Re-evaluation of MIS 3 glaciation using cosmogenic radionuclide and single grain luminescence ages, Kanas Valley, Chinese Altai

NATACHA GRIBENSKI1,2,4 KRISTEN N. JANSSON,1 FRANK PREUSSER,3 JONATHAN M. HARBOR,1,4 ARJEN P. STROEVEN,1 MAREIKE TRAUERSTEIN,4 ROBIN BLOMDIN,1 JAKOB HEYMAN,6 MARC W. CAFFEE,4,7 NATHANIEL A. LIFTON4,7 and WEI ZHANG8

1Geomorphology and Glaciology, Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Sweden
2Leibniz Institute for Applied Geophysics, Hannover, Germany
3Institute of Earth and Environmental Sciences, University of Freiburg, Germany
4Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, IN, USA
5Institute of Geography, University of Bern, Switzerland
6Department of Earth Sciences, University of Gothenburg, Sweden
7Department of Physics and Astronomy, Purdue University, IN, USA
8College of Urban and Environmental Sciences, Liaoning Normal University, China

Received 20 April 2017; Revised 1 September 2017; Accepted 15 September 2017

ABSTRACT: Previous investigations observed a period of major glacial advances in Central Asia during marine oxygen isotope stage (MIS) 3 (57–29 ka), out of phase with global ice volume records. We have re-examined the Kanas moraine complex in the Altai Mountains of Central Asia, where an MIS 3 glaciation had been previously inferred. New and consistent cosmogenic exposure and single-grain luminescence ages indicate that the Kanas complex was formed during MIS 2 (29–12 ka), which brings its timing in line with the global ice volume record. We also identified a lateral moraine from a more extensive ice extent that dates to late MIS 5/MIS 4. To place our results in a wider contextual framework, we review the chronologies of another 26 proposed major MIS 3 glaciation advances in Central Asia. For most of these sites, we find that the chronological data do not provide an unequivocal case for MIS 3 glaciation. Copyright © 2017 John Wiley & Sons, Ltd.

KEYWORDS: Central Asia; cosmogenic exposure dating; glaciation; MIS 3; OSL dating.

Introduction

Detailed geomorphic and chronological reconstructions of former glaciations offer a means of understanding variations in past atmospheric circulation and testing the validity of ice sheet and climate models (e.g. Kuhlemann et al., 2008; Seguinot et al., 2016). On a global scale, marine records indicate that Last Glacial Maximum (LGM) ice volumes occurred at Marine Isotope Stage (MIS) 2, between 29 and 19 ka (Lisiecki and Raymo, 2005; Lambeck et al., 2014). While there is widespread empirical evidence that ice sheets and alpine glaciers in most formerly glaciated areas experienced major MIS 2 expansion (Hughes et al., 2013), some studies indicate that maximum ice extents were attained at significantly earlier times in many mountain areas (Ehlers et al., 2011; Hughes et al., 2013). Particularly intriguing examples are glaciers from the Himalayan, Tibetan and Central Asian mountains, for which several paleoglacial reconstructions indicate rather limited MIS 2 ice extent and major glacial advances during MIS 3 (57–29 ka; e.g. Koppe et al., 2008; Heyman, 2014; Owen and Dortch, 2014), a period of relative global warmth (van Meerbeeck et al., 2008). This regional asynchronicity has been explained by increased moisture supply during MIS 3 and arid conditions during MIS 2 (e.g. Owen et al., 2002; Zhao et al., 2013; Li et al., 2014).

Glaciation patterns at the regional or global scale and their interpretation in terms of paleo-atmospheric circulation are highly dependent on the accurate chronologies of local glacial extent. The most unambiguous approach for constraining the timing of a former glacial extent is to directly date landforms and deposits associated with ice margins (e.g. moraines). The timing of glacial deposition is typically constrained by cosmogenic nuclide exposure dating of boulders from moraines crests, or by dating ice marginal sediments using optically stimulated luminescence (OSL) or, more rarely, electron spin resonance (ESR) techniques. Obtaining accurate glacial chronologies is a challenge because geomorphological processes inherent to glacial settings often complicate interpretation of measured parameters serving as proxies for age (Fuchs and Owen, 2008; Balco, 2013; Heyman et al., 2011; Fu et al., 2013).

A case in point is the glacial chronology of Kanas Valley in the Chinese Altai Mountains, Central Asia (Fig. 1A,B). Previous studies identified at least four sets of moraines along this valley, which were dated using OSL and ESR techniques (Zhao et al., 2013), and references therein; Yang et al., 2017). In particular, an extensive well-preserved moraine complex at ~1400 m a.s.l., located ~80 km from the valley headwaters at the outlet of Lake Kanas (Fig. 1; third set in Zhao et al., 2013), has been divided into three subsets based primarily on moraine ridge density, height and slope criteria. Using OSL dating, these three subsets were related to glacial stages during MIS 2 (~28 ka), mid-MIS 3 (~38–52 ka) and early MIS 3 or MIS 4 (~50 or ~73 ka; Xu et al., 2009; Zhao et al., 2013), respectively. In addition, Zhao et al. (2013) propose a larger MIS 6 glaciation, based on weathered lateral moraine benches found discontinuously at about 200 m above the Kanas River from the Lake Kanas outlet to ~20 km downstream (fourth set in their study), and using ESR ages from Xu (2010). Alternatively, Yang et al. (2017) suggest an MIS 5 age for this moraine set, based on OSL ages from an
older glacio-fluvial terrace. All the authors also indicate the presence of erratics above 1850 m a.s.l., and suggest these are traces of an even larger and older glaciation. At the present time, no chronological data exists for this event. We present here a revised glacial chronology of Kanas Valley using cosmogenic nuclide exposure dating of boulders in conjunction with OSL dating of sediments associated with moraine landforms in the Lake Kanas outlet area. To place our results in a better contextual framework, we review the data supporting major MIS 3 glaciation in other parts of the Central Asian mountains.

