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1 Introduction

The applications of AdS/CFT to condensed matter physics have passed the stage of

the “proof of concept” and as the problems under the focus become more involved,

the more sophisticated numerical machinery is needed to track them. This sets

a considerable obstacle to the community of holographers who, being trained as

theoretical physicists, often lack the necessary numerical skills. The goal of these

notes is to provide a detailed tutorial, to those willing to learn how to use numerical

techniques in solving partial differential equations, which may arise in holographic

problems, including, for instance holographic lattices [1–3].

The methods outlined here are applicable to the equations which may have singu-

lar points at the boundaries and to the problems with arbitrary boundary conditions.

We intentionally avoid discussing any theory of Applied Mathematics, lying behind

these methods since this is better explained in the excellent standard courses [4–6].

Most of the content here is in a big part copied from these books. Anyway, we tried

to be more explicit when dealing with the systems of equations, and implementation

of the boundary conditions. The subjects which are usually omitted in the standard

courses, since they are very straightforward, but proved to be quite confusing when

one is dealing with them for the first time.

2 Linear equations with constant coefficients

Consider a differential equation with constant coefficients (Internal Equation)

IE: A∂2
zf(z) +B ∂zf(z) + C f(z) = R (2.1)

with boundary conditions (top and bottom)

BCb: Bb ∂zf(zb) + Cb f(zb) = Rb (2.2)

BCt: Bt ∂zf(zt) + Ct f(zt) = Rt (2.3)

The essence of Finite Difference Derivative (FDD) method is to turn this lin-

ear differential equation problem on the interval z ∈ [zb, zt] into a system of linear

algebraic equations. One does it by introducing the grid in the coordinate domain

consisting of N points:

~z = {z1, z2, . . . , zN} ∈ [zb, zt], z1 = zb, zN = zt (2.4)

The simplest example would be

zi = zb +
zt − zb
N − 1

(i− 1), i = 1 . . . N (2.5)

Note that the boundary points are included in the grid.

z1 ≡ zb, zN ≡ zt (2.6)
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The function (f) and its derivatives (∂zf, ∂
2
zf) are naturally promoted to be the

N-component vectors, representing the corresponding values at the grid points:

f(z)→ ~f fi ≡ f(zi) (2.7)

∂zf(z)→
−→
∂zf (∂zf)i ≡ ∂zf(zi) (2.8)

∂2
zf(z)→

−−→
∂2
zf (∂2

zf)i ≡ ∂2
zf(zi) (2.9)

2.1 Differrentiation matrices

At this stage the question arises: Given the values of the function on the grid, how

can one evaluate the values of its derivatives on the same grid? Firstly, note that

because differentiation is a linear operation, the vectors
−→
∂zf and

−→
f are related by

the linear transformation. Therefore the matrices exist, such that

−→
∂zf = Dz ·

−→
f (2.10)

and similarly −−→
∂2
zf = Dzz ·

−→
f (2.11)

The N ×N matrices Dz and Dzz are called differentiation matrices.

What is the explicit form of the differentiation matrix? Consider for example

the simplest, nearest neighbour scheme for the first derivative matrix Dz. The pre-

scription for the finite difference derivative in this case is:

(∂zf)i =
fi+1 − fi−1

zi+1 − zi−1

=
fi+1 − fi−1

2∆z
, i 6= {1, N}. (2.12)

Clearly, this formula is inapplicable at the boundaries. On these points one has to

use one-sided derivatives instead:

(∂zf)1 =
−3f1 + 4f2 − f3

2∆z
(2.13)

(∂zf)N =
fN − 4fN−1 + 3fN−2

2∆z
(2.14)

Combining these expressions together we can write down the explicit form of the

differentiation matrix:

Dz =
1

2∆z



−3 4 −1 . . . 0 0 0

−1 0 1 . . . 0 0 0

0 −1 0 . . . 0 0 0
...

...
. . . . . . . . .

...
...

0 0 0 . . . 0 1 0

0 0 0 . . . −1 0 1

0 0 0 . . . 3 −4 1


(2.15)
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Similarly one constructs the matrix Dzz.

Clearly, the nearest neighbour approximation is not the only possible choice for

discretizing the derivative. One can use two, three or more nearest points in order

to approximate the derivative with better accuracy. This leads to a denser differ-

entiation matrix. For the details of the various approximations and their accuracy

we refer the reader to the excellent tutorial “The Numerical Method of Lines” of

Wolfram Mathematica [7].

2.2 Operator of the internal equations

Using the differentiation matrices, one can recast the differential equation (2.1) as a

linear system

(ADzz +B Dz + C I) · ~f −R~1 = 0, (2.16)

where I is N ×N identity matrix and ~1 is N vector of unities. We can introduce the

linear operator

O ≡ ADzz +B Dz + C I. (2.17)

Then the vector of the equations (2.1) on the grid reads
−→
IE : O · ~f = R~1 (2.18)

2.3 Boundary conditions

It is important to note here that the linear system (2.18) is not equivalent to the

boundary value problem (2.1), (2.2), since it does not include the boundary con-

ditions yet. Indeed, (
−→
IE)1 and (

−→
IE)N are the equations (2.1) evaluated on the

endpoints, which we should substitute with the appropriate discretized boundary

conditions (2.2). Moreover, in practice it often happens that the internal equations

(2.1) are singular on the boundaries and evaluating them on the endpoints doesn’t

make any sense.

