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Abstract

It is important in product development to be able to analyze manufacturing
data so that one may draw conclusions about the performance of the system.
A hidden Markov model (HMM) with a Bayesian approach is presented in
order to analyze manufacturing data with regime changing properties. The
method produces parameter estimates, such as the mean and the variance,
within the different regimes. Bayesian HMMs also produce posterior distri-
butions of the parameters in the different regimes. Two data sets from an
electronics manufacturing system are used in this paper. Data is analyzed be-
fore the theory of Bayesian HMMs is presented. A Markov chain Monte Carlo
(MCMC) simulation technique is used to estimate the parameters within the
different regimes. Since the number of regimes in the data is unknown, a model
comparison of several models is presented. A discussion about the assump-
tions made about the data and the potential problems that may arise during
the parameter estimation is also included.

Keywords: Hidden Markov models, Bayesian inference, Gibbs sampler, Markov
chain Monte Carlo, Semi-supervised learning, Computational statistics
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“Such axioms, together with other unmotivated definitions, serve mathe-
maticians mainly by making it difficult for the uninitiated to master their
subject, thereby elevating its authority.”

— Vladimir Arnold
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1 Introduction

Machines that are used for the manufacturing of products sometimes exhibit a het-
erogeneity in the production process. For instance, items that are produced by a
machine during certain periods of the manufacturing process may be similar to each
other and have certain types of characteristics, i.e. the physical properties of the
items are similar to each other. During other periods of the manufacturing pro-
cess, the items that are produced by the same machine may also be similar to each
other, but have different characteristics. The underlying process that determines
the characteristics of the items is referred to as the regime or the state of the sys-
tem. Some manufacturing systems may alternate between several states during the
manufacturing process.

Knowing the underlying states of the system can be useful if one wants to analyze
different patterns in data, as well as the characteristics of the items in each state.
However, a problem that can arise in some manufacturing processes is that the
underlying states that determine the characteristics of the items are not directly
observable, and thus can be viewed as a hidden process.

As an example, assume that a manufacturing company deposits a special type of
liquid onto a material and that the volume of the liquid is measured during the
application process. Typically, there is some natural variation in the volume of
the applied liquid. The volumes of the deposited fluids follow a certain statistical
distribution with some mean and some variance. However, if there is more than one
state present during the application process, data may be over-dispersed relative to
a single distribution. For instance, if there are two states present in the system, the
volume of the liquid may be a mixture of two distributions. Each time the liquid is
applied onto the material, either state 1 or state 2 governs the distribution of the
volume. Furthermore, this underlying process is considered to be hidden, i.e. not
directly observable. An illustration of the process is shown in Figure 1.

Moreover, if the states are assumed to be dependent in that the probability of a
system being in a certain state depends on the state attained in the previous event,
data can be viewed as coming from a dependent mixture model. This motivates the
use of hidden Markov models, if the states are assumed to take values in some finite
set, S, called the state space.
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State 1 State 2

µ1 µ2

Figure 1: An illustration of the underlying states of the system in our example.
The distribution of the volume of liquid applied by the system in this example is
determined by either state 1 or state 2. The nodes (circles) represent the two different
states, and the edges (arrows) illustrate the process of transitioning to a state in
the manufacturing process. The two distributions below the states represent the
hypothetical distribution of the volume of the liquid in each state. In this case, the
distribution of the volume of the liquid is Normal with the same variance in both
states, but with different means.

1.1 Background

Companies that are in the process of developing new products or systems would like
to gain more information about their specific systems by analyzing manufacturing
data. In this paper, we analyze a system that applies a functional material, for
example, solder paste, onto a printed circuit board. Solder paste consists of a metal
alloy powder and an organic resin-based flux that acts as an adhesive during the
placement of surface mount components onto conductive pads on printed circuit
boards. The process of transferring solder paste from the machine to a printed
circuit board through non-contact deposition is called jet printing, or sometimes
jetting, and the process can be seen as a modified inkjet printing technology (Mirzai
and Mårtensson, 2019). Figure 2 shows a schematic of the process of jet printing
of solder paste. The whole component that transfers the solder paste is called an
ejector. In the case of solder paste, after the subsequent mounting of electronic
components, the material is heated to a temperature at which the pastes metal
alloy melts, wets to the component and the pad, and then solidifies, in order to
connect components to the electronic substrate.

Each time a solder paste droplet is applied onto the printed circuit board, the
volume of the droplet is measured accurately, and a common unit of measurement
is nanoliters (nl). The measurements of the volume are performed by projecting
a laser line pattern from an angle and measuring the distortion of the lines over
the object using a 2-D camera. We assume that the measurement error is small in
relation to the variation between the different droplets. The measured volume is the
main characteristic used to analyze the system throughout this paper. Furthermore,
the desired volume of the solder paste is referred to as the reference. A high-quality
result of the jetting process means that the volume of the droplets are close to the
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reference. Although the volumes of the droplets are intended to be as close to the
reference as possible, an acceptable limit for the volume commonly used in industrial
applications is ±50% of the specified reference.

There are some factors that are known to affect the quality of the jetting. For
instance, the manufacturing process of the ejector is very complex and each ejector
has its own individual properties. These individual properties will have an effect
on the characteristics of the resulting deposits. Other factors known to affect the
quality of jetting are the type of solder paste used and custom hardware and software
settings of the system.

Figure 2: A simplified illustration of the jetting process, where the ejector transfers
the solder paste onto a printed circuit board.

1.2 Problem

The main approach that is used to evaluate the system is to analyze the data from the
jetting process, ranging from deposit diameter, volume, positioning, etc., although
the volume is the only variable that is analyzed in this paper. Developers of the
system can use the data in order to:

• Compare the performance of a new hardware or software change in the system
to the initial settings of the system.

• Compare the quality of different types of solder pastes.

• Gain more information about the underlying behavior of the system.

A challenge facing these goals is to use an adequate statistical model that addresses
some of these areas mentioned above. Moreover, a problem that can arise during
jetting is that there can be temporary periods of irregular behavior that are reflected
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in the quality of the solder paste droplets. Two different data sets with different
regime changing properties are therefore analyzed. The data sets consist of n mea-
surements of the volume of solder paste deposits, y1:n = (y1, . . . , yn). We assume
that the deposits are not independent and identically distributed (i.i.d.). Further-
more, the assumption is made that there is some periodicity in data, although it has
a relatively small effect on the quality of the droplets. In addition to the previous
assumptions, we also assume that there are several states or regimes that govern the
distribution of the volumes. Every time a droplet is jetted onto a printed circuit
board, the system is considered to be in a certain state, Xk. The distribution of the
volumes of the droplets is assumed to differ between the different states. Throughout
this paper, the distribution of the volume of the solder paste deposit, Yk, conditional
on the current state of the system, Xk, is assumed to be Normal with a certain mean
and a certain variance. Hence,

Yk|Xk = j ∼ N(µj, σ
2
j ) , j ∈ {1, 2, . . . ,m} , (1)

where m denotes the total number of states.

Since the underlying states that govern the distribution of the deposits are not
observable, a hidden Markov model is introduced. The dependence structure of an
HMM is represented in Figure 3. The nodes represent the random variables, and the
edges represent the structure of the joint probability distribution. Figure 3 implies
that the conditional distribution of a state Xk, given the past states, X1, . . . , Xk−1,
only depends on the most recent state, Xk−1. Similarly, the distribution of Yk,
conditional on the past observations Yk−1, . . . , Y1 and the past values of the states
Xk, . . . , X1, is determined by Xk only.

Hidden X1 X2 X3 Xk

Y1 Y2 Y3 YkObserved

. . .. . .

Figure 3: A graphical representation of a hidden Markov model, where {Xk} is the
hidden chain and {Yk} is the observable process.

HMMs can be used to estimate the parameters such as the mean and the variance
in the different states, the probability of transitioning from one state to another
(transition probability), and to gain more information about the underlying behav-
ior of the system. Moreover, the number of hidden states in the system has to be
specified when estimating the parameters in the HMM. Hence, some problems con-
sidered in this paper include; an estimation of the parameters in the different states,
an estimation of the transition probabilities, and a comparison of several probable
models.
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1.3 Theoretical Background

Mixture models are commonly used to estimate the parameters in the different
states when the underlying states form an i.i.d. sequence. See e.g. Feller (1943)
or Frühwirth-Schnatter (2006) for literature on this topic.

Moreover, HMMs are commonly used when the underlying process that determines
the distribution of the volumes is not an i.i.d. sequence. Some application ar-
eas of HMMs include speech recognition (Rabiner, 1989) and handwriting recog-
nition (Makhoul et al., 1994). The theory of HMMs goes back to at least Baum and
Petrie (1966), as well as a seminal version of the EM algorithm for HMMs, introduced
by Baum et al. (1970). The algorithm can be described as a method to compute a
point estimate. More recent literature on HMMs include Cappé et al. (2005), Rydén
(2008) and Zucchini and MacDonald (2009), as well as seminal references therein.

