.
The second problem, which does not occur in linear

regression, is that the residual variance increases. In

Equation 4, �¼
ffiffiffiffiffiffiffiffiffi
3:29
p

=
ffiffiffiffiffiffiffiffiffi
3:29
p

, that is, the assumed

variance equals the true variance and �1/� is just �1.

When omitting x2, the true residual variance becomes

var(")þ �2
2var(v), and as a consequence � changes toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:29þ �2
2varð�Þ

p
=
ffiffiffiffiffiffiffiffiffi
3:29
p

.

Taken together, these two problems imply that if
we exclude x2 from Equation 4, instead of �1 we
estimate:4

b1 ¼ ð�1 þ �2�1Þ

ffiffiffiffiffiffiffiffiffi
3:29
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:29þ �2

2varð�Þ
p ð6Þ

If x1 and x2 are uncorrelated, Equation 6 collapses to

b1 ¼ �1

ffiffiffiffiffiffiffiffiffi
3:29
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:29þ �2

2varðx2Þ
p ð7Þ

Therefore, the size of the unobserved heterogeneity
depends on the variances of omitted variables and their
effects on y, and LnOR and OR from logistic
regression are affected by unobserved heterogeneity
even when it is unrelated to the included independent
variables. This is a fact that is very often overlooked.
For example, one of the standard sociological refer-
ences on logistic regression, Menard (1995, p. 59),
states that ‘Omitting relevant variables from the equa-
tion in logistic regression results in biased coefficients
for the independent variables, to the extent that the
omitted variable is correlated with the independent
variables’, and goes on to say that the direction and
size of bias follows the same rules as in linear
regression. This is clearly misleading, as the coefficients
for the independent variables will as a matter of
fact change when including other variables that are
correlated with the dependent variable, even when
these are unrelated to the original independent
variables.

An Example Using
Probabilities

The previous section has explained how logistic
regression coefficients depend on unobserved hetero-
geneity. The logic behind this is perhaps most easily
grasped when we express it from the perspective of the
estimated probabilities of y¼ 1. Imagine that we are
interested in the effect of x1 on y and that y is also
affected by a dummy variable x2 defining two equal-
sized groups. For concreteness, assume that x1 is
intelligence (as measured by some IQ test), y is the
transition to university studies, and x2 is sex (boy/girl).
I construct a set of artificial data5 where (a) IQ is
normally distributed and strongly related to the
transition to university, (b) girls are much more
likely to enter university than are boys, and (c) sex
and IQ are uncorrelated (all these relations are
realities in many developed countries). I estimate the
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following logistic models and the results are shown in

Table 1:

Model 1: yi
�
¼ �þ x1i�1þ "i

Model 2: yi
�
¼ �þ x1i�1þ x2i�2þ "i

R(x1, x2)¼ 0; P(y¼ 1)¼ 0.5

In Table 1, we can see that the LnOR and OR for IQ

increase when we control for sex—even though IQ and

sex are not correlated. This happens because we can

explain the transition to university better with both

IQ and sex than with only IQ, so in Model 2 the

unobserved heterogeneity is less than in Model 1. The

stronger the correlation between sex and the transition

to university, the larger is the difference in the

coefficient for IQ between Models 1 and 2.
The estimated odds of y¼ 1 versus y¼ 0 can be

translated to probabilities (P) through the formula

P(y¼ 1)¼ odds/(1þ odds). Figure 1 shows these pre-
dicted probabilities from Model 1 and Model 2 in
Table 1, for different values of IQ. The figure contains
the following curves: (1) the predicted transition
probability at different values of IQ from Model 1;
(2) the predicted transition probability at different
values of IQ from Model 2, setting sex to its mean; (3)
and (4) the predicted transition probability from
Model 2 for boys and girls separately, and (5) the
average predicted transition probability from Model 2
for small intervals of the IQ variable.

In Figure 1, we can see that curves (1) and (2) look
quite different. In addition, we can see that even
though there is no interaction effect in Model 2, the
predicted transition probability at different levels of
IQ differs between boys and girls [curves (3) and (4)].
The reason that curves (3) and (4) differ is that boys
and girls have different average transition probabilities
(i.e. different intercepts in the logistic regression).
Importantly, curves (2), (3), and (4) are parallel in the
sense that for any point on the y-axis, they have the
same slope, which means that the curves represent
the same OR and LnOR (recall that the estimated
LnOR and OR is constant for all values of IQ even
though the effect on the transition probability varies).
However, curve (1) is more stretched out, and thus
represents a smaller OR and LnOR. Why is this?

0
.2

.4
.6

.8
1

-4 -2 0 2 4
IQ

(1) P(Y=1) model 1 (2) P(Y=1) model 2 sex=mean
(3) P(Y=1) model 2, boys (4) P(Y=1) model 2, girls
(5) Mean P(Y=1) model 2

Figure 1 Predicted probabilities from Model 1 and Model 2, Table 1

Table 1 Logistic regression estimates

Model 1 Model 2
LnOR OR LnOR OR

IQ 0.80 2.24 0.99 2.69
Sex 2.00 7.36
Constant �0.01 �1.01
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Recall that both Model 1 and Model 2 are estimated

using the same observed combinations of IQ and

transitions. Even though boys and girls have different

transition probabilities at different values of IQ, the

average predicted transition probability among all

students at different values of IQ should be approxi-

mately the same in Model 1 as in Model 2 (since IQ

and sex are uncorrelated). This is confirmed by curve

(5), which is the average for small intervals of IQ of

the predicted transition probabilities that are described

by curves (3) and (4).6 So curve (1) approximately

represents the average of curves (3) and (4) on the

probability scale. However, the curve describing the

average of the probabilities for boys and girls does

not represent the average of the OR for boys and girls

[curves (3) and (4)]. Curve (2), on the other hand,

correctly represents the average of the OR of curves (3)