In order to discretize the boundary conditions (2.2) one can follow the same

procedure as for the internal equations. The equations (2.2) (for all grid points zi)

can be represented as
−−→
BCb = Ob · f −Rb

~1,
−−→
BCt = Ot · f −Rt

~1 (2.19)

Ob ≡ BbDz + Cb I Ot ≡ BtDz + Ct I (2.20)

We do not actually need the boundary conditions at all points, since we should

only keep (
−−→
BCb)1 for the condition at zb and (

−−→
BCt)N for the condition at zt. More

precisely, we need

(
−−→
BCb)1 = (Ob)1j(~f)j −Rb(~1)1, (2.21)

(
−−→
BCt)N = (Ot)Nj(~f)j −Rt(~1)N , (2.22)

where the summation over j is assumed and only the first line of Ob and last line

of Ot are used.
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2.4 Operator of the full problem

One can merge (2.18) and (2.21) in a single system of N linear equations, which

represent the full boundary value problem (2.1), (2.2):

−−→
BVP :



(
−−→
BCb)1

(
−→
IE)2

. . .

(
−→
IE)N−1

(
−−→
BCt)N

=



(Ob)1j(~f)j −Rb (~1)1

(O)2j(~f)j −R (~1)2

. . .

(O)N−1 j(~f)j −R (~1)N−1

(Ot)Nj(~f)j −Rt (~1)N

≡ Õ · ~f − ~̃R (2.23)

Here we introduced the operator of the boundary value problem (BVP opera-

tor) Õ, which coincides with O everywhere except the first and the last lines, which

are substituted from Ob and Ot, respectively. Similarly, the vector of the right hand

side ~̃R coincides with R~1 everywhere except first and last entry, where the values Rb

and Rt are substituted.

In the end of the day, the BVP problem (2.1), (2.2) can be recast in the matrix

form

Õ · ~f − ~̃R = 0, (2.24)

and can be solved by direct inversion of the BVP operator

~f = Õ−1 · ~̃R (2.25)

2.5 Assignment

Solve the equation

f ′′(z) + π2f(z) = 0 (2.26)

in the domain z ∈ [0, 1] with the boundary conditions

f(0) = 1, f ′(1) = 0 (2.27)

Solution

f(z) = cos(πz) (2.28)

3 Linear equations with variable coefficients

In the previous section we have already encountered the situation where the values

of the coefficients ~R in (2.24) are different inside the grid and on the endpoints. In

this section we generalize this feature to the arbitrary variable coefficients on the

grid.

Consider a linear differential equation with variable coefficients

IE: A(z) ∂2
zf(z) +B(z) ∂zf(z) + C(z) f(z) = R(z) (3.1)
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with boundary conditions

BCb: Bb ∂zf(zb) + Cb f(zb) = Rb (3.2)

BCt: Bt ∂zf(zt) + Ct f(zt) = Rt (3.3)

3.1 Vectors of coefficients

Now not only the function and its derivatives will become vectors of values on the

grid, but also the coefficients of the equation. Similarly to (2.7) we get:

X(z)→ ~X, Xi ≡ X(zi), X ∈ {A,B,C,R} (3.4)

Since the coefficients take different values, one effectively has to solve different

algebraic equations at every grid point. Using the same notation as (2.23), we write

down the resulting system of equations equivalent to the boundary value problem.

−−→
BVP =



(
−−→
BCb)1

(
−→
IE)2

. . .

(
−→
IE)N−1

(
−−→
BCt)N

=



(0Dzz +BbDz + Cb I)1j(~f)j −Rb

(A2 Dzz +B2 Dz + C2 I)2j(~f)j −R2

. . .

(AN−1 Dzz +BN−1 Dz + CN−1 I)N−1 j(~f)j −RN−1

(0Dzz +BtDz + Ct I)Nj(~f)j −Rt

(3.5)

We can rewrite it as a matrix equation like (2.24)

Õ · ~f − ~̃R = 0 (3.6)

by defining the linear operator matrix line-wise, i.e.

Õij ≡ Ãi(Dzz)ij + B̃i(Dz)ij + C̃i(I)ij, i, j = 1 . . . N. (3.7)

Or in the matrix form

Õ ≡ diag( ~̃A) · Dzz + diag( ~̃B) · Dz + diag( ~̃C) · I, (3.8)

where diag( ~̃X) is a diagonal matrix with the entries of the vector ~̃X on the diagonal

and the coefficient vectors are defined as
X̃1 ≡ Xb

X̃i ≡ Xi, i = 2 . . . N − 1

X̃N ≡ Xt

X ∈ {A,B,C,R} (3.9)

and we define At = Ab ≡ 0, since the boundary conditions must be first order.

Note that now all the information about the boundary value problem, including

boundary conditions is encoded in the set of coefficient vectors ~̃X.

Once the BVP operator (3.8) is constructed, the linear problem (3.6) can be

solved by direct inversion:
~f = Õ−1 · ~̃R (3.10)
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3.2 Assignment

Solve the equation

f ′′(z)− πf ′(z) cot(πz) = 0 (3.11)

in the domain z ∈ [0, 1] with the boundary conditions

f(0) = 1, f ′(1) = 0. (3.12)

Note that the equation is singular at the boundary z = 1.

Solution

f(z) = cos(πz) (3.13)

4 Nonlinear equations

In the previous section we considered the equations with coefficients depending on the

coordinate z. It is straightforward to generalize this treatment to the case when the

coefficients are dependent on the function itself – the nonlinear differential equations.