1.4 Purpose

The aims of this paper are the following:

• To analyze if HMMs can serve as a tool to describe regime changes during the
jetting process.

• To estimate the parameters in each state using Bayesian HMMs.

• To analyze and discuss possible problems that may arise during the parameter
estimation of HMMs.

Note that we are not interested in drawing any major conclusions about the hardware
or software settings of the system based on the data that is used in this paper,
but rather in analyzing if HMMs can be used within jet printing, and the possible
problems that can arise when using the method.

1.5 Contributions

A common method to analyze data that stems from jet printing is to use descriptive
statistics, such as the mean and the variance together with box plots when measur-
ing the thickness, or height, of the solder paste deposits (Huang et al., 2011; Kay
et al., 2014). Moreover, a frequentist approach using hypothesis testing has been
carried out by Mirzai and Mårtensson (2019) in order to determine if there is a
significant difference between the mean of the volumes of the solder paste droplets
when introducing a new feature to the ejector, in this case, two variants of the print-
ing mechanisms. The study shows that hypothesis testing is unreliable in the case
of jet printing. To the best of our knowledge, a Bayesian framework together with
HMMs has not been applied within jet printing. Hence, the main contribution of
this paper is to reconcile Bayesian HMMs with jet printing.
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1.6 Outline

We begin by analyzing the distribution of the solder paste deposits. Then, theory
connected to HMMs is presented, followed by a parameter estimation of the different
states. The parameter estimation is done using an MCMC technique, which also
provides a measure of the uncertainty of the estimates. The results are followed by
a discussion about the potential problems that arise during parameter estimation.

1.7 Delimitations

Throughout this paper, we assume that there is a finite number of discrete states in
the system. An alternative method is to use state space models when dealing with
a continuous state space. An HMM is in fact a state space model with a finite state
space. A thorough explanation of state space models can be found in Petris et al.
(2009) and references therein.

Moreover, the problem of estimating the number of hidden states is discussed in this
paper, although we are mainly concerned with parameter estimation of the hidden
states. There are other nonparametric methods that avoids restrictive assumptions
of parametric models, such as the Dirichlet process. Some literature on this topic
can be found in e.g. Sudderth (2006) or Teh et al. (2006).

A final comment should be made regarding the rationale behind the choice of using
HMMs. We assume that the underlying process that governs the distribution of
the volume of the droplets is not an i.i.d. sequence. Furthermore, we make the
assumption that the volumes of the droplets, {Yk}, are conditionally independent
given the states, {Xk}. This may be a strong assumption, and a further discussion
on this topic presented in Section 6.2. Markov-switching models can be used if one
believes that the distribution of data is not only governed by the current state of the
system, but also by previous observations. See e.g. Hamilton (1989) for a famous
example of a Markov switching process, called the switching autoregressive process,
that was introduced to model econometric data. Moreover, if data is dependent, one
could use time series analysis to describe the volumes of the solder paste droplets.
However, due to the regime changing properties of the data, we find that HMMs are
more suitable in this case.

2 Data

2.1 Description of Data

Let us now describe the jetting process and how the data is collected in more detail.
Although some descriptions of the jetting process may seem rather technical, they
are necessary in order to make the proper assumptions about the data.

The solder paste deposits are for research and development purposes jetted on a
sheet of A4 photographic paper. A small sample of the jetted solder paste deposits
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is shown in Figure 4a. Each dot represents a solder paste droplet that has been
jetted through the ejector. The red lines in Figure 4b show the paths that the
solder paste deposits are jetted along, where each line is referred to as a strip. The
order in which the strips are jetted depends on the software settings of the system.

(a) (b)

Figure 4: Illustration of the jetting in the testing phase, where a picture has been
taken from above.

Furthermore, the dots form a rectangle, where each rectangle consists of 360 droplets.
The rectangles are referred to as a generic ball grid array (BGA), which is a typical
component application for the jet printer. The BGAs are jetted sequentially until
the desired number of observations are met.

In order to ensure a stable jetting process over time, the machine has automated
settings that manipulate the inputs of the system, in order to obtain the desired
effect on the output of the system. In practice, this means that the initial droplets
in each strip sometimes deviate from the rest of the droplets, in terms of volume.
The number of initial droplets in a new strip that are affected by the settings of the
machine typically range between one and three. This phenomenon is referred to as
periodicity in data.

A plot of the volume of 40 droplets from a jetted BGA test is shown in Figure 5,
where the droplets are jetted according to the reference without any disturbances in
the system. The data is a subset of sequentially jetted BGAs that consist of 99 360
deposits. The strips shown in Figure 5 are of length 23. Furthermore, the reference
volume is 1.85 nl, where the initial observation represents the volume of the first
deposit in a strip. From the plot, it is clear that the volume of the initial droplet
is smaller than the volume of the rest of the droplets in the strip. For new strips
that are jetted during the jetting process, this pattern sometimes repeats itself.
Observation number 24 shows a similar behavior, since it represents the first droplet
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in a new strip. There are also occasional deviations in the volume of the solder
paste droplets, that are not caused by the settings of the machine. For instance,
observation number 35 deviates from the previously jetted droplets, similar to the
behavior of the first droplet in a new strip.

A further comment has to be made regarding the deviation of the initial droplet in
a new strip. It is not always the case that the deviations are smaller than the rest of
the droplets, as in the example shown in Figure 5. The volume of the initial droplets
in a new strip can also be larger than the volumes of the rest of the droplets in the
strip, and this behavior typically varies during the jetting process.

Figure 5: A plot of the volume of jetted deposits when the droplets are jetted
according to the reference. The plot shows the impact of the settings of the machine.

It is not only the settings of the machine that affect the quality of the jetted solder
paste deposits. There are many variables that can affect the quality of the droplets
during the jetting process, which can result in droplets that deviate from the refer-
ence, some of which were mentioned in Section 1.1. The magnitude of the deviation
varies but is often similar to the periodicity shown in Figure 5.

A recurring problem during jetting is individual or groups of solder alloy particles
that can get stuck in the ejector. A common belief is that the distribution of
the volume of the droplets differs during the period that particles are stuck in the
ejector. The duration, in terms of the number of jetted solder paste droplets, for
which particles are stuck in the system varies. It can range between one droplet to
several million droplets, and during this process, the ejector can break. Different
types of solder pastes are manufactured in different ways, and the risk of particles
getting stuck in the system therefore varies, depending on the type of solder paste
that is used.

In this paper, we can roughly categorize the data from the jetting process into two
groups. The first group of data typically arise following a replacement of the ejector,
due to component failure. During the initial stages of jetting following the replace-
ment, there is a possible initiation period for the ejector. During this period, the
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solder paste deposits are typically not jetted according to the reference. Further-
more, the variance of the volume is usually large during the initiation period. The
second group of data arises after the initiation period, when the system typically jets
the solder paste droplets close to the reference, although there are some disturbances
during the jetting. The process when the system jets in the neighborhood of the
reference, with some regular disturbances, is referred to as the system equilibrium.
We use two different data sets to analyze the different groups of data in this paper.
The first data set is used to analyze the initiation period and the second data set is
used to analyze the system equilibrium.

2.1.1 Initiation Period

Let us now examine a typical behavior that occurs during the initiation period of
jetting, following a replacement of the ejector. A data set that is truncated from
above, with reference volume 1.85 nl is used. A subset of the data set was used to
illustrate the initial droplet effect in a new strip in Figure 5. The data consists of 99
360 observations of the volume of solder paste deposits. Hence, a set of 276 BGAs
have been jetted sequentially. This data is shown in Figure 6.

We assume that two different states govern the distribution of the volume, where
the initial 60 000 droplets, roughly, can be seen as belonging to the initiation period.
The mean volume of the solder paste droplets during the initiation period does not
seem to follow the reference. Furthermore, the variance of the volume seems to
be very high during the initiation period, compared to the variance of the volume
during the system equilibrium.

Figure 6: Illustration of a jetting sequence including the initiation period. The
initial 60 000 jetted droplets, approximately, belong to the initiation regime. After the
initiation period, the distribution of the volumes is concentrated around the reference,
1.85 nl, and can be considered to belong to the system equilibrium regime.

In this data set, we are not interested in estimating the parameters in the two
different regimes. Instead, we are interested in estimating the number of droplets
that are jetted before reaching the system equilibrium, which can be denoted by ξ.
Estimating this quantity each time an ejector is replaced in the system can give a
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measure over the number of droplets that manufacturers need to jet before reaching
system equilibrium, following a replacement of the ejector.

It is not unusual that there are several states present in the system after the initiation
period. In that case, the mechanism is similar for obtaining the estimate of ξ. For
instance, assume that there are three states present in the system. State 1 represents
the initiation period, and state 2 and state 3 govern the distribution of the volumes
during the system equilibrium, where the system alternates between the two states
during that period. The estimate of ξ can be obtained by recording the last time
point that the system is in state 1 during the jetting process.