**Methods**

**Geomorphological mapping**

Detailed geomorphological mapping was conducted in the Lake Kanas outlet area, with a focus on glacial landforms to constrain former glacial extents. Moraines, hummocky terrain, kame terraces, outwash deposits and meltwater channels were identified using the criteria summarized in Table 1. Satellite imagery (Google Earth) and digital elevation models (ASTER and SRTM) were used for preliminary ‘on screen’ mapping; geomorphological and sedimentological field-based observations were combined with the remote sensing observations.

**Cosmogenic exposure dating**

Twelve samples for cosmogenic exposure dating were collected in 2013 from the upper surface of large granitic boulders (60–155 cm high) located on the top of moraines (Fig. 1C and Supporting Information, Fig. S1). Each sample was crushed and sieved to 250–500 μm. Quartz was isolated following procedures modified after Kohl and Nishiizumi (1992). Purity was checked through trace element analysis.
using inductively coupled plasma optical emission spectrometry. Samples were then dissolved in HF and HNO₃, and spiked with a Be carrier. Standard anion and cation exchange column procedures were used to separate ⁴⁰K and ⁴¹Ca (e.g. Ochs and Ivy-Ochs, 1997). Resulting Be and Al oxides were measured by accelerator mass spectrometry (AMS) at PRIME Lab (Sharma et al., 2017). A total of 10 samples were measured, 9 of which were measured using the expage-201611 calculator (expage.github.io/calculator). This calculator is based on the CRO-NUIS calculator, version 2 (Balco et al., 2003), but uses the nuclide-specific ⁴⁰K and ⁴¹Ca production rates (Lifton et al., 2014b) and global average reference production rates based on calibration sites with well-clustered data published between 2009 and 2016 (Balco et al., 2016). The atmospheric correction was calculated using the ‘std’ ERA-40 interpolation (ERA40atm.m; Lifton et al., 2014b) and global average reference production rates based on calibration sites with well-clustered data published between 2009 and 2016 (Balco et al., 2016). The atmospheric correction was calculated using the ‘std’ ERA-40 interpolation (ERA40atm.m; Lifton et al., 2014b).

Table 1. Recognition criteria of landforms and deposits mapped in Kanas Valley.

<table>
<thead>
<tr>
<th>Landform</th>
<th>Geomorphological and sedimentological descriptive criteria*</th>
<th>Main sediment association*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal moraine (complex, ridge, crest)</td>
<td>Prominent deposits of varying width, from single to multiple (complex) ridges, with more or less well-defined crests, which extend across valley floors and/or along valley sides. Linear, curved, sinuous or saw-toothed in planform.</td>
<td>May include a variety of sediment facies, from till to debris flow. May include glaciofluvial units.</td>
</tr>
<tr>
<td>Hummocky terrain</td>
<td>Protruding deposit with irregular shape in planform and with an irregular gentle topography of alternating hills (or crests) and depressions.</td>
<td>May include a variety of sediment facies, from till to debris flow and glaciofluvial deposits.</td>
</tr>
<tr>
<td>Roches moutonnées</td>
<td>Bare bedrock features, with stoss- and lee-side topography. Glacial striations on rock surface.</td>
<td>–</td>
</tr>
<tr>
<td>Kame terrace</td>
<td>Flat to gentle surface, with potential smooth slope, often found in association with moraines.</td>
<td>Mainly composed of bedded sand and gravel units (glaciofluvial).</td>
</tr>
<tr>
<td>Outwash</td>
<td>Flat to very gently sloping plain, often downstream of marginal moraines.</td>
<td>Layered and sorted sand-to-cobble deposit (glaciofluvial)</td>
</tr>
<tr>
<td>Meltwater channel</td>
<td>Linear depression on bedrock or sediment. Can be parallel to, or cross-cut, the valley slope. Can also be parallel to, or cross-cut, moraine deposits.</td>
<td>–</td>
</tr>
<tr>
<td>Sediment fan</td>
<td>Prominent deposit with a fan shape in planform located at the foot of the valley slope. Non-glacial deposit.</td>
<td>Poorly sorted and angular clast-dominated deposit (if mainly due to physical weathering; colluvial fan) to more stratified and sorted deposit (if streams involved in sediment transport along slopes; alluvial fan)</td>
</tr>
</tbody>
</table>