The essential step to be made is to set up the iterative procedure for the nonlinear

equation, which relies on solving the linearized system at every step.

4.1 Iterative solution to nonlinear differential equation: Newton method

Consider the nonlinear equation

E
[
∂2
zF (z), ∂zF (z), F (z), z

]
= G(z), (4.1)

where E is an arbitrary function. Assume F0 is an exact solution to this equation

and Fn is a close enough approximation to it. More precisely

Fn = F0 + f, ||f || � 1, (4.2)

with some chosen norm || ∗ ||. Applying E to both sides leads to

E [Fn] = G+
δE [Fn]

δ∂2
zF

∂2
zf(z) +

δE [Fn]

δ∂zF
∂zf(z) +

δE [Fn]

δF
f(z) +O(f 2). (4.3)

It can be recast in familiar form

A[Fn, z]∂
2
zf(z) + B[Fn, z]∂zf(z) + C[Fn, z]f(z) = R[Fn, z], (4.4)

with

R[Fn, z] ≡ E[Fn, z]−G(z). (4.5)

Once the linearized equation (4.4) is solved, one obtains the next, better, ap-

proximation to the solution:

Fn+1 = Fn − f (4.6)
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and the procedure is reiterated up to the point when the nonlinear equation is sat-

isfied to the desired accuracy δ, i.e.

||R[Fn, z]|| = ||E[Fn, z]−G(z)|| � δ (4.7)

This iterative method is known as Newton method for iterative solution of the

nonlinear equation.

4.2 Variable coefficients

The only difference between the linearized equation (4.4) and the linear equation

(3.1) is the fact that the coefficients are now dependent not only on the coordinate

z, but also on the values of the background function Fn and its derivatives on the

grid. Therefore, the evaluation of the coefficient vectors (3.9) breaks into two steps.

Firstly, given the n-th approximation Fn(zi) on the grid one uses a chosen method

to obtain the values of ∂zFn(zi) and ∂2
zFn(zi). For instance by applying the differen-

tiation matrices (2.15).

Then one substitutes the vectors
−→
F ,
−−→
∂zF ,

−−→
∂2
zF and the grid coordinates into the

functions A,B,C and R in order to obtain the vectors of coefficients (3.4):

X[F, z]→ ~X, Xi ≡ X[(∂2
zF )i, (∂zF )i, Fi, zi], X = {A,B,C,R} (4.8)

Note that again, in order to construct the BVP operator, the boundary conditions

should be substituted at the endpoints as in (3.9). The nonlinear boundary conditions

can be linearized following exactly the same procedure as for the main equation. For

every step in the iteration procedure, the BVP operator is constructed as

Õ[Fn] ≡ diag( ~̃A[Fn]) · Dzz + diag( ~̃B[Fn]) · Dz + diag( ~̃C[Fn]) · I. (4.9)

and the subsequent approximation is obtained as

~Fn+1 = ~Fn − Õ[Fn]−1 · ~̃R[Fn] (4.10)

In the Newton method, the vectors of coefficients are recalculated at every iter-

ation step. The pseudo-Newton methods exist, which take advantage of the fact that

Fn+1 is generically close to Fn and allow to use some of the coefficients evaluated at

the previous steps.

4.3 Assignment

Solve the nonlinear equation

F ′′(z)− F (z)2 = 2 + z4 (4.11)

in the domain z ∈ [0, 1] with the boundary conditions

F (0) = 0, F (1) = 1. (4.12)

Solution

F (z) = z2 (4.13)
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5 System of equations

In the previous sections we were dealing with a single equation on a single func-

tion. How are the outlined procedures modified in case of a system of the coupled

differential equations on several functions?

Consider the linear system of K equations on the functions fk(z), k = 1 . . . K.

It can be represented as a K-valued vector differential equation

A ·

∂2
zf

1(z)
...

∂2
zf

K(z)

+ B ·

∂zf
1(z)
...

∂zf
K(z)

+ C ·

 f 1(z)
...

fK(z)

 =

R1(z)
...

RK(z)

 , (5.1)

where A,B, C are K ×K-matrices of (coordinate dependent) coefficients and Rk is

a K-vector of right hand sides.

The boundary conditions consist of K equations on every boundary, character-

ized similarly to (3.2) by the matrices of constant coefficients Bb, Cb and Bt, Ct.

5.1 Flattened vectors

When we discretize this system on a lattice with N nodes, every function fk (and its

derivatives) turns to N -vector. Therefore (f 1(z), . . . , fK(z))T turns into K-vector of

N -vectors. This is not a very handy object. Instead we will arrange the values of all

the functions on the grid as a single K ·N flattened vector.

 (f 1(z1), . . . , f 1(zN))
T

...(
fK(z1), . . . , fK(zN)

)T
 flatten−−−−→



f 1(z1)
...

f 1(zN)

f 2(z1)
...

fK(zN)


(5.2)

5.2 Enlarged differential matrix

Given this data structure for the values of the functions, we wish to have similar

objects for the derivatives. This requires defining the enlarged K ·N ×K ·N differ-

entiation matrices. Since the values of one function do not affect the derivatives of

the other function, it is clear that the shape of the enlarged differentiation matrices

will be block diagonal. For instance

∂zf
1(z1)
...

∂zf
1(zN)

∂zf
2(z1)
...

