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1 Introduction

AdS/CFT duality (gauge/string duality, holography) is lying on a forefront of the modern

theoretical physics. This deepest concept relies on an unexpected point of view which was

provided by string theory and it allows to relate gauge filed theories and the theory of

gravity in nontrivial way. This duality provides unique tools to address the dynamics of

the quantum gauge theories in the regime of strong coupling, where the other approaches

fail. On the other hand, it can unveil the properties of the quantum gravity, in case when

the dual field theory is accessible to study. Among its applications are the treatment

of the physics of hadrons and that of the strongly correlated quantum systems, like high

temperature superconductors. Nowadays gauge/string duality is treated as a well developed

set of rules which allows multitude of applications in diverse subjects of physics. However,

knowledge of the origin and the underlying principles of the duality is crucial in order to

use this powerful tool properly. The aim of these notes is to give a hint of these principles

and provide a starting point for the education of this spectacular concept in the modern

theoretical physics.
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2 Gauge fields

2.1 Classical electrodynamics as Abelian gauge field theory

Let’s start from the concept of gauge field theory. The familiar theory of electrodynamics

is described by the field strength tensor [1]

Fi0 = −F0i = Ei (2.1)

Fij = εijkHk. (2.2)

Its equations of motion – the Maxwell equations, follow from the action principle

S = −1

4

∫
d4xFµνF

µν , (2.3)

where the dynamical variables are the components of the vector potential

Fµν = ∂µAν − ∂νAµ. (2.4)

The crucial property of the action of electrodynamics is its gauge symmetry : the action is

symmetric with respect to the local (coordinate dependent) transformation of the vector

potential of the form

Aµ(x)→ Aµ(x) + ∂µλ(x). (2.5)

The gauge invariance plays a fundamental role in the physics of electromagnetic inter-

action, since it is tightly related to the conservation of charge and restricts significantly the

possible form of the equations of motion. Indeed, how to we couple the shift-symmetric

field Aµ to matter, keeping the gauge symmetry intact? For this we need to construct a

charged matter.

For a simple example consider the complex scalar field Φ with the action [2]

S ≡
∫
d4L (2.6)

L = −∂µΦ†∂µΦ−m2ΦΦ† +O[(ΦΦ†)2] (2.7)

This action is invariant under global (coordinate independent) phase rotations of the com-

plex scalar

Φ→ eIαΦ δΦ = iδαΦ (2.8)

Φ† → e−IαΦ† δΦ† = −iδαΦ† (2.9)

This is a U(1)-transformation group: the transformation which keeps an absolute value of

a single complex number intact. The action (2.6) can only contain the terms which are

invariant under this U(1) symmetry. Therefore the symmetry restricts the possible

form of the action.

What is a physical consequence of the global U(1) symmetry in the action? The

equations of motion coming from variation of the action (2.6) are

δS

δΦ†
=

∂L
∂Φ†

− ∂µ
(

∂L
∂∂µΦ†

)
= 0 (2.10)
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On the other hand the variation of the Lagrangian reads [2](Ch.22)

δL =
∂L
∂Φ†

δΦ† +
∂L

∂∂µΦ†
δ∂µΦ† + c.c. (2.11)

Using the equations of motion we rewrite this as

δL = ∂µ

(
δL

∂(∂µΦ†)
δΦ†

)
+

δS

δΦ†
δΦ† + c.c (2.12)

The term in parenthesis is called the Noether current. Its fundamental feature is that since

on the solutions to the equations of motion the second term vanishes, in case when the

Lagrangian has a global symmetry δL/δα = 0, Noether current is conserved:

∂µj
µ = 0 (2.13)

jµ =
δL

∂(∂µΦ†)

δΦ†

δα
+

δL
∂(∂µΦ)

δΦ†

δα
= i
(
∂µΦΦ† − ∂µΦ†Φ

)
(2.14)

Rewriting this in terms of space and time components we arrive at the continuity

equation for the electromagnetic current, where j0 is a charge density.