*Criteria mainly based on Heyman et al. (2008), Benn and Evans (2010), Gribenski et al. (2016), Blomdin et al. (2016a).
Table 2: Details of 10Be and 26Al cosmogenic nuclide samples, analysis and corresponding surface exposure ages.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Feature sampled</th>
<th>Location (°N/°E)</th>
<th>Altitude (m a.s.l.)</th>
<th>Thickness (cm)</th>
<th>Shielding</th>
<th>10Be ages (ka) Ext. unc.</th>
<th>Int. unc.</th>
<th>26Al ages (ka) Ext. unc.</th>
<th>Int. unc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC13-06</td>
<td>Kanas moraine complex</td>
<td>48.7111/87.0231</td>
<td>1386</td>
<td>1.5</td>
<td>0.99786</td>
<td>2.857 ± 0.055</td>
<td>17.931 ± 0.497</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td>KC13-08</td>
<td></td>
<td>48.7108/87.0239</td>
<td>1387</td>
<td>2.5</td>
<td>0.99796</td>
<td>2.140 ± 0.063</td>
<td>17.999 ± 0.516</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>KC13-09</td>
<td></td>
<td>48.6931/87.0143</td>
<td>1387</td>
<td>2.0</td>
<td>0.99804</td>
<td>1.498 ± 0.052</td>
<td>11.930 ± 0.496</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>KC13-10</td>
<td></td>
<td>48.6934/87.0143</td>
<td>1387</td>
<td>2.0</td>
<td>0.99804</td>
<td>2.746 ± 0.054</td>
<td>19.513 ± 0.496</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td>KC13-27</td>
<td></td>
<td>48.7032/87.0300</td>
<td>1397</td>
<td>1.5</td>
<td>0.99664</td>
<td>30.960 ± 0.403</td>
<td>24.5 ± 0.562</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>KC13-28</td>
<td></td>
<td>48.7031/87.0311</td>
<td>1406</td>
<td>4.0</td>
<td>0.99571</td>
<td>6.240 ± 0.057</td>
<td>19.910 ± 0.403</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>KC13-23</td>
<td>Older lateral moraine ridge</td>
<td>48.6933/87.0562</td>
<td>1656</td>
<td>2.5</td>
<td>0.9970</td>
<td>2.723 ± 0.089</td>
<td>21.5 ± 0.562</td>
<td>21.5</td>
<td></td>
</tr>
</tbody>
</table>

Samples were measured using the single-grain IRSL overdispersion value (Smedley and Pearce, 2009) calculated using the Central Age Model (CAM) or, when partial bleaching of the sample was inferred, using the Minimum Age Model (MAM; Galbraith et al., 1999). In the latter case, a $\tau_0$ value of 0.3 (overdispersion expected for a well-bleached sample) was adopted, based on single grain IRSL overdispersion values reported for proglacial deposits interpreted to have been well bleached (Gaar et al., 2013).

Laboratory fading rate ($g$-value) measurements were performed on representative samples (KAN14-01 and 5) from the two main sampling sites, following the procedure of Auclair et al. (2003), and using the same measurement parameters as for $D_e$ determination. Due to poor counting statistics, fading tests for coarse K-feldspar grains were performed using large aliquots (~6 mm, three aliquots per sample) to produce a high-magnitude signal and allow a better detection of small signal variation. Fading measurements from polyniferine fine-grain fractions produced inconsistent results with unrealistically high uncertainties (>100%) and were therefore disregarded. Final averaged $g$-value obtained for KAN14-05 was also applied to KAN13-02, and the $g$-value obtained for KAN14-01 was used for KAN14-04 and KAN13-03, based on similar sedimentology characteristic and sample locations. All final ages have been corrected for anomalous fading following the fading correction procedure of Huntley and Lamotte (2001).

External dose rates were determined based on high-resolution gamma spectrometry measurements of bulk material collected from the sampling point and assuming an internal K-content of 12.5 ± 0.3% (Huntley and Baril, 1997; Trauerstein et al., 2014; Table 3) for final dose rate calculations. Because no clear relationship could be observed between single-grain $D_e$ values and signal intensity in a sample interpreted as well bleached before deposition (KAN14-04 discussed in ‘Kanas valley glacial chronology’; Fig. S3), this suggests that there is no major influence of the grain-to-grain variability of the internal K-content (Smedley and Pearce, 2016). Based on direct water content measurements and previous water content values from this study area (cf. Xu et al., 2009; Zhao et al., 2013), we attributed water content values ranging from 7 to 15% to the measured samples (Table 3) for final determination of the dose rate.