∂zf
K(zN)


=


Dz 0 · · · 0

0 Dz · · · 0
...

...
. . .

...

0 0 · · · Dz

 ·


f 1(z1)
...

f 1(zN)

f 2(z1)
...

fK(zN)


, (5.3)
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where Dz is the familiar (N × N) differentiation matrix on the grid (2.15). In a

more concise notation, the enlarged differentiation matrix Dz can be defined via the

Kronecker product

Dz ≡ IK×K ⊗ Dz (5.4)

Here and in what follows we will use bar in order to distinguish the objects in the

space of flattened vectors.

Note that Kronecker product is not commutative, there is a useful “rule of

thumb” to remember the order of terms. It coincides with the order of indices

in the “vector of vectors” structure in (5.2) before flattening: in order to access the

value fk(zi) one has to first take the k-th line and then the i-th value in this line.

5.3 Coefficients

The situation with coefficient (K × K)-matrices A, . . . is a bit more convoluted.

Upon discretization on the grid every entry of the matrix turns into an N -vector of

corresponding values at the lattice nodes. These vectors should multiply the rows

of the corresponding differentiation matrices as in (3.8). Therefore we similarly turn

them into the diagonal (N×N)-matrices. Eventually, the coefficients in the equations

get arranged in the (K ×K)-block matrices with diagonal (N × N) blocks. These

block matrices will further multiply the enlarged differentiation matrices in order to

provide the (K ·N ×K ·N) BVP operator.

Consider as example a system of 2 equations:

IE1 :

IE2 :

{
A11∂

2
zf1 +B11∂zf1 +B12∂zf2 = R1

A22∂
2
zf2 +B21∂zf1 = R2

(5.5)

It can be recast in the form (5.1) with the coefficient matrices

A =

(
A11 0

0 A22

)
, B =

(
B11 B12

B21 0

)
, C =

(
0 0

0 0

)
. (5.6)

Upon discretization, using the techniques developed in Sec.3 we can represent the

first equation in (5.5) as an N -vector equation

diag(
−→
A11) · Dzz · ~f1 + diag(

−→
B11) · Dz · ~f1 + diag(

−→
B12) · Dz · ~f2 =

−→
R1 (5.7)

Using the notation of the enlarged matrices we work with the whole system at

once. The coefficient matrices turn into the block matrices

A =

(
diag(

−→
A11) 0

0 diag(
−→
A22)

)
, B =

(
diag(

−→
B11) diag(

−→
B12)

diag(
−→
B21) 0

)
, C =

(
0 0

0 0

)
. (5.8)

And the differentiation matrices are

D2
z =

(
D2
z 0

0 D2
z

)
, Dz =

(
Dz 0

0 Dz

)
, I =

(
I 0

0 I

)
. (5.9)
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The full system of equations takes the form

IE :
(
A · D2

z + B · Dz + C · I
)
· f = R, (5.10)

where f = flatten[(~f1, ~f2)T ] is a flattened vector (5.2) and R = flatten[(
−→
R1,
−→
R2)T ].

By straightforward multiplication of block matrices one can check that the first N

lines of (5.10) do indeed coincide with (5.7). The advantage of the flattened notation

is that the whole system is represented as a single matrix equation (5.10).

5.4 Boundary conditions

The question about implementation of the boundary conditions becomes more subtle

as well. The system of K differential equations on an interval requires 2K bound-

ary conditions: one per function on two boundaries. In complete analogy with the

treatment of Sec.3, in order to implement the boundary conditions as in (3.9) one

has to substitute the first and last elements in the coefficient N -vectors ~Xαβ in (5.8)

with the corresponding values of (Xb)αβ, (Xt)αβ. This would produce the effective

coefficient vectors ~̃Xαβ, which can be used to construct the BVP operator and right

hand side:

BV P :
(
Ã · D2

z + B̃ · Dz + C̃ · I
)
· f = R̃, (5.11)

X̃ =


diag( ~̃X11) . . . diag( ~̃X1K)

...
. . .

...

diag( ~̃XK1) . . . diag( ~̃XKK)

 , X ∈ {A,B, C} (5.12)

It is instructive to figure out what does this operation mean for the flattened

vector of equations (5.10). Since this flattened vector has exactly the same structure

as f in (5.2), we can unflatten it and represent as aK-vector ofN -vectors of equations

IE ≡



IE1(z1)
...

IE1(zN)

IE2(z1)
...

IEK(zN)


unflatten−−−−−→

 (IE1(z1), . . . , IE1(zN))
T

...(
IEK(z1), . . . , IEK(zN)

)T
 (5.13)

Then implementing the boundary conditions means that every entry IEα(z1) gets

substituted with BCα
b and IEα(zN) with BCα

t . It is most easily achieved by working
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on the second level of the “vector of vectors” structure and flattening it in the end

BV P ≡



BC1
b

IE1(z2)
...

BC1
t

BC2
b

IE2(z2)
...