and (4) (or rather, it represents the same OR as

these curves). So Model 1 and curve (1) estimate

transition probabilities at different values of IQ and the

corresponding OR for the population, but for any single

individual in the population the effects of IQ on

the transition probability is better captured by Model 2

and curves (3) and (4). If expressed on the probability

scale, the average of these curves [as represented by

curve (1)] makes intuitive sense as an average in that

it underestimates the transition probability for girls

and overestimates it for boys. However, because curve

(1) is more stretched out than curves (3) and (4), its

OR is smaller, and this OR will therefore under-

estimate the OR for all individuals, i.e. for girls as well

as for boys.7

Simulation of the Impact of
Unobserved Heterogeneity

A fundamental question is how large effects we can

expect from a given level of unobserved heterogeneity

on the estimates in logistic regression. In order to

show the impact of unobserved heterogeneity, I carry

out 1,000 simulations of a sequence of logistic

regressions. Each simulation constructs an artificial

dataset (n¼ 10,000) where variables x1 and x2 are

continuous variables drawn from normal distributions

(command drawnorm in Stata 10.0). Both have a mean

of 0 and a standard deviation of 1, and they are

uncorrelated. y� is determined by Equation 4, where a
is invariantly set to 0, �1 to 1, and "i follows a logistic

distribution with a variance of 3.29. The size of

the unobserved heterogeneity is varied by setting �2

(the LnOR for x2) to 0.5, 1.0, or 2.0, which are

within the range of commonly observed effect sizes.

Take note, however, that in this simulation, the

unobserved heterogeneity is represented by a single

variable, while in most real cases it will consist of a

range of variables.
Table 2 reports the average of �1 from these

simulations, where Model 1 is the model excluding

x2 and Model 2 is the true model including x2. The last

row gives the attenuated estimate of �1 as calculated

by Equation 7.
We can see in Table 2 that the estimate of �1 is

clearly biased towards zero when not accounting for

x2, and this bias increases with the size of �2. The table

demonstrates that bias occurs already at relatively

modest, and common, effect sizes and may become a

considerable obstacle to interpretation of effects when

important predictors are left out of the model. Recall,

however, that the bias actually depends not only on �2

but also on the variance in x2 (which is invariantly

set to one in this example). Table 2 also reveals that �1

in this example is even more biased than Equation 7

would suggest. This is in line with the results in

Cramer (2003), and the discrepancy can be explained

by the misspecification of the shape of the error

distribution in Model 1 (cf. Note 6).

Interpretation of Log-Odds
Ratios and Odds Ratios as
Effect Estimates

In Figure 1, we could see that curves (2), (3), and (4)

had a common slope (i.e. their OR and LnOR were the

same), but that curve (1) looked different. That is, the

LnOR and OR describing the relation between x1 and

P(y¼ 1) with x2 set at fixed values [curves (2), (3), and

(4)] are different from the LnOR and OR for the

same relation averaged over the distribution of x2

Table 2 Average estimate of �1 for different values
of �2 and calculated estimate of �1

b2¼ 0.5 b2¼ 1 b2¼ 2

�1, Model 1 0.95 0.84 0.61
(0.03) (0.03) (0.03)

�1, Model 2 1.00 1.00 1.00
(0.03) (0.03) (0.03)

�1, Equation 7 0.97 0.88 0.67

Standard deviations in parentheses. 1,000 replications, n¼ 10,000.
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[curve (1)]. None of these curves is inherently ‘wrong’,
but they estimate different underlying quantities. Curve
(1) represents the population-averaged effect of x1 on
P(y¼ 1), while curves (2), (3), and (4) represent the
effect of x1 on P(y¼ 1) conditional on having a
certain value on x2. Hence, in the logistic regression
without x2 we obtain the LnOR or OR corresponding
to a population-averaged probability curve, while the
logistic regression with x2 gives us the LnOR or OR
corresponding to a conditional probability curve.

We can think of the conditional estimates as
moving from the aggregate level in direction towards
the individual-level effects, i.e. the effects that would
occur for individuals upon a change in the indepen-
dent variable. In terms of the above example, each
individual must be either a boy or a girl and hence
the OR or LnOR for IQ conditional on sex comes
closer to the individual-level effect than the OR or
LnOR for IQ from the bivariate model. Controlling
for any other variable that improves our prediction
of the university transition moves the OR for IQ even
closer to the individual-level effect. As a consequence,
estimates of a variable’s LnOR or OR from a model
averaging P(y¼ 1) over the distribution of some
characteristic may be poor approximations of the
same variable’s LnOR or OR from a model condition-
ing on the characteristic, even if this characteristic is
unrelated to the independent variable.

As a consequence of the above, when using logistic
regression, we should be even more cautious to
interpret our estimates as causal effects than we are
when we use linear regression. It is difficult to control
for all factors related to both independent and
dependent variables, but it is of course even more
difficult to control for all variables that are important
for explaining the dependent variable. Considering
the small degree of variance that we can usually
explain, unobserved heterogeneity is almost always
present. The problem need not be serious in all
applications, but the risk that it is should be a cause
for caution when interpreting results.

Recall that even if we do not know the size of the
impact of unobserved heterogeneity unrelated to the
independent variables, we always know the direction of
the impact: it can only lead to an underestimation of
the effect that one would estimate accounting for the
unobserved heterogeneity. In addition, unobserved
heterogeneity that is unrelated to the independent
variables does not affect our possibilities to draw
conclusions about the direction of an effect and the
relative effect of different variables within a model (i.e.
which variable has the largest effect) (Wooldridge
2002, p. 470).