Re-evaluation of proposed MIS 3 glacial advances

MIS 3 glaciations have been proposed in the Pamir, the Tian Shan, the Kunlun Shan, the Altai and the Khangai mountains. We review datasets of cosmogenic, OSL and ESR ages that have been used to infer or suggest MIS 3 glacial advances in these areas. Only age constraints from direct dating of moraines are considered. These data were evaluated against specific criteria for the three dating methods. For all dating methods, we required multiple sample measurements to allow for some control of age consistency; single-sample age determinations were discarded (Dortch et al., 2013; Small et al., 2017). We recalculated all 10Be exposure ages using the same approach and calculator (expage-201611) as described for the Kanas Valley samples age calculation (see ‘Cosmogenic exposure dating’), for consistency. Inheritance of cosmogenic nuclides and post-depositional processes can alter moraine boulder exposure ages producing scatter, which in turn hampers a robust determination of a moraine and if the recovered $D_e$ was <2$D_0$ of the exponential curve fit (Wintle and Murray, 2006). The reliability of the protocol was tested by conducting dose recovery experiments on two samples (KO13-03 and 01) previously exposed to a Sunlux Ambience UV lamp for 48 h. For both grain fractions, we obtained dose recovery ratios within 10% of unity (with overdispersion below 10%). Final equivalent doses used for final age determination were calculated using the Central Age Model (CAM) or, when partial bleaching of the sample was inferred, using the Minimum Age Model (MAM; Galbraith et al., 1999). In the latter case, a $\tau_0$ value of 0.3 (overdispersion expected for a well-bleached sample) was adopted, based on single grain IRSL overdispersion values reported for proglacial deposits interpreted to have been well bleached (Gaar et al., 2013).
Table 3: Details of luminescence samples and corresponding ages from the Kanas Lake outlet area.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Feature sampled</th>
<th>Location (°N/°E)</th>
<th>Alt. (m a.s.l.)</th>
<th>Depth (cm)</th>
<th>ESR age (ka)†</th>
<th>Total dose rate (Gy ka⁻¹)</th>
<th>UD %</th>
<th>CAM age (ka)</th>
<th>MAM age (ka)</th>
<th>Th (Bq kg⁻¹)</th>
<th>U (Bq kg⁻¹)</th>
<th>U/Th</th>
<th>Water content (%)</th>
<th>CAM age (ka)</th>
<th>MAM age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KO13-04</td>
<td>coarse grains</td>
<td>48.714879.0226</td>
<td>1383</td>
<td>200</td>
<td>60.87 ± 49.4</td>
<td>32.0 ± 3.5</td>
<td>44.0 ± 2.9</td>
<td>7 ± 3</td>
<td>4.09 ± 0.31</td>
<td>3.86 ± 0.20</td>
<td>3.37 ± 0.38</td>
<td>72 ± 42.8</td>
<td>43.10 ± 4.7</td>
<td>27.4 ± 4.9</td>
<td>62.6 ± 9.7</td>
</tr>
<tr>
<td>KO14-02</td>
<td>coarse grains</td>
<td>48.714889.0213</td>
<td>1382</td>
<td>80</td>
<td>54.74 ± 2.6</td>
<td>30.0 ± 0.6</td>
<td>41.0 ± 1.9</td>
<td>7 ± 3</td>
<td>3.86 ± 0.20</td>
<td>3.37 ± 0.38</td>
<td>72 ± 42.8</td>
<td>43.10 ± 4.7</td>
<td>27.4 ± 4.9</td>
<td>62.6 ± 9.7</td>
<td></td>
</tr>
<tr>
<td>KO14-03</td>
<td>coarse grains</td>
<td>48.691887.0116</td>
<td>1373</td>
<td>100</td>
<td>60.92 ± 35.6</td>
<td>22.2 ± 0.7</td>
<td>31.4 ± 2.0</td>
<td>10 ± 5</td>
<td>3.85 ± 0.36</td>
<td>3.85 ± 0.23</td>
<td>3.85 ± 0.23</td>
<td>66 ± 12.2</td>
<td>68.6 ± 8.2</td>
<td>68.9 ± 10.5</td>
<td>60 ± 14.9</td>
</tr>
<tr>
<td>KAN14-01</td>
<td>coarse grains</td>
<td>48.659286.0267</td>
<td>1627</td>
<td>200</td>
<td>64.37 ± 6.2</td>
<td>27.1 ± 0.9</td>
<td>34.7 ± 1.0</td>
<td>15 ± 5</td>
<td>3.70 ± 0.22</td>
<td>3.65 ± 0.35</td>
<td>20 ± 9.4</td>
<td>75.6 ± 5.9</td>
<td>64.0 ± 9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO14-04</td>
<td>coarse grains</td>
<td>48.659286.0249</td>
<td>1616</td>
<td>200</td>
<td>63.35 ± 7.7</td>
<td>27.1 ± 0.9</td>
<td>34.7 ± 1.0</td>
<td>15 ± 5</td>
<td>3.70 ± 0.22</td>
<td>3.65 ± 0.35</td>
<td>20 ± 9.4</td>
<td>75.6 ± 5.9</td>
<td>64.0 ± 9.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Number of grains accepted.

Results and revised Kanas Valley glacial chronology

**Geomorphological setting of the Kanas Lake outlet area**

Two main glacial landform associations are clearly identified in the Lake Kanas outlet area (Fig. 1C). A stratigraphically younger moraine complex extends over ~4 km² across the Kanas Valley, at the edge of Lake Kanas. The moraine complex includes a series of moraine ridges associated with kame terraces that grade outward into hummocky terrain. An
outwash plain spreads downstream from the Kanas complex. The moraine ridges may reflect multiple glacial advances/stillstands of the ice margin, accompanied by the formation of kame terraces due to the trapping of glacier meltwater in the local topography. The distal hummocky terrain probably results from ice decay moraine degradation, common in alpine settings (Benn and Owen, 2002), and is therefore not indicative of a separate glacial event. Overall, there is no distinctive geomorphological evidence to support a previous subdivision of the Kanas complex into three subsets associated with distinct glaciations (Xu et al., 2009; Zhao et al., 2013). More discrete moraine ridges and remnants of kame terraces located on the south-east slope outside of the Kanas moraine complex, and at higher elevations (Fig. 1C), are evidence for older glaciation(s). The moraine ridges are oriented roughly parallel to Kanas Valley and we interpret them as lateral moraines, although no terminal moraine in association with these ridges could be unambiguously identified further down the valley.