2.1.2 System Equilibrium

After the initiation period, it is of interest to learn more about the distribution of
the volume of the solder paste droplets. If there is more than one state present in
the system, i.e. there is an underlying process that governs the distribution of the
volumes, one is interested in estimating the parameters of this process, such as the
mean and the variance of the volume in each state. The information can be used to
compare different types of solder pastes. Furthermore, information about the mean
and the variance in each state can be used to measure the performance of the system
when introducing changes in hardware or software.

As an example, assume that the developer of the system would like to analyze the
performance of the jetting process when making a hardware change and compare
the performance of the system to the initial settings in the present system. A system
that has states with a mean close to the reference, together with a small variance is
preferred.

Another type of data set that is truncated from below and above, which consists
of 49 000 observations is used. The droplets are considered to be measured during
the system equilibrium, i.e. when the droplets are jetted according to the reference,
in this case 5.8 nl. In this data set, the droplets are no longer jetted according
to a BGA. Instead, they are organized in strips of length 280 deposits. Thus, the
data consist of 175 strips. Having longer strips means that the data is less affected
by periodicity, i.e. the effect from the initial droplets in a new strip. Although the
initial droplet in a new strip may deviate from the rest of the droplets in the strip,
the assumption is made that the probability of transitioning from a state to another
does not change at that time point.

A plot of the volume of the jetted solder paste droplets in this system, in nanoliters,
is shown in Figure 7a. The data appears to come from more than one state, due to
the sudden regime changes in the data. Furthermore, there appears to be a pattern
where the volume temporarily increases with a certain regularity during the jetting.
These events are treated as random in this paper, although it can be argued that
they are a part of a cyclical pattern. A discussion about this phenomenon is given
in Section 6.1.
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The histogram of the data described in Figure 7a is given in Figure 7b and has a
similar shape as the Normal distribution, even if it does not completely follow the
density function of a Normal distribution with indicated mean and variance.

Due to the nature of the system previously described, we believe that data is a
mixture of at least two Normal distributions, during the system equilibrium. Hence
we believe that there are at least two states or regimes that govern the distribution
of the volume during the system equilibrium.

(a) (b)

Figure 7: Illustration of the volume of the jetted solder paste droplets in nanoliters
(nl), where (a) is a plot of the volumes of the droplets during one test and (b) shows
the distribution of the volume for the same test. The reference volume is 5.8 nl and
the red line in the histogram represents the density of a Normal distribution with the
same mean and the same variance as the data set.

2.2 Test of Normality

Let us now analyze the normality of the data during the system equilibrium, in
order to assess if the volume of the droplets are generated from more than one
state. There are several methods that can be used to evaluate the normality of the
data, both graphically and analytically. We use a quantile-quantile (Q-Q) plot for a
graphical inspection of the normality of data (Wilk and Gnanadesikan, 1968), and
the Kolmogorov-Smirnov (K-S) test for evaluating the normality analytically (Feller,
1948). The same data set shown in Figure 7a and Figure 7b, with 49 000 observa-
tions, is used for the goodness of fit test.

A comment has to be made regarding the assumptions of the K-S test. One of the
assumptions made about the data is that the observations are i.i.d., which does not
hold in our case. The test is still performed, although the same interpretation as in
the i.i.d. case cannot be made.

2.2.1 QQ-Plot

Assume that we have a sample of n observations, y1:n = (y1, . . . , yn). The QQ-
plot can be obtained by plotting the theoretical quantiles, F−1(Fn(yi)), against the
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sample quantiles, y(i). The plot is then analyzed graphically. The points in the Q-Q
plot fall on the line of identity if the empirical distribution, Fn, is consistent with
the theoretical distribution function, F , (Loy et al., 2016). Plotting the theoretical
quantiles against the sample quantiles, we see that the blue dots are not consistent
with the line identity, i.e. the red line.

Figure 8: A QQ plot showing the plotted theoretical quantiles against the sample
quantiles, represented by the dots in blue. The red line represents the line identity.

2.2.2 Kolmogorov-Smirnov Test

The K-S test can be used to compare the empirical distribution function, Fn, with
the hypothesized distribution function, F . The test statistic, Dn, is the largest
vertical distance between Fn and F . Thus,

Dn = max
y
|Fn(y)− F (y)| ,

where max
y

denotes the maximum of the set of distances. Formally, the hypotheses

are given by

H0 : Fn(y) = F (y) , ∀ y ∈ R+ ,

H1 : Fn(y) 6= F (y) , for some y ∈ R+ ,

where R+ denotes the set of the non-negative real numbers.

We use the 1% significance level when performing the K-S test. The critical value is
approximately given by Dcrit,0.01 = 1.63/

√
n. If Dn > Dcrit,0.01, the null hypothesis

is rejected.

Based on the data set, our statistic is Dn = 0.0419, and hence, the null hypothesis is
rejected at 1% level of significance, since Dn exceeds the critical value of Dcrit,0.01 =
1.63/

√
49000 ≈ 0.0074.

In summary, both the QQ-plot and the K-S test imply that the data from system
equilibrium does not follow a single Normal distribution, although the i.i.d. assump-
tion is relaxed in the K-S test.
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3 Hidden Markov Models

3.1 Markov Chains

In this subsection, a brief introduction to Markov chains is given. A thorough
explanation of Markov chains can be found in e.g. Grimmett and Stirzaker (2001)
or Ross (2010).

Let {Xk, k ∈ Z+} be a stochastic process that takes on a finite or countable number
of possible values in the state space, S. Here, Z+ denotes the set of all positive
integers. We assume that S takes on m possible values, m ∈ Z+. The process
{Xk}k≥1 is said to be a Markov chain if it satisfies the Markov property :

P (Xk+1 = j|Xk = i,Xk−1 = ik−1, . . . , X1 = i1) = P (Xk+1 = j|Xk = i) , (2)
for all states i1, i2, . . . , i, j ∈ S, and for all k ≥ 1. Furthermore, a Markov chain is
said to be homogeneous if:

P (Xk+1 = j|Xk = i) = P (X2 = j|X1 = i) = γij , k ∈ Z+ , i, j ∈ S ,
where γij denotes the one-step transition probability. Note that γij ≥ 0 ∀ γij and
Σm
j=1γij = 1. We assume that the Markov chains we are dealing with in this paper

are homogeneous throughout, unless otherwise stated.

1

2 3

γ11

γ22 γ33

γ12

γ21

γ23

γ31

γ32

γ13

Figure 9: A Markov chain with three states. The nodes represent the different
states, and the edges together with the γ’s represent the one-step transition proba-
bilities.

It is often convenient to express the one-step transition probabilities γij in a matrix.
Thus, Γ is defined as the matrix with (i, j) element γij:

Γ =


γ11 γ12 . . . γ1m

γ21 γ22 . . . γ2m
...

... . . . ...
γm1 γm2 . . . γmm

 .
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Here, Γ is a matrix of size (m ×m), where m denotes the number of states in the
Markov chain.

Moreover, the n-step transition probabilities for a homogeneous Markov chain are
defined as

γij(n) = P (Xk+n = j|Xk = i) ,

and expressed in a matrix, Γ(n), similar to the one-step transition probability ma-
trix.

An important property of all finite state-space homogeneous Markov chains is that
they satisfy the Chapman–Kolmogorov equations, which in matrix notation can be
written as:

Γ(n+ k) = Γ(n)Γ(k) .

The proof is omitted here, but can be found in e.g. Section 6.1 in Grimmett and
Stirzaker (2001). The Chapman-Kolmogorov equations imply that

Γ(k) = Γ(1)k, ∀ k ∈ Z+ .

Moreover, the unconditional probabilities of a Markov chain, P (Xk = j), are often
of interest. That is, the probability of being in state j at a given time k. These
probabilities can be expressed as a row vector of length m:

π(k) = (P (Xk = 1), . . . , P (Xk = m)), k ∈ Z+ .

To compute the unconditional probabilities at time k + 1, we simply postmultiply
the unconditional probabilities with the transition probability matrix Γ:

π(k + 1) = π(k)Γ . (3)

Furthermore, the initial state probabilities, or initial distribution of the Markov chain
is denoted π(1), or abbreviated π:

π = (P (X1 = 1), . . . , P (X1 = m)) = (π1, π2, . . . , πm) , (4)

where π is a row vector of length m.

3.2 Basic Properties of Hidden Markov Models

Although a brief introduction to hidden Markov models was presented in Section 1.2,
let us formally introduce its basic properties. A hidden Markov model consists
of two parts. The first part is an unobservable Markov chain {Xk}k≥1, where k
is an integer index. The second part consists of an observable stochastic process
{Yk}k≥1 that is linked to the Markov chain in that Xk governs the distribution of
Yk. Furthermore, the assumption is made that {Xk} must be the only variable that
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affects the distribution of {Yk}. That is, the conditional distribution of {Yk} given
{Xk} is a sequence of independent random variables.