BCK
t


= flatten

 (BC1
b , IE

1(z2), . . . , BC1
t )
T

...(
BCK

b , IE
K(z2), . . . , BCK

t

)T
 (5.14)

6 Partial Differential Equations

In many regards the implementation of the partial differential equations is similar to

the case of a system of equations discussed above. The obvious additional compli-

cation is the variety of the distinct differentiation operators and the structure of the

corresponding differentiation matrices. We will consider the case of 2-dimensional

PDE, generalization to the higher dimensions is straightforward. In 2-dimensions

(denote them x and y) there are 6 distinct differentiation operators, including iden-

tity 1

∂p ∈ {∂xx, ∂yy, ∂xy, ∂x, ∂y, 1}, (6.1)

Therefore a 2D partial differential equation can be characterized by a set of 6 co-

efficients Xp(x, y) (which replace A,B and C used in 1D (3.1)) and a right hand

side:

PDE :
6∑
p

Xp(x, y) ∂pf(x, y) = R(x, y) (6.2)

6.1 Flattened vectors

Now we are dealing with a 2-dimensional grid:

x→ xi, i = 1 . . . N (6.3)

y → yj, j = 1 . . .M (6.4)

When discretized on this grid, the function becomes a level 2 array, which we can be

expressed as a (N ×M) matrix

f(x, y)→ ~~f,
~~f ≡

f(x1, y1) . . . f(x1, yM)
...

...

f(xN , y1) . . . f(xN , yM)

 , fij ≡ f(xi, yj) (6.5)

1In case of a single dimension, considered above, there were only 3 of them, in 3-dimensional

equation there are 10, and so on.
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As in Sec.5 we have to turn this data to a vector first, therefore we introduce the

flattened N ·M -vector

f ≡ flatten(
~~f) =



f(x1, y1)
...

f(x1, yM)

f(x2, y1)
...

f(xN , yM)


(6.6)

6.2 2D differentiation matrices

Similarly to (5.3) we have to introduce the enlarged differentiation matrices, suitable

for this data structure. It is easy to understand how the y-derivative should look

like. Since it does not mix the functions at different x-coordinates, it acts as a block

diagonal matrix on a flattened vector

∂yf(x1, y1)
...

∂yf(x1, yM)

∂yf(x2, y1)
...

∂yf(xN , yM)


=


Dy 0 · · · 0

0 Dy · · · 0
...

...
. . .

...

0 0 · · · Dy

 ·


f(x1, y1)
...

f(x1, yM)

f(x2, y1)
...

f(xN , yM)


. (6.7)

Therefore, in complete analogy with (5.3), we can define it as a Kronecker product

Dy = IN×N ⊗ Dy (6.8)

The x-derivative might seem less trivial. For instance, the x-derivatives at point

xi,
−−−→
(∂xf)i ≡ {(∂xf)i1, . . . , (∂xf)iM}, are obtained as a linear combination of M -

vectors ~fi−1 and ~fi+1. Therefore the enlarged differentiation matrix should act on

vectors as (compare to (2.15))

∂xf(x1, y1)
...

∂xf(x1, yM)

∂xf(x2, y1)
...

∂xf(xN , yM)


=

1

2∆x


−3I 4I −I . . . 0

−I 0 I . . . 0

0 −I 0 . . . 0
...

...
. . . . . .

...

0 0 0 . . . I

 ·


f(x1, y1)
...

f(x1, yM)

f(x2, y1)
...

f(xN , yM)


, (6.9)

Where I is a M ×M identity matrix. Conveniently, this differentiation matrix can

also be represented as a Kronecker product:

Dx = Dx ⊗ IM×M (6.10)
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Similarly, all the other operators in (6.1) are represented by the matrices obtained

as Kronecker products:

Dxx = Dxx ⊗ IM×M , Dyy = IN×N ⊗ Dyy, Dxy = Dx ⊗ Dy, (6.11)

Dx = Dx ⊗ IM×M , Dy = IN×N ⊗ Dy, I = IN×N ⊗ IM×M . (6.12)

The “rule of thumb” is the same as in (5.4). The first term in the product is an

operator acting on the first index in the matrix form
~~f (6.6), which corresponds to

x-coordinate and the second – operator acting on the second index, y. Analogously

one can construct differentiation matrices in 3 dimensions. Theses will be the Kro-

necker products of 3 terms, corresponding to the operators acting on the 3 different

coordinates.

6.3 Boundary conditions

Upon the discretization on the 2D grid the coefficients Xp(x, y) turn to the matrices

as in (6.5). Similarly to Sec.3 we implement the boundary conditions by substituting

the corresponding entries in the matrices of coefficients.

In case of 2-dimensional problem one has 4 boundary conditions: top, bottom,

left and right, characterized by the equations with coefficients Xp
t (x), Xp

b (x), Xp
l (y)

and Xp
r (y) (p = 1 . . . 6), respectively. The corresponding boundaries on the grid are

located at y = yM (top), y = y1 (bottom), x = x1 (left) and x = xN (right). The

modified array of coefficients, which includes boundary conditions, is most easily

constructed in the “matrix” notation:

~~X →
~~̃X (6.13)

~~X ≡


X(x1, y1) X(x1, y2) . . . X(x1, yM−1) X(x1, yM)

X(x2, y1) X(x2, y2) . . . X(x2, yM−1) X(x2, yM)
...

...
. . .

...
...

X(xN−1, y1) X(xN−1, y2) . . . X(xN−1, yM−1) X(xN−1, yM)

X(xN , y1) X(xN , y2) . . . X(xN , yM−1) X(xN , yM)

 (6.14)

~~̃X ≡


Xl(y1) Xl(y2) . . . Xl(yM−1) Xl(yM)

Xb(x2) X(x2, y2) . . . X(x2, yM−1) Xt(x2)
...

...
. . .

...
...