**Kanas Valley glacial chronology**

Nine boulders were sampled for cosmogenic exposure dating across the Kanas complex, from three different locations (Fig. 1C). Of the nine $^{10}$Be ages obtained, six ages cluster between 18.7 and 22.4 ka (CV, $\sigma_\mu = 8\%$); two are significantly older (48.1 ± 2.7 and 245.4 ± 14.2 ka) and one is significantly younger (11.9 ± 0.7 ka) (Figs 1C and 2; Table 2). For all samples, the $^{26}$Al and $^{10}$Be ages agree within external uncertainties and hence do not reveal extended periods of burial (Ivy-Ochs and Briner, 2014; Fig. 2; Table 2). The large difference (>100% and >10 ka) between the two oldest ages and the rest of the population probably indicates inheritance (Dortch et al., 2013; Shakun et al., 2015). The youngest sample (11.9 ± 0.7 ka) is from the distal hummocky terrain and might have been exhumed some thousands of years after glacier retreat because of long-lasting ice decay processes (Zech et al., 2005b). Boulder exposure age datasets with wide age spreads, where some ages are significantly affected by inheritance and post-depositional processes, are relatively common for moraine deposits (e.g. Dortch et al., 2013; Heyman, 2014; Blomdin et al., 2016b). After exclusion of these three outliers, the remaining $^{10}$Be ages ($n = 6$) indicate that ice retreat from the Kanas complex occurred between ~18 and 22 ka. We also note that these six $^{10}$Be ages seem to consist of two populations which correspond to samples collected from the inner part ($n = 3$, mean 19.1 ± 0.4 ka) and from the middle to outer part ($n = 3$, mean 21.8 ± 0.5 ka) of the complex (Figs 1C and 2). We speculate that these populations may reflect successive advances associated with ice margin oscillations during the MIS 2 glaciation.

Single grain IRSL measurements of two samples collected from unsorted, matrix-supported sediment within the Kanas moraine complex (KO13-02 and KAN14-05; Figs 1C and S2, and Table S1) result in widely spread $D_e$ distributions, with overdispersion (OD) values (Galbraith and Roberts, 2012) of 47 and 43%, and skewed or multimodal shapes (Table 3; Figs 3A, C, E and S4). These OD values are significantly larger than values reported in the literature for well-bleached samples.
glacio-fluvial sediments (~30%, Gaar et al., Figure 3). Taken together with their asymmetrical distributions, the OD values indicate that the Kanas complex samples were incompletely bleached before deposition (Duller, 2008; Bateman et al., 2015). This is further supported by the large differences observed between the CAM fading-corrected ages obtained from single grain and large multi-grain aliquots (fine fraction), with the latter systematically exhibiting older ages (Table 3; cf. Arnold et al., 2012). For a final age determination, identified partial bleaching calls for the application of the MAM. Final fading-corrected MAM single grain IRSL ages indicate a deposition time of the Kanas moraine complex between 23.5±6.1 and 27.4±4.9 ka (Fig. 1C; Table 3). These ages agree within uncertainty with the cosmogenic exposure ages (Fig. 4). Taken together, the cosmogenic and luminescence ages strongly indicate that the Kanas moraine complex was formed during a single MIS 2 glaciation (Fig. 4).

An additional IRSL age of 43.8±6.6 ka (KO13-03), for which no significant partial bleaching effect could be identified, was obtained from a well-stratified glaciofluvial deposit downstream of the Kanas complex (Figs 1C and S2), characterized by horizontal to cross-bedded and sorted to well-sorted layers of sand, gravel, rounded pebbles and cobbles. This age is significantly older than the MIS 2 timing indicated by the OSL and cosmogenic exposure samples collected directly from the Kanas complex itself. However, the sample was collected from a sand layer located ~3 m below the current outwash plain surface and sedimentological characteristics do not permit us to determine if it was originally deposited in a proximal (10^-1–10^-2 m) or a more distal (10^-2–10^-4 m) setting relative to a former ice margin (Stephenson et al., 1998; Zielinski and van Loon, 2002). Therefore, this age cannot unambiguously be associated with the Kanas complex ice margin position. Because of the much older age, we hypothesize that the glaciofluvial unit sampled may have been deposited from meltwater from a glacier located further up-valley, and thus older than the Kanas moraine complex. Altogether, we conclude that the age obtained from this sample cannot be used to pinpoint the timing associated with a particular glacial extent, and nor can we determine what the state of the glacier was at the deposition time of the sampled glaciofluvial unit (e.g. retreating or advancing phase). Similar conclusions were drawn by Yang et al. (2017), who regarded the dating of glaciofluvial terraces downstream from the Kanas complex unsuitable to identify a glaciation.

Three boulders were collected from the outer lateral moraine ridge located on the south-east slope outside of the Kanas complex, at around 1650 m. a.s.l. (Fig. 1C; Table 2). Two boulders yield similar 10Be ages (63.4±3.5 and 69.0±3.8 ka) while a third has a much younger age (17.2±1.1 ka). The latter age is stratigraphically inconsistent with its geomorphic setting and probably indicates post-depositional reworking. The two older boulders seem to indicate an MIS 4 glaciation, although the limited number of samples (n = 2) prohibits any conclusive interpretation based on the cosmogenic exposure age dating alone.

Figure 3. Photographs of the sedimentary sections (A, B), radial plots of measured single grain \( D_e \) values (C, D) and probability density distributions (E, F) for one sample interpreted as partially bleached (top, KO13-02, collected within the Kanas moraine complex) and one sample interpreted as well-bleached (bottom, KAN14-01, collected within the outer lateral moraine) before deposition.
which would increase our 10Be exposure ages. This is because we assumed no erosion, and it is likely that there is some, within errors, may reflect some systematic uncertainties. First, laboratory fading rate estimates may include an artificial component (e.g. Lowick et al., 2012), leading to underestimated IRSL ages after fading corrections. Finally, IRSL samples are collected within the body of the moraine landforms, while boulder samples for cosmogenic dating are collected on the surface (representing the very end of active moraine formation) and so might be expected to be younger. Our dataset cannot resolve these potential sources of uncertainty, but as techniques improve these may become less significant. These potential difficulties notwithstanding, our chronology appears robust.