∂

∂t
j0(x) +∇ · j(x) = 0 (2.15)

We see that the global U(1) symmetry describes the matter with electric charge

and ensures its conservation.

Once we have a charged matter, we can couple it to the electromagnetic field. We

write

S =

∫
d4x

[
−1

4
FµνF

µν + gAµj
µ − ∂µΦ†∂µΦ−m2ΦΦ†

]
, (2.16)

with g being the coupling constant. Now when we apply a gauge transformation (2.5), the

Lagrangian changes by

δLλ = gjµ∂µλ, (2.17)

however, if we simultaneously perform a coordinate dependent U(1)-transformation (2.8)

with parameter α(x), then the kinetic term of the scalar field will result in the same extra

term

δLα = −
(

δL
∂(∂µΦ†)

δΦ†

δα
+

δL
∂(∂µΦ)

δΦ†

δα

)
∂µα(x) ≡ −jµ∂µα(x). (2.18)

The action of the electrodynamics coupled to a charged matter remains gauge invariant

if the transformations of the gauge field are linked to the simultaneous transformations of

the matter field

Aµ → Aµ + g∂µλ(x), Φ→ eiλ(x)Φ (2.19)

In this way the electrodynamics can be built as U(1) gauge field theory.

This whole construction gets even more transparent when one introduces the gauge

covariant derivative:

DµΦ = ∂µΦ + igAµΦ, (2.20)

which conveniently encapsulates the current and kinetic terms of the action

DµΦDµΦ† = gAµj
µ − ∂µΦ†∂µΦ (2.21)
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2.2 Non-Abelian gauge field theories

In the previous section we considered a U(1) gauge field theory. As mentioned before,

U(1) is a group of transformation leaving the absolute value of a single complex number

intact. The question arises: can we generalize the notion of the gauge field theory to a

more complicated groups[1]?

Suppose now the scalar field is not a single complex number, but rather a set of 2

complex numbers with independent phases.

Φ =

(
Φ1

Φ2

)
(2.22)

Now the global U(1) transformation (2.8) is substituted by SU(2) – the transformation

which keeps the norm of the 2-component vector invariant.

Φ→ eα
1σ1+α2σ2+α3σ3 · Φ (2.23)

δΦ =
(
δα1σ1 + δα2σ2 + δα3σ3

)
· Φ. (2.24)

Here σi are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (2.25)

Which form a basis in the su(2) Lie group and eα
iσi is a generic element of the SU(2)

group: a group of 2× 2 hermitian matrices with unit determinant.

One says that the 2-component complex vector Φi is in a fundamental representation

of the group SU(2), while the transformation matrix eα
iσi , which has 3 real parameters, is

in the adjoint representation of the group. In general the SU(N) group has N -dimensional

complex valued fundamental representations and N2 − 1-dimensional real valued adjoint

representations. The adjoint representation can also be realized by the hermitian N ×N
matrices with unit determinant.

By a direct analogy with the previous considerations (2.19) we deduce the form of

the gauge field in this case. Now the gauge field A must acquire values in the adjoint

representation of the gauge group, i.e. now the gauge field is a SU(2) matrix, parametrized

by the 3 components.

(Aµ)αβ = Aiµ(σi)αβ, i = 1 . . . 3, α, β = 1 . . . 2. (2.26)

When writing a Lagrangian for the gauge field theory with larger gauge groups one has

to be careful since the matrix-valued fields don’t commute anymore. These theories are

called non-Abelian, in contrast to the Abelian U(1) case, which commutes. Nonetheless

the Lagrangian turns out to be quite similar to the one we saw previously (2.16).