The structure of the HMM can be expressed as

P (Xk+1|Xk, . . . , X1) = P (Xk+1|Xk) , k ∈ Z+ ,

and

P (Yk|Yk−1, . . . , Y1, Xk, . . . , X1) = P (Yk|Xk) , k ∈ Z+ .

An alternative approach is to view the hidden Markov model as a dependent mix-
ture model. Here, Yk, . . . , Y1 and Xk, . . . , X1 represent histories from times 1 to k.
Although {Yk} is conditionally independent given {Xk}, the observed variables {Yk}
are themselves not an independent sequence because of the dependence in {Xk}. A
thorough discussion about the structure of the HMMs can be found in e.g. Cappé
et al. (2005), where the authors also discuss how the process {Yk} in general does
not have the loss of memory property of Markov chains, i.e. that the conditional
distribution of Yk given Y1, ..., Yk−1 generally also depends on all the conditioning
variables.

3.3 Emission Probabilities

The emission probabilities are defined as

fj(yk) = P (yk|Xk = j) , j ∈ {1, 2, . . .m} , k ∈ {1, 2, . . . , n} .

Since we assume the jetted solder paste deposits follow a Normal distribution in
each state, the emission probabilities can be written as

fj(yk) =
1√

2πσ2
j

exp

{
−(yk − µj)2

2σ2
j

}
, j ∈ {1, 2, . . .m} , k ∈ {1, 2, . . . , n} .

3.4 Marginal Distribution

Recall that the unconditional state probabilities are defined as πj(k) = P (Xk =
j) for j ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , n}. Furthermore, the unconditional
probability, P (yk), can be computed as

P (yk) =
m∑
j=1

P (Xk = j)P (yk|Xk = j)

=
m∑
j=1

πj(k)fj(yk) .

In matrix notation, the expression can be rewritten as
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P (yk) = (π1(k), . . . , πm(k))

f1(yk) 0
. . .

0 fm(yk)


1

...
1


= π(k)P (yk)1

′,

where P (yk) is defined as the diagonal matrix with jth diagonal element fj(yk), for
j ∈ {1, 2, . . . ,m}. It follows from (3) that π(k) = π(1)Γk−1 if the Markov chain is
homogeneous, and that

P (yk) = π(1)Γk−1P (yk)1
′. (5)

3.5 The Likelihood of Hidden Markov Models

The likelihood of the HMM will be useful when comparing different models. Assume
that y1:n = (y1, . . . , yn) is a sample of n observations. The definition of the likelihood
for the HMM, Ln, is the joint probability density function, or probability mass
function, of y1:n. Hence, the likelihood can be defined as

Ln = P (y1, y2, . . . , yn) . (6)

In general, one can compute the joint distribution as

P (X1, . . . , Xn, Y1, . . . , Yn) = P (X1)
n∏
k=2

P (Xk|Xk−1)
n∏
k=1

P (Yk|Xk) , (7)

and the likelihood Ln, by noting that

Ln =
m∑

x1,x2,...,xn=1

P (X1 = x1, . . . , Xn = xn, y1, . . . , yn)

= πP (y1)ΓP (y2)ΓP (y3) · · ·ΓP (yn)1′ .

3.6 Backward Probabilities

The backward probabilities are defined as

P (yk+1:n|Xk = j) = βk(j) , j ∈ {1, 2, . . . ,m} , k ∈ {n, n− 1, . . . , 1} .

That is, the probability of observing the sequence of random variables yk+1, . . . , yn,
conditional on Xk = j. Note that βn(j) = 1 ∀ j ∈ {1, 2, . . . ,m}.

The backward probabilities can be summarized in βk, a row vector of lengthm, with
jth element βk(j). The vector of backward probabilities can for k ∈ {1, 2, . . . , n} be
written as
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β
′

k = ΓP (yk+1)ΓP (yk+2) · · ·ΓP (yn)1′ =

(
n∏

s=k+1

ΓP (ys)

)
1′ .

Furthermore, the likelihood can also be expressed in terms of the backward proba-
bilities, as

Ln = πP (y1)β′1 .

Let us show how to express the backward probabilities in the form of a recursive
algorithm. The backward probabilities in βk can be computed recursively as

β
′

k = ΓP (yk+1)β
′

k+1 , k ∈ {n− 1, n− 2, . . . , 1} .

Hence, one can compute the backward probabilities from n to 1 recursively by ini-
tially setting

βn = 1 ,

followed by

β′n−1 = ΓP (yn)β′n
...

β′1 = ΓP (y2)β′2 .

A proof of the backward probabilities can be found in e.g. Section 4.1.1 in Zucchini
and MacDonald (2009). A further note has to be made regarding the implementation
of the backward probabilities as a recursive algorithm. The probabilities tend to zero
or infinity exponentially fast in the recursions. One solution to this problem is to
normalize the backward variables so that they sum to one over j. A thorough
discussion on this topic can be found in Sections 3.2.2, 3.4 and 5.1.1.1–2 in Cappé
et al. (2005).

4 Bayesian Parameter Estimation

4.1 Bayesian Inference

There are several methods that can be used to estimate the parameters in HMMs.
In this paper, we are mainly concerned with estimating the parameters through the
Bayesian framework. A thorough explanation of Bayesian inference can be found in
e.g. Gelman et al. (2014). Another source of literature with an excellent presentation
of Bayesian inference can be found in Held and Bové (2014).

In Bayesian statistics, conclusions about the unknown parameter, θ, are made in
terms of probability statements. These probability statements are conditional on
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the observed value of the data, y, expressed as P (θ|y), and is referred to as the
posterior distribution. It contains all the information available about the unknown
parameter θ after having observed the data Y = y. The posterior distribution is
implicitly conditioned on the known values of any covariates, x.

In order to make probability statements about θ given data, y, one must first obtain
the joint probability distribution for θ and y. The joint probability distribution,
P (y, θ), can be obtained by the product of the sampling distribution or the likelihood,
P (y|θ), and the prior distribution, P (θ). The likelihood function P (y|θ) expresses
the probabilities of data, given the parameter. The prior information P (θ) expresses
the uncertainty about the unknown value θ, before data is observed.

The posterior distribution can be obtained by using Bayes’ rule:

P (θ|y) =
P (y|θ)P (θ)

P (y)
∝ P (y|θ)P (θ) , (8)

where P (y) = ΣθP (y|θ)P (θ) when θ is discrete, i.e. the sum of all possible values
of θ. If θ is continuous, P (y) =

∫
P (y|θ)P (θ)dθ. The denominator of the second

part of (8) does not depend on θ, and with fixed y can be considered as a constant.
Hence, the last part of (8) can be viewed as the unnormalized posterior density.

There may be situations where the posterior distribution cannot be computed by
analytical methods and computational approximations are needed. Markov chain
Monte Carlo (MCMC) techniques can be used to simulate dependent draws of θ
that converge to the posterior distribution. The sampling is done sequentially, with
the distribution of the sampled draws depending on the last value drawn. Thus,
the posterior distribution is evaluated by drawing samples from a Markov chain. It
is often the case that the first draws in the simulation do not come from the true
posterior distribution. Instead, the draws converge after a number of iterations. It
is therefore common to discard a part of the initial draws, referred to as a burn-in
period.

4.2 Gibbs Sampler

The Gibbs sampler is an MCMC technique that can be used to generate random
variables from a marginal distribution by iterative sampling from conditional distri-
butions. The method has gained popularity after the seminal paper by Geman and
Geman (1984) who studied image-processing models, but the roots of the technique
can be traced back to at least Metropolis et al. (1953). An intuitive explanation of
the Gibbs sampler can be found in e.g. Casella and George (1992).

The purpose of the Gibbs sampler is to generate random variables from a marginal
distribution indirectly, without having to calculate its density. One of the reasons
to use the Gibbs sampler technique is to avoid difficult calculations, and instead,
replace them with a sequence of easier calculations.

18



Let us present a simple example to illustrate the use of the technique. Assume
that there are two random variables, (X, Y ). The aim is to sample from f(x) by
sampling from the conditional distributions f(x|y) and f(y|x) instead. Hence, the
Gibbs sequence of random variables

Y (0), X(0), Y (1), X(1), . . . , Y (k), X(k), Y (k+1) (9)

is generated by iteratively sampling from

X(k) ∼ f(x|Y (k) = y(k))

Y (k+1) ∼ f(y|X(k) = x(k)) ,

where the initial value Y (0) = y(0) is specified. The Gibbs sequence in (9) is com-
monly referred to as Gibbs sampling, and the distribution of X(k) converges to the
marginal distribution f(x) as k → ∞. The proof is omitted here, but an outline
of the proof together with a thorough discussion can be found in e.g. Casella and
George (1992) and the references therein.