Comparison with previous chronological interpretations

The consistent 10Be exposure and single grain IRSL ages presented here lead to an interpretation of the Kanas complex as reflecting ice margin oscillations within MIS 2, contrasting with previous studies by Xu et al. (2009) and Zhao et al. (2013) who concluded that the complex was formed during multiple glaciations (MIS 2, 3 and 3/4), based on luminescence dating. The sedimentary unit dated to 34.4 ± 4.2 and 38.1 ± 4.5 ka by Xu et al. (2009) was resampled in this study and produced a significantly younger single grain IRSL age of 23.5 ± 6.1 ka. We also obtained another younger single grain IRSL age of 27.4 ± 4.9 ka from a section with similar sedimentological characteristics, but located further downstream in the complex (Fig. 1C). Partial bleaching is known to be common in glacial sediments, as sand grains are typically transported over short distances in turbid water or even subglacially (Duller, 2006; Fuchs and Owen, 2008; Alexanderson and Murray, 2012). If partial bleaching is not detected and accounted for, it results in age overestimation, because the residual signal present at deposition is combined with the dose accumulated since burial. Luminescence measurements of partially bleached samples carried out at the single grain level will result in largely dispersed and asymmetrical $D_e$. 

Discussion

Increasing confidence in glacial chronologies using multiple dating methods

Samples collected for cosmogenic exposure and OSL dating across the Kanas moraine complex resulted in six out of nine 10Be exposure ages tightly clustered between ~18 and ~22 ka, and two IRSL ages measured at the single grain scale (>400 grains measured each) of about 25 ka. Samples from the outer lateral moraine (~200 m above the Kanas complex) yield two similar 10Be ages around 65 ka, and two single grain IRSL ages (~200 grains measured each) around 75 ka. In both cases, IRSL and cosmogenic ages agree within error (Fig. 4), supporting MIS 2 and late MIS 5/MIS 4 glaciations in association with each glacial landform sampled. Within this agreement, the luminescence ages tend to be systematically older than the cosmogenic ages. This difference, admittedly within errors, may reflect some systematic uncertainties. First, we assumed no erosion, and it is likely that there is some, which would increase our 10Be exposure ages. This is especially the case for exposure ages from the outer lateral moraine, which could increase by up to 10 ka, based on reported local erosion rates (up to 3 mm ka$^{-1}$; Koppes et al., 2008; Rother et al., 2014) and the time scale considered. Second, boulders sampled for cosmogenic nuclides may have been shielded by snow, vegetation or even sediment and therefore yield an underestimation of the true age of deposition. Third, laboratory fading rate estimates may include an artificial component (e.g. Lowick et al., 2012), leading to underestimated IRSL ages after fading corrections. Finally, IRSL samples are collected within the body of the moraine landforms, while boulder samples for cosmogenic dating are collected on the surface (representing the very end of active moraine formation) and so might be expected to be younger. Our dataset cannot resolve these potential sources of uncertainty, but as techniques improve these may become less significant. These potential difficulties notwithstanding, our chronology appears robust.

Comparison with previous chronological interpretations

The consistent 10Be exposure and single grain IRSL ages presented here lead to an interpretation of the Kanas complex as reflecting ice margin oscillations within MIS 2, contrasting with previous studies by Xu et al. (2009) and Zhao et al. (2013) who concluded that the complex was formed during multiple glaciations (MIS 2, 3 and 3/4), based on luminescence dating. The sedimentary unit dated to 34.4 ± 4.2 and 38.1 ± 4.5 ka by Xu et al. (2009) was resampled in this study and produced a significantly younger single grain IRSL age of 23.5 ± 6.1 ka. We also obtained another younger single grain IRSL age of 27.4 ± 4.9 ka from a section with similar sedimentological characteristics, but located further downstream in the complex (Fig. 1C). Partial bleaching is known to be common in glacial sediments, as sand grains are typically transported over short distances in turbid water or even subglacially (Duller, 2006; Fuchs and Owen, 2008; Alexanderson and Murray, 2012). If partial bleaching is not detected and accounted for, it results in age overestimation, because the residual signal present at deposition is combined with the dose accumulated since burial. Luminescence measurements of partially bleached samples carried out at the single grain level will result in largely dispersed and asymmetrical $D_e$. 

Copyright © 2017 John Wiley & Sons, Ltd.
populations (as observed in our measurements), reflecting varying grain depositional histories. In such cases, extraction of the well-bleached sub-population by statistical sampling techniques such as the MAM allows a more accurate estimate of the age of deposition (Duller, 2008; Arnold et al., 2012). However, the typical partial bleaching $D_n$ distribution signature is decreasingly visible with an increasing number of grains measured simultaneously, due to averaging effects (Duller, 2008; Arnold et al., 2012). In Xu et al. (2009) and Zhao et al. (2013), the OSL signal was measured from the silt fraction ($<63 \mu m$) spread on ~10-mm-diameter sample holders, and thus there was averaging of signals emitted by $10^5$–$10^6$ grains. With such a large number of grains, any $D_n$ variability will probably have been masked (Wallinga, 2002; Duller, 2008) and so partial bleaching remained undetected, leading to luminescence age overestimates.