S =

∫
d4x

[
−1

4
Tr[FµνF

µν ]−DµΦDµΦ† −m2ΦΦ†
]

(2.27)

Fµν = ∂µAν − ∂νAµ + gYM [Aµ, Aν ] (2.28)

DµΦ = ∂µΦ + gYMAµΦ (2.29)
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This action is invariant with respect to non-Abelian gauge transformations (check)

Φ→ ωΦ, ω ≡ eαiσi (2.30)

Aµ → ωAµω
−1 + ω∂µω

−1 (2.31)

This field theory with non-Abelian group is often called Yang-Mills gauge field theory.

The major difference with the Abelian one is seen in the expression for the gauge field

strength, which now contains a nonlinear term. This renders the equations of motion of

this theory nonlinear even in case without matter and when the coupling constant is large,

it turns into major obstacle, since the perturbation theory is not applicable and the exact

solution to the nonlinear equations is absent.

The Yang-Mills SU(2) theory has originally been introduced in order to describe pro-

tons and neutrons in the nucleus. Even though that particular approach didn’t work, now

the Yang-Mills theory is underlying the modern theory of the strong interactions: the

Quantum Chromodynamics [3], where the gauge group is SU(3), and 8 different types of

gluons couple together 3 colors of quarks. The QCD is known to be particularly hard to

solve in the low energy limit, where the coupling constant is large, the quarks are confined

and the perturbative treatment fails.

Quite remarkably, it is in the applications to QCD, where the first versions of the

String theory have been introduced back in 1960s.

3 Strings

3.1 String theory: open and closed strings

Now we turn to the String theory, which is a conceptual basis of the AdS/CFT correspon-

dence. In a nut shell, the string theory as a theory of 1-dimensional objects propagating

in time. While the usual particle is represented by a world line in the space-time, the

string spans the two-dimensional surface, extended in both spatial and time directions –

the world sheet. There are two types of strings: the open ones with free ends and the

closed ones with two ends joined together. The quantum strings have a particular finite

tension T , which sets the mass scale of the theory. Due to this tension the strings tend to

shrink to zero size (apart from the remaining quantum fluctuations) and the lowest energy

states of them behave as point like particles. The consistent theory of super strings1 can

be formulated in 9+1 dimensional target spacetime

Similarly to the usual mechanical string, the quantum strings support the vibrational

modes. This is a new crucial feature as compared to the ordinary particle, which doesn’t

provide enough degrees of freedom for those vibrations. Remarkably the lowest energy

excitations of the closed strings appear as the gravitons from the point of view

of the target space, where the string propagates. On the other hand, the lowest energy

excitation of the open string is a gauge vector particle [4], see Table 1.

1This involves a further generalization of the symmetry of the theory: the supersymmetry, which we will

not explain here.
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Closed strings Open strings

Lowest excitation graviton gauge vector boson

Effective theory Gravity Gauge field theory

Table 1: Low energy excitations in the string theory.

An important aspect is related to the open string. Unlike a closed one, the open

string has to end somewhere. The end points of the open strings can be attached

to the additional extended multidimensional objects of the string theory: the D-branes.

One can think of a D-brane as a multidimensional analogue of the plane in 3 dimensions.

A plane has 2 internal directions and one direction in the space is perpendicular to it.

Similarly, a D3-brane is an object with 3 + 1 dimensional world volume and 6 directions

transverse to it. If one end of an open string is attached to the D3 brane, it can propagate

along the 3 + 1 internal directions, but it can not leave the brane and move along the 6

transverse directions. An open string with both ends attached to the brane has a

lowest energy excitation which looks like a gauge vector particle living in the

world volume of this brane.

3.2 Two points of view on a stack of D3-branes

It gets even more interesting when we consider a stack of coincident N D3 branes [5, 6].

In order to keep track on which end of the string is attached to which particular brane,

one has to introduce an additional index for each end – the Chan-Paton factor. The open

string on a stack of N branes carries two such indices, ranging from 1 to N. These indices

are inherited by the gauge vectro particle as well and we recognize the familiar structure

of the non-Abelian SU(N) gauge potential (c.f. (2.26)), which carries two indices in the

fundamental representation, which are equivalent to one adjoint. Hence we arrive to a

crucial finding: the open strings attached to a stack of N D3-branes realize the

SU(N) Yang-Mills gauge field theory as their low energy effective theory.