Comparing Log-Odds Ratios or
Odds Ratios Across Models in
a Sample

In Table 1 above, we saw that the LnOR and OR for
one variable (x1) can change when we control for
another variable (x2), even though x1 and x2 are not
correlated. This has the consequence that the common
practice of ‘accounting for’ effects by including new
independent variables in a model may lead researchers
astray. In OLS regression we can start with a bivariate
model of, e.g. the sex wage gap, and control for a
range of variables to see to which extent these variables
account for the wage gap. If we swap the dependent
variable from wages to promotion and use logistic
regression, we cannot use the same procedure, as the
changes in coefficients across models can depend also
on changes in unobserved heterogeneity.

Using another example, say that we estimate
regional differences in unemployment, starting with
a bivariate model, and in the second step controlling
for education. If we do this on data from a country
where there are no differences in average level of
education between regions, and if education is
relevant in explaining unemployment, the LnOR or
OR for the region variable will suggest a larger effect
of region when controlling for education. In a linear
regression, this would be interpreted as education
being a suppressor variable, meaning that the regional
difference was partially suppressed by a higher level
of education in regions with more unemployment.
In logistic regression, we cannot draw such a
conclusion.

Now imagine the same analysis on data from a
country where there are regional differences in
education. The change in the estimated LnOR or OR
for the region variable will then depend both on the
relation between region and education and on the
change of scale induced by the reduction of unob-
served heterogeneity when including education in the
model. Because less-unobserved heterogeneity leads
to larger effect terms, a downward change in the LnOR
(towards 0) or in the OR (towards 1) for the region
variable when education is added to the model cannot
be due to a change of scale. This means that if the
LnOR or OR for the region variable decreases in
strength when adding education to the model, we can
conclude that this is due to the relation between region
and education. However, the shrinkage of the coeffi-
cient can be partly offset by an increase in explained
variance, i.e. the decrease would have been larger in
the absence of a change of scale. And if the coefficient

72 MOOD
 at Stockholm

s U
niversitet on A

ugust 18, 2016
http://esr.oxfordjournals.org/

D
ow

nloaded from
 

http://esr.oxfordjournals.org/


is unchanged, we may mistakenly conclude that

regional differences in education are of no relevance

for regional differences in unemployment.

Comparing Log-Odds
Ratios or Odds Ratios
Over Samples, Groups,
or Time-Points

The fact that LnOR and OR reflect effects of the

independent variables as well as the size of the

unobserved heterogeneity does not only affect our

possibility to draw conclusions about substantive

effects and to compare coefficients over models. It

also means that we cannot compare LnOR and OR

across samples, across groups within samples (Allison,

1999), or over time, without assuming that the

unobserved heterogeneity is the same across the

compared samples, groups, or points in time. In

most cases, this is a very strong assumption. Even

if the models include the same variables, they need

not predict the outcome equally well in all the

compared categories, so different ORs or LnORs in

groups, samples, or points in time can reflect

differences in effects, but also differences in unob-

served heterogeneity. This is an important point

because sociologists frequently compare effects across,

e.g. sexes, ethnic groups, nations, surveys, or years. The

problem extends to comparisons across groups, time-

points, etc. within one logistic regression model in the

form of interaction effects. For example, in a model

where we want to study the difference in the effect of

one variable between different ethnic groups, between

men and women, or between different years, the

estimate will depend on the extent to which the model

predicts the outcome differently in the different

categories.
For example, we might be interested in how the

effect of school grades on the probability of transition

to university, controlling for the student’s sex, varies

over time or between countries. A weakening of LnOR

or OR for grades between two points in time can mean

that the effect of grades is diminishing over time, but

it can also mean that the importance of sex for

educational choice has decreased over time. Similarly,

if the LnOR or OR for grades is higher in one country

is higher than in another country, it can mean that the

effect of grades is stronger, but it can also mean that

sex is more important in explaining the educational

choice in that country.

Proposed Solutions

A look in any sociological journal that publishes
quantitative research confirms that the problem of
unobserved heterogeneity has escaped the attention of
the large majority of users of logistic regression. LnOR
and OR are interpreted as substantive effects, and it
is common practice to compare coefficients across
models within samples, and across samples, groups etc.
just as in linear regression. This is obviously problem-
atic, so what should we do instead?

The easiest solution to the problem discussed here—
or rather a way of avoiding it—is to replace the latent
continuous variable with an observed continuous one;
if a reasonable such variable exists. For example, if the
outcome in question is a binary measure of poverty
(coded 1 if poor and 0 if non-poor) one might
consider using a continuous measure of economic
hardship instead. This, however, is not always a
feasible option, because we may be interested in
dependent variables that are fundamentally qualitative,
and for which no alternative continuous variables
exist, such as mortality, divorce or educational
transitions. Even so, there are ways around the
problems, at least in some cases. These strategies
could usefully be divided into those that concern odds
ratios and log-odds ratios, and those that concern
probability changes.

Solutions Using Odds Ratios and

Log-Odds Ratios

The problem of comparing coefficients across models
for the same sample but with different independent
variables is discussed briefly by Winship and Mare
(1984), who suggest that coefficients can be made
comparable across models by dividing them with the
estimated standard deviation of the latent variable
(sdY�) for each model (y-standardization).8 The total
estimated sdY� is the sum of (1) the standard deviation
of the predicted logits, and (2) the assumed standard
deviation of the error term (which is always 1.81,
i.e.

ffiffiffiffiffiffiffiffiffi
3:29
p

). Because (2) is assumed to be fixed, all
variation in the estimated sdY� across models must
depend on (1), which in turn can depend only on the
included independent variables. As explained above,
the standard deviation of the logit (and hence its scale)
increases when we include variables that improve our
predictions of y. Because y-standardization divides
coefficients by the estimated standard deviation, it
neutralizes this increase and rescales coefficients to
express the standard-deviation-unit change in y� for a
one-unit change in the independent variable. Note that
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this method does in no way retrieve the ‘true’ scale of
y�: The size of the unobserved heterogeneity is still
unknown, and the only thing we achieve is the
possibility to compare a variable’s coefficient between
models estimated on the same sample with different
control variables.