Based on elevation and landform description, the outer lateral moraine ridge dated in this study appears to correspond to the so-called 'fourth moraine complex' identified by Zhao et al. (2013), and that the authors connect with MIS 6 ESR ages. The time of deposition determined from our new $^{10}$Be and IRSL ages ($\sim 60–80$ ka) indicates a significantly younger glacial event. ESR dating of glacial deposits remains controversial due to the uncertainty of signal resetting before deposition. Signal accumulated by Ge paramagnetic centers in quartz grains has generally been used for ESR dating of glacial sediments in Central Asia (e.g. Zhou et al., 2002; Zhao et al., 2010). To justify the use of ESR to date glacial sediments, it has been argued that light exposure and grinding during subglacial transport efficiently reset the Ge signal (Yi et al., 2002). However, in several cases when glacial deposits have been dated by both ESR and $^{10}$Be exposure techniques, ESR ages were older than $^{10}$Be ages, with time differences up to several tens of thousands of years (e.g. Li et al., 2011; Fu et al., 2013). Furthermore, a recent study by Yi et al. (2016) that tested the efficiency of light exposure and grinding processes on ESR signal resetting showed that not more than half of the initial Ge signal is reset by grinding processes, and that several days of light exposure would be necessary for a full zeroing of the pre-existing ESR signal. Existing ESR ages from glacial sedimentary deposits should therefore be regarded as age maxima as long as the residual dose cannot be estimated (Yi et al., 2016). Although there are some uncertainties regarding the specific location of the ESR samples, we consider that the apparent discrepancy between the ESR MIS 6 ages (Zhao et al., 2013) and our $^{10}$Be-OSL MIS 5/4 ages for the outer lateral moraine above the Kanas complex may be explained by the incomplete ESR signal resetting before deposition. Our new chronology instead appears to match with the MIS 5 timing deduced by Yang et al. (2017), based on a stratigraphically older glaciofluvial terrace dated to MIS 6 and a younger lateral moraine ridge tentatively assigned to MIS 4 using OSL dating. However, the OSL samples from the latter study had not been checked for potential partial bleaching and in the absence of direct numerical dating, this timing was, until now, speculative.

Re-evaluation of existing MIS 3 chronologies in Central Asia

Our detailed case study using multiple dating methods led us to revise the age of the major glacial expansion recorded by the Kanas moraine complex to MIS 2. Likewise, a re-evaluation of the glacial chronologies in Central Asia seems warranted. The occurrence of a major MIS 3 glaciation in Central Asia can be tested by re-evaluating and comparing published chronological data associated with proposed MIS 3 glacial advances in this region. Data that have previously been used to argue for MIS 3 glaciation (or to suggest a potential MIS 3 event) were compiled from 26 sites from Central Asian mountain ranges, in addition to the MIS 3 glacial chronology proposed in the Kanas Valley (Fig. 5; Appendix S1). Most of the glacial events have been interpreted as having occurred during MIS 3 (14 sites), and others were attributed to either late MIS 4/early MIS 3 (five sites) or to late MIS 3/early MIS 2 (seven sites). We include these sites in our analysis to evaluate the quality of the data and to potentially determine the time window in which each site belongs, using the criteria described in the Methods section. The results of our analysis are presented in Fig. 5B: sites associated with reliable MIS 3 chronologies are represented by a green dot; those associated with chronological data indicating an MIS 2 or MIS 4 glaciation are represented by a yellow dot; and sites for which the reliability of the chronological data remains ambiguous or is insufficient to infer a glaciation timing are represented by a red dot (a detailed analysis of each site is provided in Appendix S1).