However, if N is large enough, one can look at the stack of D3-branes from a completely

different point of view. The D3-branes, much like the strings themselves, have a finite

tension. Therefore they carry the energy density and if one puts many of them in the

same place, they will affect the curvature of the outer 9+1 dimensional space, in complete

analogy to the usual black hole, sourced by a point-like mass sitting in its center. The only

difference is the dimensionality of the outer space and the extra dimensions of the branes

themselves. The resulting metric of the curved 10-dimensional space, affected by the stack

of Dp branes is [6, 7].

ds2 = H−1/2p dx · dx+H1/2
p dy · dy, Hp(r) = 1 +

(rp
r

)7−p
, (3.1)

where in our case we will focus of p = 3, dx · dx is the (3+1)-dimensional metric along the

world volume of the branes and dy · dy = dr2 + r2dΩ2
5 is the metric of the 6 perpendicular

directions (r being the radial distance to the stack in this transverse space).
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Let us focus on the near horizon asymptotic form of the D3-brane metric (3.1). We

set r3 = R and consider r → 0. In this case the metric reads

ds2 ∼ (r/R)2dx · dx+ (R/r)2dr2 +R2dΩ2
5. (3.2)

Changing the variables z = R2/r it acquires the form

ds2 ∼ R2dx · dx+ dz2

z2
+R2dΩ2

5. (3.3)

The second part of the metric is 5-dimensional sphere S5 in transverse directions to the

stack of the branes, while the first part is a metric of the 5-dimensional anti-de-Sitter

space, the multidimensional analogue of a hyperbolic plane. The z = 0 is the asymptotic

boundary of this hyperbolic space, which is isomorphic to 3+1 dimensional Minkowski

space where the gauge theory is defined. It is usually stated that the gauge theory lives

“on the boundary”, while gravity lives in the “bulk” of the AdS.

Now we recall that the gravitational background is the coherent collection of the gravi-

tons – the low energy escitations of the closed strings. At this point we arrived to the second

part of the correspondence: the stack of the D3 branes can be seen from the point

of view of the closed strings as the source producing the gravitational AdS5×S5

background.

4 AdS/CFT

We just showed that the same object: the stack of N D3-branes can be described either

from the point of view of the closed strings as the SU(N) Yang-Mills theory, or, from the

point of view of the closed strings, as the theory of gravity in the AdS5×S5 background.

The AdS/CFT correspondence states that these theories are equivalent, since they describe

the same object in string theory. Let us take a look on how this correspondence work.

4.1 Symmetries

The most powerful matching principle behind the correspondence is again the principle

of the symmetries. The global symmetries in the gauge field theory correspond to the

isometries of the theory of gravity [6].

So far we skipped completely the subject of a supersymmetry, which is beyond the

scope of the current overview, however for completeness we have to mention that all the

theories participating in the correspondence are actually extended by the supersymmetry.

In case of the Yang Mills theory of the branes, is has 4 supercharges. These 4 supercharges

form SU(4) global symmetry group, which is isometric to SO(6) – the group of rotations

in 6-dimensional space. The rotations of a unit vector in 6D is in turn equivalent to

translations of its endpoint along the 5-dimensional sphere. Therefore we arrive to the

conclusion that the supersymmetry of the gauge theory is reflected in the S5

part of the geometry on the gravity side of the correspondence.

Another feature of the gauge theory on the boundary is its scale invariance. The gauge

symmetry and the supersymmetry turn out do be so restrictive, that it is impossible to
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introduce any dimensionful parameter in the theory, without breaking the symmetries.