y-standardization works for comparisons across
models estimated on the same sample because we
know the size of the difference in unobserved hetero-
geneity across models. However, when comparing
results for different groups, samples, points in time,
etc., we do not know the differences between these
in unobserved heterogeneity. What we do know is that
unobserved heterogeneity that is unrelated to the
independent variables affects all coefficients within a
group etc. in the same way. Allison (1999) uses this
fact to develop a procedure to test whether differences
in coefficients across groups are due to unobserved
heterogeneity, and his article contains a detailed
description of this procedure using various programs.
His procedure involves both a test of whether at least
one coefficient differs across groups, and a test of
whether a specific coefficient differs. As shown by
Williams (2006a), the first test runs into problems if
the effects of several variables in one group deviate in
the same direction from the effects in the other group.
In these cases, Allison’s procedure can falsely ascribe
group differences in effects to group differences in
residual variation. In addition, the test of whether a
specific coefficient differs requires an assumption
that at least one of the underlying ‘true’ coefficients
is the same in the compared groups. Of course, this
assumption may be hard to justify, but if a researcher
has strong theoretical reasons to make such an
assumption, or have external evidence that supports
it, and only wants to know whether an effect differs
significantly across groups and in which direction, this
test is likely to do the job.

The procedure proposed by Allison for group
comparisons is criticized by Williams (2006a). He
shows that it can be seen as one model in a larger
family of so-called heterogeneous choice models, and
argues that it will not be the right model for many
situations. Instead, he proposes a more flexible use of
the family of heterogeneous choice models to compare
logit and probit coefficients across groups. Such
models can be estimated in common statistical soft-
ware, such as Stata [using the oglm command
(Williams 2006b)], SPSS and Limdep, and are based
on the idea of estimating one ‘choice equation’ that
models the effect of a range of variables on the
outcome, and one ‘variance equation’ that models
the effect of a range of variables on the variance in the

outcome. Because the mean and variance of categorical
variables cannot be separately identified, models of this
kind cannot really solve the problems discussed here.
Rather, they can give alternative estimates under what
are essentially different assumptions about the func-
tional form of the relation (Keele and Park, 2006). For
ordinal dependent variables, however, these models are
more likely to be identified (Keele and Park, 2006),
so if it is possible to express the outcome in ordinal
rather than nominal terms this can be a good option.

As noted by Allison (1999), we can get a rough
indication of whether differences in LnOR and OR
depend on unobserved heterogeneity by simple inspec-
tion: If coefficients are consistently higher in one
group, sample, model etc. than in another, it is an
indication that there is less unobserved heterogeneity.
However, because the true effects can also differ, this
is not a foolproof test.

Solutions Using Probability Changes

Though the proposed solutions described above may
allow comparability across models and in some cases
across groups, the question remains as to how we
should interpret the substantive effects. Angrist (2001)
argues that problems with effect estimation from
nonlinear limited dependent variable models (includ-
ing logistic regression models) are primarily a con-
sequence of a misplaced focus on the underlying latent
variables. Instead, he thinks that we should care about
the effects on probabilities (see also Wooldridge, 2002,
p. 458). But how do estimates in probability terms fare
in the context of unobserved heterogeneity?

The link between the logit and the probability of an
outcome is the logistic cumulative distribution func-
tion (CDF):

Fð�xiÞ ¼
expð�xiÞ

1þ expð�xiÞ
ð8Þ

where �xi is the value of the logit (i.e. the linear
combination of values on variables x and their
estimated coefficients �) for observation i. The slope
of the logistic CDF is the logistic probability distribu-
tion function (PDF), which is given by:

f ð�xiÞ ¼
expð�xiÞ

1þ expð�xiÞ½ �
2 ð9Þ

The CDF gives the P(yi¼ 1), and the PDF at a given
P(yi¼ 1) equals P(yi¼ 1)� [1 – P(yi¼ 1)]. Unlike the
LnOR and OR, the effect of an independent variable
on P(yi¼ 1) is not an additive or multiplicative
constant, so there is no self-evident way of reporting
results in probability terms. There are various measures
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of changes in probability (Long, 1997, pp. 64–78),

some of which are based on derivatives, which measure

the slope at a particular point of the CDF, and others

that measure the partial change in P(y¼ 1) for a

discrete change in an independent variable from one

specified value to another (e.g. a one-unit-change). As

demonstrated by Petersen (1985), the derivative does

not equal the change in P(y¼ 1) for a one-unit change

in x, but it is often a decent approximation.
Marginal effects (MFX) at specified values (com-

monly means) of all independent variables take the

value of the logistic PDF corresponding to the

predicted logit for these specific values and multiply

it by the estimated coefficient for x1. MFX thus

expresses the effect of x1 on P(y¼ 1) conditional on

having the specified characteristics. Another possibility is

to evaluate the marginal effect at the logit correspond-

ing to the average P(y¼ 1), i.e. conditional on having

an average P(y¼ 1).9 To get a better sense for the non-

linearity of the effect one can report marginal effects at

different levels of independent variables or at different

P(y¼ 1). When the specific values chosen for the point

of evaluation are the means of independent variables,

MFX is given by:

�x1
f ð� �xÞ ð10Þ

where � �x is the value of the logit when all variables x

have average values.
Another common measure based on derivatives is

the average marginal effect (AME), which is given by

1

n

Xn

i¼1

�x1
f ð�xiÞ ð11Þ

where �x1
is the estimated LnOR for variable x1, �xi is

the value of the logit (i.e. the linear combination of

values on variables x and their estimated coefficients �)

for the i-th observation, and f(�xi) is the PDF of

the logistic distribution with regard to �xi. In words,

AME expresses the average effect of x1 on P(y¼ 1).