Xb(xN−1) X(xN−1, y2) . . . X(xN−1, yM−1) Xt(xN−1)

Xr(y1) Xr(y2) . . . Xr(yM−1) Xr(yM)

 , (6.15)

As a result, the first and last rows and the first and last columns of the coefficient

matrix
~~X are substituted by the corresponding boundary conditions in

~~̃X. Same

operation is performed with the right hand side terms
~~R. It should be noted here
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that consistency of the boundary conditions requires in the corners:

Xl(y1) = Xb(x1), Xr(y1) = Xb(xN), Xr(yM) = Xt(xN), Xl(yM) = Xt(x1)

(6.16)

6.4 BVP operator

In the end of the day we need to construct the BVP operator. In complete analogy

with Sec.3 this is done by row-wise multiplication of the differentiation matrices with

the coefficients (3.8). Some care should be taken to match the coefficients at given

grid point with the derivatives in this point, but this is accounted for by the way we

construct the differentiation matrices (6.7), (6.9), (6.11), which return the flattened

vectors of the derivatives, compatible with the flattened vectors of coefficients

X̃ ≡ flatten
( ~~̃X). (6.17)

Therefore the BVP operator for the partial differential equation (6.2) with corre-

sponding boundary conditions is computed as

Õ =
6∑
p

diag
(
X̃p
)
· Dp (6.18)

And the boundary value problem can be solved by a direct inversion

f = Õ−1 · R̃ (6.19)

6.5 Assignment

Solve the partial differential equation

∂2
xF (x, y) + ∂2

yF (x, y) + π2F (x, y) = 0 (6.20)

in the domain (x, y) ∈ [0, 1]× [0, 1] with the boundary conditions

F (x, 0) = sin(πx), ∂yF (x, 1) = 0, F (0, y) = 0, F (1, y) = 0. (6.21)

Solution

F (x, y) = sin(πx) (6.22)

7 Periodic boundary conditions

So far we have only addressed the boundary conditions which can be expressed as

local equations on the functions and their derivatives at the edges of the calculation

domain. The other important type of the boundary conditions are the periodic ones.

The essence of the periodic boundaries is the identification of the endpoints of the
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calculation interval. Once such an identification is performed, no extra information,

like special equations for the boundaries, is needed.

Take the homogeneous calculation grid on the interval z ∈ [zb, zt) with identified

endpoints. Similarly to (2.5) we can define

zi = zb +
zt − zb
N ′

(i− 1), i = 1 . . . N ′. (7.1)

Note that now the boundary point zt is not included in the grid. Reason for this

is due to the fact that we identify the function at the endpoints zt and zb

f(zt) ≡ f(zb), (7.2)

So there is no reason to solve for the value f(zb) twice, while looking for a solution.

Note also that the new definition (7.1) leads to N ′ points in the calculation grid

(excluding zt).

7.1 Differentiation matrices

The identification f(zt) and f(zb) requires a new type of the differentiation matrices.

Consider the example with nearest neighbour approximation used in (2.15): (∂zf)i =

(fi+1 − fi−1)/2∆z. Inside the calculation domain no modifications are needed, since

for i in 2 . . . N ′ − 1 the neighbouring points fi−1 and fi+1 exist. What will happen

near the boundaries? When i = 1 we would have (∂zf)1 = (f2 − f1−1)/2∆z. There

is no point z0 in the domain, so f(z0) doesn’t make sense. Instead, keeping in mind

that we identified f1 with fN ′+1, we substitute f1−1 with fN ′ and get

(∂zf)1 =
(f2 − fN ′)

2∆z
(∂zf)N ′ =

(f1 − fN ′−1)

2∆z
. (7.3)

Same “cyclic rule” is applied for any differences with any number of neighbours. The

differentiation matrix corresponding to this rule looks simple

Dz =
1

2∆z



0 1 0 . . . 0 0 −1

−1 0 1 . . . 0 0 0

0 −1 0 . . . 0 0 0
...

...
. . . . . . . . .

...
...

0 0 0 . . . 0 1 0

0 0 0 . . . −1 0 1

1 0 0 . . . 0 −1 0


(7.4)

Note the values in the upper right and lower left corners.

Conveniently, once the periodic differentiation matrices are found, the imple-

mentation of the periodic boundary conditions is completed. Since the boundaries

of the periodic domain are not in any way different from any internal points, one has
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to solve the same equations of motion there. Therefore there is no need to substitute

endpoints of the coefficient vectors as it was done in (3.9). In the case of multiple

dimensions, the appropriate matrices are chosen for each coordinate and then the

enlarged matrices are again created as a Kronecker product.

7.2 Assignment

Solve the partial differential equation

∂2
xF (x, y) + ∂2

yF (x, y) + 4π2F (x, y) = 0 (7.5)

in the domain (x, y) ∈ [0, 1]× [0, 1] with the boundary conditions

F (x, 0) = sin(2πx), ∂yF (x, 1) = 0, periodic in x. (7.6)

Solution

F (x, y) = sin(2πx) (7.7)

8 Relaxation and preconditioning

All the preceding sections explained how to reduce the different kinds of the boundary

value problems on the discrete grid to the linear matrix equations (2.24), (3.6),

(5.11), (6.19), or the iterative series of them in case of nonlinear BVP (4.10). The

most obvious way to solve such a system is to directly invert the linear operator.