In the Bayesian setting, the mechanism is similar for obtaining the posterior distri-
bution of the unknown parameter vector ϑ = (θ1, θ2, . . . , θn), by drawing samples
from the full conditional distributions of the parameters of interest.

4.3 Bayesian Derivations

Let us now turn to Bayesian parameter estimation of HMMs. In this section, we
present an MCMC method similar to that presented by Rydén (2008), where the
Gibbs sampler is used to estimate the parameters of the HMM. An advantage with
the Gibbs sampler compared to the EM algorithm is that it does not only produces
point estimates, but also gives a measure of the uncertainty about the parameter
estimates in the form of the posterior distribution.

The underlying states, X1:n, are included as latent data when implementing the
Gibbs sampler. In practice, this means that we alternate between sampling model
parameters and latent data from their respective full conditional distributions.

Before we present the prior distributions and the full conditional distributions, let
us rewrite the joint distribution of the HMM defined in (7) in another form:

P (X1:n,y1:n) = πx1

n∏
k=2

γxk−1,xk

n∏
k=1

P (yk|µxk , σ2
xk

)

= πx1

m∏
i=1

m∏
j=1

γ
nij

ij

m∏
j=1

∏
k:Xk=j

P (yk|µj, σ2
j ) ,

where nij = #{1 < k ≤ n : Xk−1 = i,Xk = j} is the number of transitions from
state i to state j in the latent state sequence. This form of the joint distribution
will be useful when deriving the full conditional distributions in the Gibbs sampler.
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Moreover, the number of observations in state j can be written as

nj =
n∑
k=1

I{Xk = j} ,

where I{·} denotes an indicator function.

4.3.1 Prior Distributions

A prior distribution is specified for each of the parameters in the parameter vector
ϑ = (π,Γ,µ,σ2), where π denotes the initial distribution of the HMM, Γ the
one-step transition probability matrix, µ the vector of mean values of the different
states, and σ2 the vector of the variances of the different states.

Initial Distribution

The initial distribution, π = (π1, . . . , πm), is given a Dirichlet prior distribution,
Dir(1, . . . , 1). Thus,

(π1, . . . , πm) ∼ Dir (1, . . . , 1) . (10)

The Dirichlet distribution is a multivariate generalization of the Beta distribu-
tion. The probability density function of the Dirichlet distribution (π1, . . . , πm) ∼
Dir (α1, . . . , αm) is defined as

P (π) =
Γ
(
Σm
j=1αj

)∏m
j=1 Γ(αj)

m∏
j=1

π
αj−1
j ,

where π1, π2, . . . , πm ∈ (0, 1), Σm
j=1πj = 1 and αj > 0 ∀ j ∈ {1, 2, . . . ,m}. The

prior parameters, commonly referred to as the hyperparameters, are specified as
α1, α2, . . . , αm. If one has no prior information to favor one state over the other,
a symmetric prior distribution where all parameters are equal can be specified,
which is done in our case. See e.g. Lin (2016) and references therein for a thorough
explanation of the Dirichlet distribution.

Transition Probabilities

Similar to the initial distribution, each row of the transition probability matrix Γ is
given an independent Dirichlet prior. Hence,

(γj1, . . . , γjm) ∼ Dir (1, . . . , 1) , j ∈ {1, 2, . . . ,m} . (11)

Joint Prior for the Mean and Variance

Derivations of the full conditional distributions are presented in the next subsection.
However, some comments must be made regarding the strategy that is used to obtain
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the full conditional distribution of (µj, σ
2
j ), for j ∈ {1, 2, . . . ,m}. The full conditional

distribution of µj and σ2
j can be obtained using the relation

P (µj, σ
2
j | . . .) ∝

∏
k:Xk=j

P (yk|µj, σ2
j )P (µj, σ

2
j ) ,

where ‘. . .’ denotes other parameters in the parameter vector ϑ, the hidden Markov
chain X1:n, and the data y1:n. We use this notation in order to express the full
conditional distributions throughout this paper, although the variables that affect
the full conditional distribution are explicitly expressed. Furthermore, independence
is assumed across all j.

Moreover, the joint prior distribution for the jth state can be obtained by using the
relation

P (µj, σ
2
j ) = P (µj|σ2

j )P (σ2
j ) .

Assuming that the observations in each state follow a Normal distribution, a com-
monly used prior for the variance is the Inverse Gamma distribution:

P (σ2
j ) =

β
αj

j

Γ(αj)
(σ2

j )
−(αj+1) exp

{
−βj/σ2

j

}
∝ (σ2

j )
−(αj+1) exp

{
−βj/σ2

j

}
,

which has hyperparameters (αj, βj). A convenient reparameterization of the prior
distribution gives the scaled inverse-χ2 distribution with hyperparameters σ2

0j as
scale, and υ0j degrees of freedom. Thus, the prior distribution of σ2

j is the distri-
bution of σ2

0jυ0j/X, where X ∼ χ2
υ0j

, i.e. a Chi-square random variable with υ0j

degrees of freedom. If

σ2
j ∼ Scaled inv-χ2 (υ0j, σ

2
0j) , then σ

2
j ∼ Inv-Gamma

(
υ0j

2
,
υ0jσ

2
0j

2

)
,

and hence, the distribution of a Scaled inv-χ2 distribution with hyperparameters
(υ0j, σ

2
0j) can be written as

P (σ2
j ) =

(σ2
0jυ0j/2)υ0j/2

Γ(υ0j/2)
(σ2

j )
−(υ0j/2+1) exp

{
−
υ0jσ

2
0j

2σ2
j

}
∝ (σ2

j )
−(υ0j/2+1) exp

{
−
υ0jσ

2
0j

2σ2
j

}
.

The prior distribution can be viewed as providing information equivalent to υ0j

observations with an average square deviation σ2
0j. A thorough explanation of the

Scaled inverse-χ2 distribution can be found in Section 2.6 in Gelman et al. (2014).

Moreover, the conditional prior distribution of µj given σ2
j is a Normal distribution

with parametrization

µj|σ2
j ∼ N(µ0j, σ

2
j/κ0j) .

Thus, the conditional prior density can be written as
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P (µj|σ2
j ) =

1√
2πσ2

j/κ0j

exp

{
−(µj − µ0j)

2

2σ2
j/κ0j

}
∝ 1

σj
exp

{
−(µj − µ0j)

2

2σ2
j/κ0j

}
.

The joint prior density P (µj, σ
2
j ) can be obtained by multiplying the unconditional

prior variance P (σ2
j ) and the conditional prior mean P (µj|σ2

j ):

P (µj, σ
2
j ) = P (µj|σ2

j )P (σ2
j )

∝ σ−1
j exp

{
−(µj − µ0j)

2

2σ2
j/κ0j

}
× (σ2

j )
−(υ0j/2+1) exp

{
−
υ0jσ

2
0j

2σ2
j

}
= σ−1

j (σ2
j )
−(υ0j/2+1) exp

{
− 1

2σ2
j

[
υ0jσ

2
0j + κ0j(µ0j − µj)2

]}
.

(12)

This distribution can be labeled as Scaled N -inv-χ2(µ0j, σ
2
0j/κ0j; υ0j, σ

2
0j), a four

parameter model. An interpretation of the parameters is that the first two param-
eters represent the location and scale of µ, and the last two represent the degrees
of freedom and scale of σ2. The Scaled N -inv-χ2-distribution can be viewed as
a reparametrization of the four parameter Normal-inverse-gamma distribution, see
Appendix A.1 for its probability density function.

4.3.2 Derivation of Full Conditional Distributions

Before the derivations of the full conditional distributions are presented, the term
conjugacy must be introduced. A prior is conjugate to the likelihood if the prior
and posterior belong to the same distributional family.

The formal definition of conjugacy in accordance with Gelman et al. (2014) is de-
fined as: If F is a class of sampling distributions P (y|θ), and P is a class of prior
distributions for θ, then the class P is conjugate for F if

P (θ|y) ∈ P for all P (·|θ) ∈ F and P (·) ∈ P .

Full Conditional Distribution of the Initial Distribution

The Dirichlet distribution is conjugate to the Multinomial distribution, which is
a generalization of the Binomial distribution. The sampling distribution of the
initial probability is assumed to follow a Multinomial distribution, which has the
probability mass function

P (n1, . . . , nm|n, π1, . . . , πm) =
n!

n1! · . . . · nm!

m∏
j=1

π
nj

j ,

where nj ∈ {0, 1, . . . , n}, Σnj = n and π1, . . . , πm are the event probabilities. Here,
nj = #{1 ≤ k ≤ n : Xk = j} is the number of visits to state j in the latent state
sequence.
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Moreover, the full conditional distribution of the initial distribution π = (π1, . . . , πm)
can be written as

P (π|X1:n, . . .) ∝ P (n1, . . . , nm|n, π1, . . . , πm)P (π1, . . . , πm)

∝

(
n!

n1! · . . . · nm!

m∏
j=1

π
nj

j

)(
Γ
(
Σm
j=1αj

)∏m
j=1 Γ(αj)

m∏
j=1

π
αj−1
j

)

∝
m∏
j=1

π
nj+αj−1
j ∼ Dir (n1 + α1, . . . , nm + αm) .