It does so by taking the logistic PDF at each

observation’s estimated logit, multiplying this by the

coefficient for x1, and averaging this product over all

observations.
Average partial effects (APE) differ from AME by

averaging the marginal effects bx1
f(�xi) across the

distribution of other variables at different given values

of x1. While the AME gives one single estimate, APE

varies by x1 and thus acknowledges the nonlinear shape

of the relation. APE differs from MFX in that MFX

gives the marginal effect at given values of all variables

in the equation, while APE gives the average effect at a

given value of x1 (or in a given interval of x1). APE is

thus also given by Equation (11), but it is calculated

for subgroups with a specific value, or within a specific

range of values, on x1.
Wooldridge (2002, p. 471) shows for probit that if

other variables are normally distributed and uncorre-

lated to x1, the expectation of APE at different values

of x1 equals the MFX from the probit without these

other variables. Similarly, under the assumption that

omitted variables are unrelated to the included ones,

the MFX at specified values of several included

variables equals the APE (averaged over other unob-

served or observed variables) among individuals who

have this combination of values. For logistic regression

Wooldridge offers no similar proof, but the intuition is

the same: If other variables are uncorrelated to x1, the

APE of x1 considering these variables and the MFX of

x1 disregarding these variables will be similar, and any

difference depends on how much the probability

distribution that the APE corresponds to deviates

from a logistic distribution (cf. Figure 1 and note 6:

The slope of curve (5) approximates APE, while the

slope of curve (1) is the MFX from the model without

x2. Because curve (5) does not follow a logistic

distribution, the curves are not identical).
Estimated changes in P(y¼ 1) for discrete changes in

an independent variable (�P) (Petersen, 1995; Long,

1997) are normally evaluated taking the point of

departure at a specific value of the logit, often a value

corresponding to the averages of independent vari-

ables. In contrast to MFX, �P measures the change in

P(y¼ 1) for a substantively meaningful change in x1.

For example, for a one-unit change in x1 the �P

would commonly be estimated as:

Fð� �x þ �x1
Þ � Fð� �xÞ ð12Þ

where Fð� �x þ �x1
Þ and Fð� �x) is the CDF of the logistic

distribution with regards to ð� �x þ �x1
Þ and ð� �x),

respectively. As with MFX, one can evaluate �P for

logits corresponding to different values of the inde-

pendent variables to better understand the non-

linearity of the relation.
To get a better sense of these different measures,

Table 3 shows results from two logistic regressions on

a fictitious data set.10 AME is simply the mean of all

individual derivatives �x1 f(�xi), MFX is evaluated at

the means of independent variables (using the mfx

command in Stata), APE is calculated as the mean of

�x1 f(�xi) for the 153 (out of 20,000) observations that

are in an interval of 0.01 standard deviations around

the mean of x1, and �P measures the change in the

P(y¼ 1) for a one unit change in x1 from ½ unit below

average to ½ unit above average (using the prchange
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command in the Spost routine in Stata). The following
models are estimated:

Model 1: yi
�
¼�þ x1i�1þ "i

Model 2: yi
�
¼�þ x1i�1þ x2i �2þ "i

R(x1, x2)¼ 0; P(y¼ 1)¼ 0.5

As can be seen in Table 3, MFX and �P follow the
same pattern as the LnOR and OR: When controlling
for x2, these estimates suggest stronger effects of x1 on
y. AME and APE, however, are not affected more than
marginally by controlling for x2. The reason is that
MFX and �P are conditional on specific values of
the observed variables, while AME and APE represent
averages of the conditional effects. Thus AME and APE
are roughly invariant to the exclusion of independent
variables unrelated to the independent variables already
in the model [cf. Figure 1, in which curve (5)—that
approximates APE—is close to curve (1)]. Recall that

AME and APE average the conditional effects, which

means that they are not invariant to the exclusion

of independent variables that are correlated to the

independent variables in the model.
The change in MFX and �P between Models 1 and

2 is a more complex issue than it may seem. It need

not always be the case that these measures change in

a way similar to the LnOR and OR. Recall that MFX

at the mean of the independent variables is given by

�x1
f(� �x), and �P by F(� �xþ�x1

)� F(� �x), which means

that the magnitude and direction of the change in

these measures for x1 when controlling for x2 depends

not only on the change in �x1
(the LnOR for the effect

of x1 on y) but also on the size of f(� �x), i.e. the value

of the logistic PDF at the point of evaluation (in this

case, this point is at the average of the independent

variables). This might appear clearer in Figure 2, which

shows (1a) the predicted P(y¼ 1) for different values

of x1, not controlling for x2 (the bold solid curve), (1b)

the corresponding marginal effects at different values

of x1 (the bold dashed curve), (2a) the predicted

P(y¼ 1) for different values of x1, with x2 held

constant at 0, which is its mean value (the thin solid

curve), and (2b) the corresponding marginal effects at

different values of x1 (the thin dashed curve).
MFX for x1 without controls for x2 (Model 1), the

bold dashed curve, corresponds to the slope of the

bold solid curve, while MFX for x1 controlling for x2

0
.2

.4
.6

.8
1

−4 −2 0 2 4
x1

(1a) P(Y=1), model 1 (1b) MFX, model 1
(2a) P(Y=1), model 2,x2=0 (2b) MFX, model 2
mean(Y)

Figure 2 Predicted probability of y¼ 1 by x1, and corresponding marginal effects. Average probability of y¼1 is 0.5

Table 3 Comparison of estimates of ß1 with
control for x2 (Model 2) and without (Model 1)
[P(y¼ 1)¼ 0.50]