Unfortunately in practice this can be extremely demanding, since the matrices to be

inverted can become large for large multidimensional grids and, for the higher order

discretization schemes, dense. In this case the iterative relaxation approach can be

useful.

8.1 Relaxation

Consider the linear system

O · ~f = ~G. (8.1)

The essence of the relaxation method is to substitute (8.1) with the time evolution

equation

∂t ~f = O · ~f − ~G. (8.2)

Clearly, the time evolution stops when (8.1) is satisfied. It’s instructive to study in

more detail though, how exactly the solution is approached.

Assume that f 0 is an exact t-independent solution O · ~f 0 ≡ ~G, ∂t ~f 0 = 0 at the

later stage of the evolution (8.2) we can represent the time-dependent solution as
~f(t) = ~f 0 + ~δf(t), where time-dependent residue ~δf(t) is small. Plugging this back

into (8.2) we find

∂t ~δf = O · ~δf. (8.3)
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Consider the eigenfunctions gk of the operator O with the eigenvalues λk:

O · gk = λkgk. (8.4)

One can expand the residual function δf in a basis of these eigenfunctions

δf(t) =
∑
k

ck(t)gk (8.5)

Plugging this in (8.3) we get simply

∂tc
k(t) = λkck ⇒ ck(t) ∼ exp(λkt). (8.6)

It is remarkable, that for an elliptic (i.e. Laplace) equation with a negatively definite

operator with λk < 0,∀k the components of the residual function decay exponentially,

therefore the relaxation it this case does actually converge to the static solution!

Notice that the speed of convergence is set by the lowest eigenvalue δf ∼ exp(λmin),

λmin = −Min[|λk|,∀k]

In practice one discretizes the time derivative in (8.2) and setups the iterative

procedure:

fn+1 = fn + δtO · fn − δt ~G. (8.7)

The main advantage of the relaxation method becomes obvious here: one does not

need to invert O matrix at any point of the calculation!

It can be shown [5] that in order for the iteration to be numerically stable the

value of the time step δt should be limited by the highest eigenvalue λmax of O

δt ∼ 1

λmax

, (8.8)

Therefore the number of iterations needed to achieve the solution, set by the slowest

mode is proportional to λmax/λmin. This is a serious drawback since for N×N matrix

O this ratio is typically of order N2. Therefore the trivial relaxation procedure (8.7)

is extremely ineffective.

8.2 Preconditioning

The relaxation procedure would work much faster if one would be able to use the

operator with λmax/λmin ≈ 1. One way to improve the situation is to note that

instead of the relaxation equation (8.2) one can equally well use

∂t ~f = −Ô−1 ·
(
O · ~f − ~G

)
, (8.9)

where Ô is an arbitrary linear operator. Indeed, similar to (8.2), the evolution (8.9)

will only stop when the solution to (8.1) is achieved. The iterative procedure will

now take the form

fn+1 = fn − δt Ô−1 ·O · fn + δtÔ−1 · ~G, (8.10)
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and the time-step will be limited now by the highest eigenvalue of the regulated

operator Ô−1 · O. This is the essence of the preconditioning procedure and the

matrix Ô is a preconditioner matrix.

It is easy to figure out that the perfect preconditioner, which will set λmax/λmin =

1 is an operator itself: Ô = O. In this case the time step can be chosen as large as

δt = 1 and the iteration (8.10) degenerates to a direct solution of (8.1) in one step.

This is again not extremely practical, since inversion of the operator O is exactly

something that we’d like to avoid.

But it’s clear now how to use preconditioning to one’s advantage. The precon-

ditioner should be chosen in such a way that the highest eigenvalue of the product

Ô−1 · O is as close to unity as possible, while simultaneously the matrix Ô is easily

invertable. In case when O is constructed using some high order finite difference

approximation, the good choice is to use the BVP operator of the same system, but

constructed using low order finite difference approximation, for instance the nearest

neighbour. This is known as an Orszag preconditioning [5]. This preconditioner

approximates well the highest eigenvalues of O, leading to δt ≈ 1, but is also eas-

ily invertable being a sparse matrix due to the nearest neighbour finite difference

scheme. The practical advantage of the Orszag preconditioning is also in the fact

that since the operator Ô has the same coefficients as O, the effects of the singular

terms in the equations gets diminished in the combination Ô−1 ·O. Importantly, the

low accuracy of the derivative approximation in Ô doesn’t affect the accuracy of the

final solution, which is dictated by O.

Importantly, the general analysis of the convergence of the relaxation schemes

[5] shows that in any case the time step should be less then 1. For completeness,

referring the reader to [5] for the details, we should mention here that one should use

τ ≤ 4

7
(8.11)

for a the stable iteration.

The practical recipe therefore is to use some high order derivative discretization

scheme for the operator O in order to achieve high accuracy of the solution, but use

the low order scheme for Ô, making it easily invertable. Then, just a few step of the

iteration (8.10) are enough to get the solution with desired precision.

Another practical advantage of the preconditioned relaxation outlined above

shows up when one deals with the nonlinear equations discussed in Sec.4. Reason is

that the solution of a nonlinear equation requires iteration anyway and there is no

point to solve the equation exactly at every step. Therefore the nonlinear iteration

can be easily combined with the relaxation iteration. Form this point of view one can

regard the relaxation with preconditioning as a special version of a pseudo-Newton

method, where at every step one inverts a certain approximation to O instead of the

operator itself.
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8.3 Assignment

Solve the problem of from one of the previous Sections with order 6 approximation

for the derivatives in the equation operator. Use the direct inversion, then trivial

relaxation (8.7) and in the end the relaxation with Orszag preconditioning. Compare

the efficiencies of the applied methods.