At the first time point, only one state can govern the distribution of the initial
volume of the solder paste droplet. Thus, n = 1, and, due to the prior specification
in (10), the full conditional distribution is given by

(π1, . . . , πm)|X1:n, . . . ∼ Dir (I{X1 = 1}+ 1, . . . , I{X1 = m}+ 1) . (13)

Full Conditional Distribution of the Transition Probability Matrix

Similar to the initial probabilities, the sampling distribution of each row in the tran-
sition probability matrix is assumed to follow a Multinomial distribution. The full
conditional distribution of the rows in the transition probability matrix is therefore
given by

(γi1, . . . , γim)|X1:n, . . . ∼ Dir (ni1 + 1, ni2 + 1, . . . , nim + 1) . (14)

Recall that nij is the number of transitions from state i to state j in the latent state
sequence. Furthermore, conditional independence is assumed across the rows in the
transition probability matrix.

Full Conditional Distribution for the Mean and the Variance

Recall that we defined the number of visits to state j in the latent state sequence as
nj, with conditional independence across j ∈ {1, . . . ,m}. Furthermore, the sample
mean of state j is defined as ȳj = Σk:Xk=j yk/nj. Since the data is assumed to follow
a Normal distribution in each state, the joint probability of the random variables in
state j, for j ∈ {1, . . . ,m}, can be written as:

∏
k:Xk=j

P (yk|µj, σ2
j ) =

∏
k:Xk=j

1√
2πσ2

j

exp

{
−(yk − µj)2

2σ2
j

}

∝ (σ2
j )
−nj/2 exp

{
− 1

2σ2
j

[
(nj − 1)s2

j + nj(ȳj − µj)2
]}

,

where s2
j = 1

nj−1
Σk:Xk=j(yk − ȳj)

2. The full expression of the joint distribution is
given in Appendix A.2.
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The full conditional distribution of the jth state can thus be written as

P (µj, σ
2
j |X1:n,y1:n, . . .) ∝ σ−1

j (σ2
j )
−(υ0j/2+1) exp

{
− 1

2σ2
j

[
υ0jσ

2
0j + κ0j(µ0j − µj)2

]}
×

× (σ2
j )
−nj/2 exp

{
− 1

2σ2
j

[
(nj − 1)s2

j + nj(ȳj − µj)2
]}

∝ Scaled N-inv-χ2(µ̃j, σ̃
2
j/κ̃j; υ̃j, σ̃

2
j ) ,

(15)

where

µ̃j =
κ0j

κ0j + nj
µ0j +

nj
κ0j + nj

ȳj

κ̃j = κ0j + nj

υ̃j = υ0j + nj

υ̃jσ̃
2
j = υ0jσ

2
0j + (nj − 1)s2

j +
κ0jnj
κ0j + nj

(ȳj − µ0j)
2 .

The parameters of the full conditional distribution combine the prior information
and the information obtained from the data. A thorough explanation of the full
conditional distribution can be found in Section 3.3 in Gelman et al. (2014). Fur-
thermore, a proper derivation of the joint full conditional distribution is given in
Appendix A.3.

The full conditional density of µj given σ2
j ,y1:n, X1:n, and the other parameters is

proportional to the joint posterior density in (15), with σ2
j held constant, such that

µj|σ2
j ,X1:n,y1:n, . . . ∼ N

(
µ̃j,

σ2
j

κ̃j

)
. (16)

Moreover, the marginal full conditional distribution of σ2
j given y1:n, X1:n and the

other parameters is Scaled inverse-χ2:

σ2
j |X1:n,y1:n, . . . ∼ Scaled inv-χ2

(
υ̃j, σ̃

2
j

)
. (17)

One can sample from the full conditional distribution, P (µj, σ
2
j |X1:n,y1:n, . . .), by

following these two steps:

1. Draw σ2
j from the full conditional distribution in (17).

2. Draw µj from the full conditional distribution in (16), using the simulated
value of σ2

j from (17).

In our simulation, the vector of hyperparameters, κ0,υ0,σ0, are given the prior 1.
The vector of mean hyperparameters, µ0, are evenly spread across the range of data.
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4.4 Sampling the Hidden Markov Chain

The Gibbs sampler alternates between updating the parameters in the parameter
vector ϑ and the hidden Markov chain X1:n. The hidden Markov chain can be
updated using the following steps:

1. Compute the probability P (X1 = j|y1:n,ϑ) , for j ∈ {1, . . . ,m}.

2. Sample X1.

3. For k = 2, . . . , n,

(a) Compute the probability P (Xk = j|y1:n,X1:k−1,ϑ) , for j ∈ {1, . . . ,m}.
(b) Sample Xk.

Sampling the Initial State

The probability that X1 = j, for j ∈ {1, 2, . . . ,m}, given the parameters and the
data, is proportional to:

P (X1 = j|y1:n,ϑ) ∝ P (X1 = j)P (y1|µj, σ2
j ) p(y2:n|X1 = j)

= πjfj(y1)β1(j) .
(18)

Since the probabilities are only proportional in j, they need to be normalized in order
to obtain the correct probabilities. The derivation for computing the probabilities
is given in Appendix A.4.1.

Updating the States Conditional on the Previously Sampled States

The probability that Xk = j, conditional on the previously sampled values of the
chain, X1:k−1, and data, y1:n, is a non-homogeneous Markov chain with transition
probabilities

P (Xk = j|X1:k−1,y1:n,ϑ) ∝ P (Xk = j|Xk−1 = i)P (yk|Xk = j)P (yk+1:n|Xk = j)

= γijfj(yk)βk(j) .

(19)

Similar to the procedure of sampling the initial state, the probabilities have to be
normalized at each iteration, before the new state is sampled. Note that the densities
of the partial data correspond to the backward probabilities. Since the backward
probabilities have to be obtained, the method for simulating the latent Markov chain
conditional on data and the parameter vector is called backward recursion forward
sampling. A derivation of the process of computing the probabilities is given in
Appendix A.4.2.
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4.5 Simulation Method

The algorithm can be initialized by guessing the initial states of the hidden Markov
chain.

The following implementation of the Gibbs sampler is used:

1. First step

(a) Update σ2
j by drawing independently from (17), for j ∈ {1, . . . ,m}. Up-

date µj by drawing independently from (16), for j ∈ {1, . . . ,m}.
(b) Update π by drawing (π1, . . . , πm) from (13).

(c) Update Γ by drawing (γj1, . . . , γim) from (14), independently for j ∈
{1, 2, . . . ,m}.

2. Second step

(a) Update {Xk}nk=1 by drawing X1 from (18) and then Xk from (19), for
k ∈ {2, 3, . . . , n}.

One sequence of these steps (first and second step) is referred to as a sweep of the
Gibbs sampler.

4.6 Model Selection

Let us now briefly discuss likelihood-based methods that can be used to deal with
model uncertainty in HMMs. A thorough discussion on this topic can be found in
e.g. Sections 4.4.1-2 in Frühwirth-Schnatter (2006), or in Sections 2.1-2.2.1 in Celeux
et al. (2018).

We are interested in finding the true number of states, m, when choosing among
several models. Information criteria are based on penalizing the log-likelihood func-
tion, in this case, the log-likelihood of the HMM. A model with m states is defined
as Mm. The log-likelihood, `(ϑ;m), is defined as the natural logarithm of the
likelihood of a modelMm, where the likelihood of the HMM is defined in (6). The
penalty is proportional to the number of free parameters inMm, denoted υm. There
are several information criteria that can be used for selecting the proper model, and
perhaps the two most famous being the Akaike information criterion (AIC) (Akaike,
1974) and the Bayesian information criterion (BIC) (Schwarz, 1978).

The aim is to minimize AIC(m), which is defined as

AIC(m) = −2`(ϑ̂m;m) + 2υm ,

where ϑ̂ is the maximum likelihood estimator of the modelMm. Similarly, the aim
is to minimize BIC(m), which is defined as

BIC(m) = −2`(ϑ̂m;m) + υm ln(n) ,
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where n is the total number of observations. Since the Gibbs sampler is used in
our simulation, the maximum likelihood is approximated by taking the maximum
over the likelihoods that are simulated during the sweeps. Furthermore, the num-
ber of free parameters, υm, can be computed by noting that the parameter vector
consists of ϑ = (π,Γ,µ,σ2). The initial probabilities π contain m − 1 number of
free parameters, where m denotes the total number of states. Similarly, the transi-
tion probability matrix Γ contains m2 −m number of free parameters, and µ and
σ2 contain m number of free parameters, respectively. Thus, the number of free
parameters in the model are m2 + 2m− 1.