LnOR OR AME APE MFX �P

Model 1 0.626 1.870 0.143 0.157 0.157 0.155
Model 2 1.005 2.732 0.142 0.151 0.251 0.246
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(i.e. Model 2), the thin dashed curve, corresponds to

the slope of the thin solid curve. Because x1 and x2 are

uncorrelated, the bold dashed curve also approximates

APE. The solid curve changes shape when including x2,

because the more variables we control for, the better

we can predict the outcome. In Table 3, MFX was

evaluated at the average of x1, which is 0. As we can

see in Figure 2 (at the vertical line), this is where the

slopes—the MFX—differ most. At other values of x1,

however, the differences between the MFX are smaller,

and for very high or very low values of x1 the MFX are

actually larger when not controlling for x2.
To understand how this happens, recall that the

logistic PDF (i.e. the derivative of the CDF), has its

peak when P(y¼ 1) is 0.5, which means that this is

where the effect of an independent variable on P(y¼ 1)

is strongest. The more unobserved heterogeneity we

have, the more the scale of the logit shrinks towards

zero. This means two things: (1) the coefficients

shrink, and (2) the predicted logits shrink. Because a

logit of 0 equals a probability of 0.5, the predicted

probabilities move closer to 0.5 when the predicted

logits shrink towards zero. As this is a move towards

larger f(�x), unobserved heterogeneity simultaneously

shrinks �x1 and increases f(�x). Though the shrinkage

in �x1 is the same for all levels of x1, the increase in

f(�x) varies with x1, so more unobserved heterogeneity

can for some values of x1 lead to higher estimated

MFX (Wooldridge, 2002; p. 471).
To further clarify the nature of MFX and �P,

Table 4 gives results from a similar logistic regression

of x1 and x2 on y, where P(y¼ 1) is 0.14 instead of

0.5.11 The following models are estimated:

Model 1: yi
�
¼ �þ x1i�1þ "i

Model 2: yi
�
¼ �þ x1i�1þ x2i�2þ "i

R(x1, x2)¼ 0; P(y¼ 1)¼ 0.14

In Table 4 we can see that MFX and �P decrease

when controlling for x2. This is because these measures

are now evaluated where the logistic PDF is further

from its peak. For the models in Table 4, Figure 3

shows the same quantities as in Figure 2, that is: (1a)

the predicted P(y¼ 1) for different values of x1, not

controlling for x2 (the thick solid curve), (1b) the

corresponding marginal effects at different values of x1

0
.2

.4
.6

.8

-4 -2 0 2 4
x1

(1a) P(Y=1), model 1 (1b) MFX, model 1
(2a) P(Y=1), model 2,x2=0 (2b) MFX, model 2
mean(Y)

Figure 3 Predicted probability of y¼ 1 by x1, and corresponding marginal effects. Average probability of y¼1 is 0.14

Table 4 Comparison of estimates of ß1 with
control for x2 (Model 2) and without (Model 1)
[P(y¼ 1)¼ 0.14]

LnOR OR AME APE MFX �P

Model 1 0.692 1.999 0.080 0.076 0.076 0.076
Model 2 1.002 2.723 0.078 0.077 0.044 0.045
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(the thick dashed curve), (2a) the predicted P(y¼ 1) for

different values of x1, with x2 held constant at 0, which

is its mean value (the thin solid curve), and (2b) the

corresponding marginal effects at different values of x1

(the thin dashed curve). As in Table 4, we see that at the

point where MFX is evaluated (at x1¼ 0), the MFX

(which is the slope of the solid curve predicting the

probability) is lower when we control for x2.
To conclude, AME and APE are not (at least not

more than marginally) affected by unobserved hetero-

geneity that is unrelated to the independent variables

in the model, and can thus be compared across

models, groups, samples, years etc. However, these

measures are population-averaged and represent the

average of the conditional effects of x1 on P(y¼ 1). AME

gives the overall average of the conditional slopes for

x1, while APE corresponds to the average of the

conditional slopes for different values of x1. Though

population-averaged estimates in probability terms are

more intuitive in that they measure the average change

in P(y¼ 1) and do not uniformly underestimate

conditional effects as LnOR or OR do, they still

estimate an average effect. If one is interested in the

effect on an aggregate level, AME or APE is normally

sufficient. Nonetheless, many are interested in the

change in probability that would occur for individuals

upon a change in the independent variable, and then

MFX or �P evaluated at different values of indepen-

dent variables are more appropriate because they come

closer to this—especially �P as it measures the effect

of a meaningful change in the independent variable. As

noted above, these measures are affected by unob-

served heterogeneity, and cannot be straightforwardly

compared. In addition, they can suggest very different

effects depending on the values chosen for the

independent variable and the conditioning variables.

Thus, a good option is often to report one estimate of

probability change that is population-averaged, and

one that is conditional.12

Linear Probability Models

Linear probability models (LPM), i.e. linear regression

used with binary dependent variables, also yield results

in terms of probability changes. In linear regression,

we estimate the effects on the observed dependent

variable, so coefficients are comparable over models,

groups, etc. Using LPM is almost unthinkable in

sociology, while it is common in economics. Generally,

three problems are pointed out for LPMs:

(1) The possibility of predicted probabilities higher

than 1 or lower than 0, i.e. out of range.

(2) Heteroscedastic and non-normal residuals, leading

to inefficiency and invalid standard errors, and

(3) Misspecified functional form.

As noted by Long (1997), the occurrence of

unrealistic predicted values as in (1) is also common

in linear regression with non-binary dependent vari-

ables. This is not a serious problem unless many

predicted values fall below 0 or above 1; and (2) can

easily be corrected for.13 This leaves (3) as the critical

issue. It is often theoretically plausible that binary

outcome variables are related to the independent

variables in a non-linear fashion with smaller incre-

ments in the probability of the outcome at the extreme

ends of the distribution.
As long as the misspecification of functional form

does not alter (more than marginally) the substantive

conclusions that are relevant to the questions asked, it

is reasonable to choose LPM over logistic regression.