Most of the sites associated with a major MIS 3 glacial advance have been dated using a single technique ($n = 24$). Sites for which only one date was available were regarded as unreliable and are labeled red (sites 8, 10, 11 and 14; Fig. 5B). All published luminescence ages are based on measurements conducted on the silt fraction ($<63 \mu m$). Using this fraction produces an undifferentiated signal emitted by at least several thousands of grains because silt grains cannot be separated and are spread out as a coating on the surface of large aliquots. For such samples, partial bleaching cannot be evaluated based on an analysis of the distribution of $D_n$ measurements due to averaging processes (Duller, 2008; Arnold et al., 2012). None of the associated papers report an investigation of partial bleaching using other existing approaches, and so the reliability of the proposed luminescence-based chronologies remains ambiguous, pending further verification by additional analysis or dating methods. At this stage, these ages can therefore only be considered as maxima. In our compilation the corresponding sites are therefore labeled red in Fig. 5B (sites 9, 12, 13 and 22–24). For site 9 (Terek Suu site A), the inferred luminescence age is also supported by one cosmogenic exposure age (Koppes et al., 2008). However, because this is a single sample, the MIS 3 timing, while seemingly strengthened, would still require additional luminescence or cosmogenic nuclide data for verification. There are MIS 3 glaciation interpretations at three sites based on ESR dating (sites 15, 16 and 19). At site 19 (Daxi), a reliable cosmogenic dataset that meets the quality criteria described in our Methods section is available (Li et al., 2011), although it indicates an MIS 2 timing (and is labeled yellow in Fig. 5B). For the two other sites the age designation is based on ESR alone, and is thus shown as red in Fig. 5B because ESR ages are considered maximum limiting estimates. Most of the inferred MIS 3 glacial advances in Central Asia are based solely on cosmogenic exposure dating ($n = 19$ sites). Despite the generous approach adopted here that accepts rather small groups of samples as reliable ($n \geq 3$), as long as they also meet moderate clustering requirements ($\sigma_{\mu} < 15\%$), 15 of the 19 cosmogenic exposure age datasets fail our criteria, and are labeled as red in Fig. 5B. For site 26 (Hangai Dome), only two dates were available and, although these samples agree within internal uncertainty, additional chronological data are required to confirm this strong MIS 3 candidate (Small et al., 2017). In 10 cases (sites 1, 2, 3, 5, 7, 17, 18, 25, 27 and 28), MIS 3 inferences are based on ages that spread evenly over several tens of thousands of years, and often across several marine oxygen
isotope stages. Of these, none satisfies our criteria after outlier rejection. Such scattered datasets indicate strong geologic effects, which raises doubts about reliable inferences of glaciation timing (Heyman et al., 2011), and so were labeled in red in Fig. 5B. Only five sites have a moderately scattered dataset suitable for constraining a glacial event chronology (sites 4, 6 and 19–21). Our analysis indicates an MIS 2 ($n = 3$) or MIS 4 ($n = 1$) glaciation for four of these sites (labeled in yellow in Fig. 5B), and only in one case does it support a glaciation within MIS 3 (site 21, Ala B, labeled in green in Fig. 5B). This site is located in the Ala Valley, Chinese eastern Tian Shan, and corresponds to a large lateral moraine deposit, extending more than 10 km downstream from identified MIS 2 moraines (Li et al., 2014). While our criteria differ from those of Dortch et al. (2013), our results are qualitatively consistent; taken together the cosmogenic nuclide data available at present, as well as the OSL and ESR data, are not consistent with previous notions of large-scale glaciation in Central Asia during MIS 3.

Conclusions

The proposed revised glacial chronology of the Kanas Valley highlights both the opportunities and the difficulties encountered in cosmogenic exposure and luminescence dating of glacial deposits. A limited number of samples, the use of data strongly affected by geomorphological processes (cosmogenic nuclide exposure dating), or the absence of partial bleaching investigations (OSL and ESR) can lead to glacial chronologies that remain tentative. In the Kanas Valley, combined application of cosmogenic dating and single grain luminescence resulted in a re-interpretation of deposits formerly classified as MIS 3 as being MIS 2 in age, and interpretation of a larger glacial advance as late MIS 5/MIS 4 in age. Re-analysis of published chronological data associated with an inferred major MIS 3 glacial advance at 26 additional sites across Central Asia shows that in most cases the data available now do not present a compelling case for a widespread MIS 3 glaciation. However, the chronological data covering this large region are sparse and future studies will undoubtedly provide tighter chronological constraints on Late Pleistocene glacial activity in Central Asia. In particular, combining multiple dating techniques may be a powerful approach to determine the age of pre-LGM deposits with a reasonable degree of confidence.

Supporting Information

Additional supporting information may be found in the online version of this article:

Fig. S1. Boulders sampled in the Kanas Valley for cosmogenic nuclide exposure dating.
Fig. S2. Location and picture of the sedimentary sections sampled for luminescence dating in the Kanas Valley.
Fig. S3. Single grain IRSL $D_{67}$ values plotted against signal intensity for the sample KANI14-04.
Fig. S4. IRSL single grain $D_{67}$ distribution associated with the samples collected in the Kanas Valley.
Table S1. Sedimentological description of luminescence samples.

Appendix S1. Re-evaluation of existing MIS3 glacial chronologies in Central Asia: description and detailed chronological data analysis for each site.

Acknowledgements. This work was supported by Swedish Research Council grants to Kristo Jansson (No. 2009-4411) and Arjen Stroeven (No. 2011-4892) and Swedish Society for Anthropology and Geography stipend to Natacha Gribenski. Marc Caffee and Nathaniel Litton acknowledge support from the US National Science Foundation grant EAR-1153689. We are grateful to Fu and Helen for their help in the field, and to Tom Clifton and Greg Chmiel (PRIME Lab) and Sally Lowick (University of Bern) for their support during sample processing. We are also thankful to Sumiko Tsukamoto, Jason Dortch and Bradley Goodfellow and two anonymous reviewers for their valuable suggestions.

References

Abramowski U, Bergau A, Seebach D et al. 2006. Pleistocene glaciations of Central Asia: results from \(^{10}\)Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay–Turkestan Range (Kyrgyzstan). Quaternary Science Reviews 25: 1080–1096.


Chen Y, Li Y, Wang Y et al. 2015. Late Quaternary glacial history of the Karlik Range, easternmost Tian Shan, derived from \(^{10}\)Be surface exposure and optically stimulated luminescence dates. Quaternary Science Reviews 115: 17–27.


Lowick SE, Trauerstein M, Preusser F. 2012. Testing the application et al. N a r a m a C , K o n d o R , T s u k a m o t o S

Copyright © 2017 John Wiley & Sons, Ltd.


Yi C, Bi W, Li J. 2016. ESR dating of glacial moraine deposits: some insights about the resetting of the germanium (Ge) signal measured in quartz. Quaternary Geochronology 35: 69–76.


Shakun JD, Clark PU, Marcott SA et al. 2015. Cosmogenic dating of Late Pleistocene glaciation, southern tropical Andes, Peru. Journal of Quaternary Science 30: 841–847.