Moreover, let us briefly mention how to compute the log-likelihood by using the
backward probabilities. Recall that the backward probabilities, βk, for k ∈ {n, n−
1, . . . , 1} are normalized during the recursions. In order to obtain the log-likelihood,
the normalizing constant, Ck, is saved to a vector during the recursions, for k ∈
{n, n − 1, . . . , 1}. Furthermore, C0 is defined as πP (y1)β̃

′
1, where β̃1 is a vector

with normalized backward probabilities. The log-likelihood can be computed by
noting that

lnLn =
n∑
k=0

lnCk .

5 Results

The Gibbs sampler is used to sample from the full conditional distributions. The
two different types of data sets described in Sections 2.1.1 and 2.1.2 are used in the
simulations. The first application of the Gibbs sampler is to estimate ξ, the num-
ber of solder paste droplets that are jetted before reaching the system equilibrium.
The second application of the Gibbs sampler is to estimate the mean and standard
deviation of the different states of the system, assuming that the droplets are jetted
according to the system equilibrium.

Extensive work has been carried out by Raftery and Lewis (1992) on the number of
iterations that are required in the Gibbs sampler, in order to estimate a posterior
quantile within a margin of error with a certain probability. The results suggest
that reasonable accuracy can often be achieved with 5 000 iterations or less. The
number of iterations used in the Gibbs sampler in this paper is 11 000, where the
first 1 000 draws are discarded as burn-in values. Thus, the analysis is carried out
on 10 000 draws from the full conditional distributions.

5.1 Simulation of the Initiation Period

The data set with 99 360 observations described in Section 2.1.1 is used in this
simulation. Recall that the hidden states X1:n are sampled during each sweep of
the Gibbs sampler. We assume that there are two states that govern the distribution
of the volume. State 1 represents the initiation period and state 2 represents the
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system equilibrium. The aim is to estimate ξ, the number of droplets that are jetted
before reaching the system equilibrium. The Gibbs sampler not only produces a
point estimate of this quantity, but also allows for a measure of the uncertainty of
the estimate, in the form of a posterior distribution of the last time point that the
system is in the initiation period.

Figure 10a shows a plot of the volumes of the droplets in the data set, and Figure 10b
shows a plot of the sampled states during one of the sweeps in our simulation. The
number of droplets that are jetted before reaching the system equilibrium during
the sweep is approximately 60 000 droplets. The last time point that the system
is in the initiation period is recorded for each sweep in the Gibbs sampler, which
results in a posterior distribution of ξ.

(a) (b)

Figure 10: Illustration of the process of computing ξ, where (a) represents the
measurements on the volume of the droplets and (b) represents the sampled states
during one of the Gibbs sweeps.

The posterior distribution of ξ is shown in Figure 11. In general, the skewness can
be used as a measure of the distributional asymmetry. A skewness close to zero
indicates that the histogram is symmetric around its mean. Since the distribution
of ξ is skewed, with skewness of 1.758, the median will serve as our point estimate.
The median is 59 700 droplets, and the histogram shows that the majority of the
computed ξ’s in the MCMC simulation are concentrated around the time point 60
000.

One could also use the posterior draws to compute a credible interval for the last
time point that the system visits state 1. The mean based on the Gibbs sampling
output is 65 800 droplets. Furthermore, a 95% credible interval of ξ is given by 59
700 ≤ ξ ≤ 96 300. Hence, the probability that ξ lies between 59 700 and 96 300 is
0.95. The posterior quantiles can also be used to compute an upper bound for ξ. In
our simulation, the 0.95 quantile corresponds to 93 300 droplets.
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Figure 11: The histogram shows the distribution of ξ, i.e. the last time point that
the system is in the initiation period. The initial sample contained 11 000 draws,
and the first 1 000 draws were discarded as burn-in values.

5.2 Simulation of the Parameters During System Equilibrium

The data set with 49 000 observations described in Section 2.1.2 is used in this
simulation. The aim is to estimate the mean and the standard deviation of the
different states, together with a measure of the uncertainty of the estimates, in the
form of a 95% credible interval for the parameters. Furthermore, the estimation of
the transition probability matrix Γ is also considered.

In the previous simulation, we assumed that there were only two different states
present during the jetting. The system was either in state 1 or state 2, i.e. either in
the initiation period or in the system equilibrium. However, specifying the number
of hidden states that govern the distribution of the volume may not always be as
trivial. Analyzing Figure 7a visually, there seem to be several states present during
the jetting. A scatter plot of the same data set is presented in Figure 12, in order
to give a better overview of the data.

Figure 12: Plot of the volume of the droplets during system equilibrium. The
reference volume is 5.8 nl, and the data set is the same as in Section 2.1.2, with 49
000 observations.
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We assume that there are three different states present during the system equilibrium
in this data set, since there seem to be roughly three overlapping clusters of data.

Moreover, we are also interested in comparing the model with three states with other
models that may seem probable. Parameter estimation with two different states is
therefore also carried out using the same data set, followed by a model comparison
through AIC and BIC.

5.2.1 Simulation with Two Different States

Two states were specified in this simulation. Trace plots of the sampled parameters
in the MCMC simulation are shown in Figure 13a and Figure 13b. Furthermore, the
posterior estimates of the parameters in the two different states are given in Table 1
and Table 2.

(a) (b)

Figure 13: MCMC simulation using the Gibbs sampler. The initial simulation
contained 11 000 iterations and the first 1 000 observations were discarded as burn-
in values.

Table 1: Posterior estimates of the different means in the different states. The
mean represents the estimate of µj, for j ∈ {1, 2}.

µ Mean 0.025 Quantile 0.975 Quantile
State 1 5.977 5.972 5.982
State 2 5.402 5.384 5.419

Table 2: Posterior estimates of the different standard deviations in the different
states. The mean represents the estimate of σj, for j ∈ {1, 2}.

σ Mean 0.025 Quantile 0.975 Quantile
State 1 0.465 0.461 0.469
State 2 0.740 0.728 0.752
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The histograms presented in Figure 14a and Figure 14b give a picture of the esti-
mated posterior distributions of µj, for j ∈ {1, 2}.

(a) (b)

Figure 14: Histogram of the posterior distributions of the two different means. The
initial simulation contained 11 000 iterations, of which the first 1 000 draws were
discarded as burn-in values.

Similarly, the histograms presented in Figure 15a, and Figure 15b give a picture of
the estimated posterior distributions of σj, for j ∈ {1, 2}.

(a) (b)

Figure 15: Histogram of the posterior distributions of the two different standard
deviations. The initial simulation contained 11 000 iterations, of which the first 1
000 draws were discarded as burn-in values.

Moreover, the transition probability matrix Γ, which is estimated from 10 000 draws,
is given by:

Γ =

(
0.990 0.010
0.029 0.971

)
.

The estimate of the mean in state 1 is closer to the reference, compared to the
estimate of the mean in state 2. Furthermore, the estimated standard deviation
in state 1 is smaller than the estimated standard deviation in state 2. Given the
number of specified states in this simulation, an interpretation of the results is that
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the droplets that are generated by state 1 are concentrated around 6 nl, and jetted
with much smaller variance, compared to the droplets that are generated by state
2, which are jetted around 5.4 nl.

5.2.2 Simulation with Three Different States

Three states were specified during this simulation. Trace plots of the sampled pa-
rameters in the MCMC simulation are shown in Figure 16a and Figure 16b. Fur-
thermore, the posterior estimates of the parameters in the two different states are
given in Table 3 and Table 4.

(a) (b)

Figure 16: MCMC simulation using the Gibbs sampler. The initial simulation
contained 11 000 iterations and the first 1 000 observations were discarded as burn-
in values.

Table 3: Posterior estimates of the different means in the different states. The
mean represents the estimate of µj, for j ∈ {1, 2, 3}.

µ Mean 0.025 Quantile 0.975 Quantile
State 1 6.528 6.492 6.565
State 2 5.865 5.855 5.870
State 3 5.254 5.242 5.266

Table 4: Posterior estimates of the different standard deviations in the different
states. The mean represents the estimate of σj, for j ∈ {1, 2, 3}.

σ Mean 0.025 Quantile 0.975 Quantile
State 1 0.659 0.644 0.675
State 2 0.349 0.343 0.355
State 3 0.556 0.548 0.564

The histograms presented in Figure 17a, Figure 17b and Figure 17c give a picture
of the estimated posterior distributions of µj, for j ∈ {1, 2, 3}.
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(a) (b)

(c)

Figure 17: Histogram of the posterior distributions of the different means, where
10 000 posterior draws were sampled.