Though LnOR or OR from logistic regression are valid

for all values of the independent variable and acknowl-

edge the non-linearity of the relation, these advantages

are not exploited if substantive effects are reported

only at a certain point of the distribution. For

example, if we are only interested in sign and

significance of an effect, or of an average effect

estimate (such as AME) and not in the non-linearity

of the relation per se, a LPM is entirely appropriate,

and deriving AME from logistic regression is just a

complicated detour.
In fact, the LPM effect estimates are unbiased and

consistent estimates of a variable’s average effect on

P(y¼ 1) (e.g. Wooldridge, 2002; p. 454). For the data

in Tables 3 and 4, the LPM coefficients are 0.143

and 0.080, respectively, which is identical to the AME

for the same models. To get a more general picture of

the equality of AME and LPM coefficients, I ran 1,000

simulations that fitted logistic regression and LPM

to fictitious datasets (n¼ 5,000) where x1 and x2 are

continuous variables drawn from normal distributions,

and y� is generated by �þ 0:5x1iþ2x2iþ "i, where "i

follow a logistic distribution with a variance of 3.29,

and a is set to vary between 0 and 6. Varying a in this

way means that we obtain data with P(y¼ 1) ranging

between 0.5 and 0.98 (because the logistic curve is

symmetric, there is no need to consider P(y¼ 1)50.5).

As before, Model 1 includes only x1 and Model 2

includes both x1 and x2.
The results (see Table 5) are strikingly easy to

summarize: Regardless of the overall P(y¼ 1), AME

and LPM coefficients are identical or as good as

identical. So if one seeks an estimate of the average

effect, there appears to be no need to use logistic
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regression. However, a problem with reporting one
overall effect estimate is that it gives an impression
that the relationship is linear. If the independent
variables mainly vary over a range where the curve is
roughly linear, this is of course not a problem, but if
nonlinearity is substantively important, it can be
misleading. If coefficients can be easily compared and
appear easy to understand, but give a false impression
of linearity, we have only exchanged one problem for
another.

One argument sometimes levelled against LPMs is
that their results as concerns interactions and non-
linear transformations of the independent variables
differ from those of logit and probit models for the
same variables. This, however, should not be seen as a
defect of LPMs, but as a simple reflection of the fact
that interactive and non-linear transformations say
something substantively different in a model where a
nonlinear functional form is already inherently built
into the model than in a model that assumes a linear
relation. In other words, nonlinearities that are
captured by the logistic functional form in the Logit
model can be captured by non-linear transformations
of the independent variables in a LPM.

Conclusions

Logistic regression is more complex than sociologists
usually think. Standard textbooks in quantitative
methods do not correctly reflect this complexity, and
researchers continuously misunderstand and misreport
effect estimates derived from logistic regression.

Because coefficients depend both on effect sizes and

the magnitude of unobserved heterogeneity, we cannot

straightforwardly interpret and compare coefficients as

we do in linear regression. Although these problems

are mentioned in some econometric textbooks (e.g.

Wooldridge, 2002) and may be known by sociologists

specialized in quantitative methodology, the knowledge

has hardly spread at all to practicing sociologists. If

we do not consider these issues, we run great risk of

drawing unwarranted conclusions from our analyses,

and even to give wrong advice to policy-makers. The

aim of this article is to present and discuss these

problems in the context of logistic regression, but the

problem is similar in other applications, such as probit

models (Wooldridge, 2002, pp. 470–472) or propor-

tional hazard models (Gail, Wieand and Piantadosi,

1984), methods also commonly used by sociologists.
To minimize problems at the stage of analysis and

reporting, it is important to be aware of these

problems already at the study planning and data

collection stage. First, one should avoid collection of

data in terms of dichotomies and qualitative variables

if continuous (or at least ordinal) alternatives exist.

Second, if the intention is to use logistic regression or

some similar model using a non-linear link function,

one must be careful to collect information on variables

that are likely to be important for the outcome, even if

these are likely to be only weakly, or not at all, related

to the independent variables of interest.
There are no simple all-purpose solutions to the

problems of interpretability and comparison of effect

estimates from logistic regression. The situation is

Table 5 Average coefficients from LPM and AME from logistic regression

a¼ 0 a¼ 1 a¼ 2 a¼ 3 a¼ 4 a¼ 5 a¼ 6
P(y¼ 1) 0.50 0.65 0.77 0.87 0.93 0.97 0.98

Model 1
AME x1 0.074 0.069 0.056 0.039 0.024 0.013 0.006

(0.007) (0.006) (0.006) (0.005) (0.004) (0.003) (0.002)
LPM x1 0.074 0.069 0.056 0.039 0.024 0.013 0.006

(0.007) (0.006) (0.006) (0.005) (0.004) (0.003) (0.002)
Model 2
AME x1 0.074 0.069 0.056 0.039 0.024 0.013 0.006

(0.006) (0.006) (0.005) (0.004) (0.003) (0.003) (0.002)
LPM x1 0.074 0.069 0.056 0.039 0.024 0.013 0.006

(0.006) (0.005) (0.005) (0.004) (0.003) (0.003) (0.002)
AME x2 0.297 0.276 0.223 0.157 0.096 0.053 0.026

(0.004) (0.004) (0.005) (0.005) (0.004) (0.004) (0.003)
LPM x2 0.298 0.277 0.223 0.157 0.096 0.053 0.026

(0.004) (0.004) (0.005) (0.005) (0.005) (0.004) (0.003)

Standard deviations in parentheses. 1,000 replications, n¼ 5,000.
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complicated by the fact that we often want estimates
that simultaneously (i) capture the non-linearity of the
relation, (ii) are comparable over groups, samples etc.,
(iii) are comparable over models, and (iv) indicate
conditional effects. Because one estimate can normally
not fulfil all these criteria, we need to carefully
consider what is most relevant for our purposes and
what we can estimate with available data. And,
crucially, if our estimates do not fulfil all these criteria,
we must report our results accordingly.