The scale invariance together with the Lorentz invariance on the brane form conformal

symmetry group (hence the name: conformal field theory). The scale invariance is also

reflected in the geometry of the AdS space. Consider the metric

ds2 =
1

z2
(
dxµdxµ + dz2

)
. (4.1)

The scale transformation in the boundary consists of rescaling all the coordinates

xµ → λxµ (4.2)

However, this can be undone in the bulk, by rescaling the holographic coordinate z → λz,

due to the denominator in the metric. After this rescaling the metric returns to its original

shape, therefore the scale (conformal) invariance is the isometry of the AdS space.

4.2 Coupling constant: gauge/gravity duality

The crucial and the most useful feature of the correspondence is that it allows to treat the

strongly coupled gauge theory by means of the weakly curved gravity and vice versa the

weakly coupled field theory allows one to get insight over the quantum gravity [6, 7]. The

coupling constants in the Yang-Mills and string theory are proportional:

g2YM = 4πgs, (4.3)

however the effective coupling constant, which enters the leading diagrams of the Yang-

Mills is the so called ’t Hooft coupling

λ = gYMN
2. (4.4)

When N is large, the ’t Hooft constant can be large even if gYM is small, giving the weakly

coupled string theory on the dual side.

The curvature radius of both sphere and AdS in (3.3) is also related to N , roughly

because the curvature is supported by the number of D3 branes:

R = λ1/4ls, (4.5)

where ls is the quantum string length scale. The gravity in the bulk is weakly curved

as long as R� ls, meaning λ� 1. On the other hand the quantum corrections

to the gravity treatment are suppressed as long as gs ∼ λ2/N4 � 1, meaning

N � 1.

4.3 Breaking symmetries: applications

Having this powerful tool at hand one would like to apply the gauge/gravity duality to

many unsilved problems in physics, which were previously unaccessible due to the strong

coupling constant in the corresponding gauge field theory. One example is QCD, which was

mentioned already, the other one in the strongly correlated quantum systems in Condensed
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matter [8]. In both case before applying the duality one has to get rid of the excessive

amount of symmetry, which is present in the stringy construction, but will be broken in

the applications. For instance QCD is not supersymmetric and Condensed Matter systems

break Lorentz invariance by finite temperature, chemical potential and the crystal lattice.

Construction of such type of models is extremely hard from the string theory “top-down”

point of view. However keeping in mind the general principles, one can try to construct

the dual backgrounds “bottom-up” with desired features and produce the duality inspired

phenomenological models in this way. Let’s discuss briefly how these holgraphic models

can be constructed.

In the previous section we identified the S5 part of the gravity background as corre-

sponding to the supersymmetry. Therefore in order to break it in the holographic construc-

tion it is enough to choose a point on this sphere and completely suppress the dynamics

along these directions. Therefore for the non-supersymmetric boundary theories in 3+1

dimensional Minkowsky space-time one is left with 4+1 dimensional bulk AdS spacetime

with only one extra dimension (4.1). It gets particularly clear now why these models are

called holographic.

The other generalization is the introduction of finite temperature in the boundary.

From the geometrical point of view the finite temperature can be seen as the compactifica-

tion of the Euclidean time direction. Since the bulk and boundary theories share the same

time coordinate, the gravitational dual to the thermal field theory would have a compacti-

fied time at asymptotic infinity as well. Those familiar with the Hawking radiation would

immediately recognize the gravitational solution which has a compact Euclidean time di-

rection at infinity: this is a black hole. In complete analogy the gravitational dual to

the thermal field theory is a black hole in AdS space-time

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx2i

)
, f(z) = 1− (z/z0)

4 (4.6)

Here the temperature is related to the horizon radius as

1

T
= πz0. (4.7)

One can show furthermore[8] that the finite chemical potential on the boundary would

correspond to the charge of the dual black hole, turning it into AdS–Reissner-Nordstrom

solution. In case one wishes to introduce the effects of the crystal lattice, one can consider

the spatially modulated chemical potential, which produces the spatially modulated black

holes as the solutions to the corresponding Einstein equations. In this way the AdS/CFT

duality relates the physics of the strongly correlated quantum materials to the

physics of black holes in the curved auxiliary spacetime.
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