9 Pseudospectral method

As it has been pointed out in the previous Section, the accuracy of the final solution

is governed by the accuracy of the derivatives approximation used in the operator O
in the right hand side of (8.2). It is therefore important to develop a procedure to

approximate the derivatives accurately.

9.1 Pseudospectral collocation

The pseudospectral collocation method resides on the fact that instead of repre-

senting the function via its values on the grid, one can represent it as a series in the

basis functions on a particular interval, giving the required values on the grid points.

Consider for instance the interval θ ∈ [0, 2π) with periodic boundary conditions. In

these conditions the function can be represented as a Fourier series

f(θ) =
∑
k

v̂ke
ikθ (9.1)

Given the values of the function on a homogeneous grid vi = f(θi) one can unam-

biguously evaluate the coefficients v̂k. Once the coefficients are known, the derivative

of the series (9.1) can be evaluated exactly:

wi ≡ ∂θf(θi) =
∑
k

ikv̂ke
ikθi (9.2)

Given that in order to figure out the coefficients cn the values of function on the

whole grid are used, the differentiation matrices corresponding to the pseudospec-

tral collocation method are dense. The method might be seen as N-th order finite

difference derivative for N -point grid.

Similar expansion can be done for the interval with the boundaries z ∈ [−1, 1].

in this case the basis functions are Chebyshev polynomials Tk(z) and the unknown

function can be represented as F (z) =
∑
VkTk. The differential matrices are similarly

dense in this case.

It looks like the pseudospectral methods deliver better accuracy for the price of

having very inconvenient form of the differentiation matrices. This can be tolerated

if one uses the relaxation discussed in Sec.8, since in this case there is no need to

invert the matrix. But the bigger advantage of pseudospectral approach is unveiled

once the efficient Fourier transform technique is used instead of the differentiation

matrix multiplication.
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9.2 Pseudospectral collocation and Fourier transform

Indeed, on a circle the coefficients of the Fourier series (9.1) can be evaluated using

the discrete Fourier transform. Given the values of the function on the homogeneous

grid vi, the Fourier coefficients are [4]:

v̂k = δθ
N∑
j=1

e−ikθjvj, k = −N
2

+ 1, . . . ,
N

2
(9.3)

and the Fourier coefficients for the derivative are simply

ŵk = ikv̂k. (9.4)

In order to obtain the values of the derivative on the grid points one has to make

another, inverse Fourier transform

wj =
1

2π

N/2∑
k=−N/2+1

eikθj ŵk, j = 1, . . . , N. (9.5)

The great advantage of the pseudospectral method is the fact that one can per-

form the operations (9.3) and (9.5) efficiently using Fast Fourier Transform (FFT)

algorithm and avoid using the nasty differentiation matrices all together.

Similarly, one can use FFT in order to evaluate the derivative of the function

on an interval z ∈ [−1, 1] represented as a series of Chebyshev polynomials. The

distinctive feature of the Chebyshev polynomials on an interval is the fact that they

can be directly related to the the harmonic functions on a circle. Given one identifies

z ≡ cos(θ) the n-th order polynomial is represented as

Tn(z) = cos(nθ), z ≡ cos(θ) (9.6)

Therefore one can setup a one-to-one correspondence between the values of a

symmetric function on a homogeneous grid on a circle

vi ≡ f(θ) =
∑

v̂k cos(kθi), θi = 0, δθ, 2δθ, . . . (9.7)

and the values of a function on a “Chebishev grid” (see Fig.1) on an interval

Vi ≡ F (z) =
∑

V̂kTk(zi), zi = 1, cos(δθ), cos(2δθ), . . . (9.8)

, with the same set of coefficients V̂k = v̂k.

After this identification is done one can evaluate the derivatives of f(θ) with the

FFT, and once it is done, relate it to the derivatives of F (z):

∂zF (z) = ∂zf(θ) =
∂z

∂θ
∂θf(θ) =

∂θf(θ)√
1− z2

. (9.9)
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Figure 1. Relation between homogeneous grid on θ ∈ [0, 2π) and Chebyshev grid on

z ∈ [−1, 1]

This formula will work for all the point on the interval excluding endpoint z = 1, z =

−1, where the derivative is obtained using l’Hôpital’s rule.

This is the final ingredient for a pseudospectral method. In the end of the day

we see, that it is possible to setup the very efficient procedure using the relaxation

technique, low order difference preconditioner and high order pseudospectral approx-

imation to the BVP operator O, implemented through the FFTs.

10 Conclusion and implementation

The outlined techniques one can reduce the nonlinear differential equation boundary

value problem to the problem in linear algebra. In this form is it relatively straight-

forward to implement these procedures in one’s favorite computing software. The

relaxation procedure and the pseudospectral collocation technique require no more

then the efficient sparse linear solver and fast Fourier transform. These routines

can be find in any contemporary computation package or library including Mathe-

matica, MATLAB, Python, FORTRAN etc. We do not discuss the implementation

here leaving the choice to the reader. The methods discussed above, implemented in

Wolfram Mathematica [7], were successfully applied to several numerical projects in

applied AdS/CFT including 1-dimensional and 2-dimensional problems [8–14] and

proved to be effective.
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