Table 6 provides a summary of the characteristics of
the different effect estimates that have been discussed.
Because different estimates fulfil different criteria, it is
often advisable to report results using more than one
type of estimate. I would also like to add a fifth
criterion to the four above, namely that the estimates
we report should be understandable to the reader.
Many find log-odds ratios hard to grasp, and odds
ratios are frequently misunderstood as relative risks, so
it is often a good choice to present at least one effect
estimate in terms of effects on probabilities.

Notes

1. For an accessible introduction to logistic regres-

sion, see Long (1997). I here discuss these

problems in the context of dichotomous

dependent variables, but they hold also for

multinomial or ordinal logistic regression.

2. Unobserved heterogeneity is sometimes defined as

unobserved differences between certain categories

(e.g. men/women, treated/non-treated) or unob-

served individual characteristics that are stable

over time. In this article, I consider all variation

that is caused by unobserved variables to be

unobserved heterogeneity, and the problems that

I discuss occur regardless of whether the unob-

served variables are group-specific and/or stable

over time.

3. The problems discussed also apply to coefficients

from probit and most other models using non-

linear link functions (Wooldridge, 2002,

pp. 470–472; Gail, Wieand and Piantadosi,

1984). I concentrate on logistic regression here

because it is used very frequently in sociology.

4. Equations 6 and 7 are only approximately true,

because b1 will be affected not only by the size but

also by the shape of the residual variation, and

this shape cannot be logistic both when including

x2 and when excluding it (cf. note 6).

5. The dataset (n¼ 10,000) is constructed in Stata

10.0. IQ (x1) is a continuous variable (mean 0,

Table 6 Characteristics of estimated effects on binary dependent variables

Capture
nonlinearity

Comparable
across

groups,
samples etc.

Comparable
across
models

Conditional
effect

estimatea

Measures based on odds and log-odds
Odds ratio Yes No No Yes
Log-odds ratio Yes No No Yes
y-standardization Yes No Yes No
Allison’s procedure Yes Yesb No Yes
Heterogeneous choice models Yes Yesc No Yes

Measures based on percentages
Average marginal effect No Yes Yes No
Average partial effect Yesd Yes Yes No
Marginal effect Yesd No No Yes
�P Yesd No No Yes
Linear probability model No Yes Yes Noe

aIn a multivariate model.
bIf assumption that one variable has same effect in groups etc. is correct.
cIf assumption about the functional form of the relationship is correct.
dIf estimated at several places in the distribution.
eIf the true relationship is nonlinear.
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sd 1) drawn from a normal distribution (com-

mand drawnorm) and sex (x2) is a dummy

variable (mean 0.5, sd 0.5). yi
� is generated by

�1þ 1x1iþ 2x2iþ "i, where "i follows a logistic

distribution with a variance of 3.29.

6. As can be seen in Figure 1, the probability curve

from the bivariate logistic model (curve 1) does

not perfectly represent the average of the

conditional probability curves (3) and (4), but

deviates systematically at very high and very

low values of x1. This is because the average of

two logistic curves is not a logistic curve itself,

but Model 1 is restricted by the assumption of

the logistic distribution so that the predictions

from it (curve 1) must take a logistic shape. This

exemplifies an additional problem with logistic

regression estimates: they can be affected not

only by the size of the error but also by

misspecification of the shape of the distribution.

However, this problem appears minor relative

to the one discussed in this article (cf. Cramer,

2003).

7. For the case of log-linear models and cross-

tabular analysis the conflict between averages

on the probability and on the OR scale has

been discussed in terms of the collapsibility

of OR over partial tables (Whittemore, 1978;

Ducharme and Lepage, 1986).

8. y-standardized coefficients can easily be obtained

in Stata using the Spost package (Long and

Freese, 2005).

9. This is in fact a convenient way to roughly gauge

the substantive meaning of results reported in

terms of LnOR. Because the logistic PDF is

simply P(1 – P), one can calculate the marginal

effect at average P(y¼ 1) by taking a variable’s

LnOR� average P(1 – average P).

10. The dataset (n¼ 20,000) is constructed in Stata

10.0. x1 and x2 are continuous variables (mean

0, sd 1) that are uncorrelated and drawn

from a normal distribution (command draw-

norm). yi
� is generated by x1iþ 2x2iþ "i, where "i

follows a logistic distribution with a variance

of 3.29.

11. The dataset (n¼ 20,000) is constructed in Stata

10.0. x1 and x2 are uncorrelated continuous

variables (mean 0, sd 1) drawn from a normal

distribution (command drawnorm). yi
� is

generated by –3þ x1iþ 2x2iþ "i, where "i follows

a logistic distribution with a variance of 3.29.

12. As discussed in the section about LnOR and OR,

the distinction between population-averaged and

conditional estimates is really a matter of degrees.

Estimates that are conditional on some vari-

able are still averaged over the distribution of

other variables. Thus, the MFX for x1 in Model 2

in Tables 3 and 4 are conditional on x2, but

averaged over the distribution of variables that

remain unobserved.

13. A simple way is to use heteroscedasticity-robust

standard errors. A more efficient alternative is to

estimate LPM by weighted least squares (WLS),

where the observations with smaller residuals are

given more weight. However, because the smaller

residuals are for predicted values close to 0 or

1, which are the predictions most likely to be

misleading in the LPM if the true relationship

is nonlinear, WLS can be misleading when the

true relationship is nonlinear and many predicted

probabilities lie close to 0 or 1.
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