Similarly, the histograms presented in Figure 18a, Figure 18b and Figure 18c give a
picture of the estimated posterior distributions of σj, for j ∈ {1, 2, 3}.

Moreover, the transition probability matrix Γ, which is estimated from 10 000 draws,
is given by

Γ =

0.420 0.559 0.021
0.140 0.850 0.010
0.019 0.017 0.964

 .

Our parameter estimates show that the solder paste deposits are jetted according to
the reference when state 2 governs the distribution of the solder paste droplets. The
estimated mean in the second state is 5.86 nl, which coincides with the reference
volume, 5.85 nl. The estimated standard deviation in the second state is relatively
small, 0.349 nl, compared to the estimated standard deviations in the other two
states.

Given the number of specified states in this simulation, an interpretation of the
results is that the sudden regime changes at the top and the bottom parts of Fig-
ure 12 are caused by state 1 and state 3, respectively. Furthermore, droplets that
are generated by state 2 are jetted according to the reference, with a relatively small
standard deviation.
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(a) (b)

(c)

Figure 18: Histogram of the posterior distributions of the different standard devi-
ations, where 10 000 posterior draws were sampled.

5.2.3 Comparison of the Models

Let us now perform a model comparison of several models. M2 andM3 represent
the models with two and three states, respectively. Furthermore, the HMMs are
also compared to the univariate model, i.e. a simple model with one state, denoted
byM1. Table 5 summarizes the AIC and BIC results for the different models.

Table 5: Model comparison between the different models, where AIC and BIC are
used.

Model AIC BIC
M1 89 477.06 89 516.26
M2 79 213.13 79 275.16
M3 72 808.12 72 931.31

The results from the information criteria imply that the third modelM3, with three
different states is favorable when comparing it to the univariate modelM1, and the
HMM with two states,M2.
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6 Discussion

6.1 Periodicity During System Equilibrium

One assumption that is made about the data is that the underlying process that
governs the distribution of the droplets is a homogeneous Markov chain. However,
there appears to be a pattern where the volume temporarily increases with a certain
regularity in Figure 12. The spikes in data seem to appear in an interval of 2 000
droplets, and the reason for this periodicity during the jetting in unknown.

If this periodic behavior appears in two data sets, where the aim is to compare the
parameters within the different states, a strategy to solve this problem could be to
treat the periodic data points as missing values in the Gibbs sampler.

6.2 Assumption of Conditional Independence

Another assumption that has been made about the data is that the volumes of
the droplets, {Yk}, are conditionally independent given the states, {Xk}. However,
the periodicity due to the deviation of the first droplet in a new strip violates this
assumption. Similar to the periodicity described in the previous subsection, one
could address this problem by including the first droplets in a new strip as missing
values in the Gibbs sampler.

6.3 Skewed Posterior Distribution

The estimate of ξ, i.e. the number of droplets that are jetted before reaching the
reference volume, is presented in Section 5.1. The posterior distribution of ξ is
skewed. This is because the statesX1:n are sampled during each sweep of the Gibbs
sampler. There will always be a small probability of sampling a state that does not
govern the distribution of the volume.

One could address this problem by imposing a condition when computing ξ during
each sweep. For instance, in order to include a time point k as the computed
value of ξ during one sweep, one must also observe the initiation period during the
previous q consecutive time points, where q is an arbitrary number chosen by the
experimenter. As an example, assume that k is the last time point that the system
is in the initiation period, which is governed by the state Xk. k is included as the
computed value of ξ during the sweep if the states Xk−1, . . . Xk−q also belong to the
initiation period, for k > q.

In summary, it seems that it is possible to use the Gibbs sampler to estimate ξ when
analyzing the volume of the solder paste droplets in jet printing. Estimating ξ every
time an ejector is replaced can thus lead to an estimate of the number of droplets
on average that one should jet before reaching the system equilibrium.
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6.4 Parameter Estimation During System Equilibrium

Something that is noteworthy is that the variation between the MCMC draws is very
small in the Gibbs sampler. Furthermore, none of the trace plots seem to drift in
either direction, which implies that the burn-in period does not need to be extended.

6.5 Continuous State Space

Throughout this paper, we have assumed that the states {Xk} take values in some
finite set, S, called the state space. This assumption seems reasonable when ana-
lyzing the volume of the droplets during the system equilibrium, due to the sudden
regime changes in data. The data presented in Section 2.1.1 seems different how-
ever. There is a continued increase in the upper edge of the curve during the first
half of the plot in Figure 6. One could argue that the state space, in this case,
is continuous and instead use state space models. Even if the state space may be
continuous, the advantage of using HMMs, in this case, is that we can approximate
the initiation period as a discrete state. This allows for an estimate of ξ, i.e. the
number of droplets that are jetted before reaching the system equilibrium.

6.6 Model Comparison

Although the model with three different states is favorable when using AIC and
BIC, no measure of the model uncertainty is given using the information criteria.

Moreover, the periodic data during the system equilibrium has to be dealt with
before we can make any final conclusions about the models. AIC and BIC may have
to be computed based on the new data set, if the periodic data points are treated
as missing values in the Gibbs sampler.

6.7 Normality of the Data Within the Different States

Throughout this paper, the distribution of the volume of the solder paste deposit,
Yk, conditional on the current state of the system, Xk, is assumed to be Normal
with a certain mean and a certain variance. However, no attempt to verify this
assumption has been made.

One approach that can be used to verify the normality of the data within the different
states is to rely on the central limit theorem (CLT). Informally, one could argue that
the difference between the draws in the MCMC simulation is relatively small in our
case. Thus, the normality can be evaluated by using one of the Gibbs sweeps. If
the observations within the different states indeed follow a Normal distribution, one
could standardize the observations by using the sampled means and the sampled
variances of the different states during the sweep. Hence, the distribution of the
standardized data should approximately follow a standard Normal distribution ∼
N(0, 1) if the observations are normally distributed within the different states.
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7 Conclusions

In this paper, we have presented a Bayesian HMM that has been used to analyze
two data sets that contain measurements of the volume of individual solder paste
droplets. The last time point that the system is in the initiation period, ξ, has
been estimated. Furthermore, the parameters within the different states during the
system equilibrium has been estimated, followed by a model comparison of three
different models.

The estimate of ξ seems reasonable when comparing the results to the plot of the
volume in Figure 6. Furthermore, a condition when computing ξ during the Gibbs
sweeps has been introduced in order to reduce the risk of overestimating ξ during
the sweeps.

Moreover, the parameter estimates together with the posterior distribution of the
different parameters during the system equilibrium can be used to analyze the quality
of the solder paste droplets in product development. The model with three different
states is favorable compared to the univariate model and the model with two different
states when analyzing AIC and BIC from the simulations. However, another model
comparison may have to be carried out if the data points that appear to be periodic
during the system equilibrium are treated as missing values in the Gibbs sampler.

Looking back at the purpose of this work, a recurring theme throughout this paper
has been to use HMMs for product development purposes. The method can be used
as a powerful tool to gain more information about systems with regime changing
properties. Some areas where HMMs can be used in product development have been
touched upon in the paper. However, one should evaluate whether all assumptions
about the data are met. We have briefly touched upon the cases where the vari-
ous assumptions may not have been fulfilled. A suggestion for further research is
therefore to try to handle the periodic data that arises during the jetting process.
Another potential area for further research is to evaluate the normality of the data
within the different states. Furthermore, one could also analyze if there are other
distributions that better describe the distribution of the volume of the deposited
fluids within the different states.
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A Mathematical Derivations

A.1 The Normal-Inverse-Gamma Distribution

The probability density function of the Normal-inverse-gamma distribution with
parameters (ξ, λ, α, β) is given by

P (µ, σ2|ξ, λ, α, β) =

√
λ

σ
√

2π

βα

Γ(α)

(
1

σ2

)α+1

exp

{
−2β + λ(µ− ξ)2

2σ2

}
.

A.2 Derivation of the Joint Probability

Recall that we have a sample y1:n = (y1, . . . , yn), and nj = #{1 ≤ k ≤ n : Xk = j}
is the number of visits to state j in the latent state sequence. The joint probability
of the random variables in state j, for j ∈ {1, . . . ,m}, can be written as

∏
k:Xk=j

P (yk|µj, σ2
j ) =

∏
k:Xk=j

1√
2πσ2

j

exp

{
−(yk − µj)2

2σ2
j

}

∝ (σ2
j )
−nj/2 exp

{
− 1

2σ2
j

∑
k:Xk=j

(yk − µj)2

}

= (σ2
j )
−nj/2 exp

{
− 1

2σ2
j

[
Σk:Xk=j(yk − ȳj)2 + nj(ȳj − µj)2

]}
= (σ2

j )
−nj/2 exp

{
− 1

2σ2
j

[
(nj − 1)s2

j + nj(ȳj − µj)2
]}

,

where s2
j = 1

nj−1
Σk:Xk=j(yk − ȳj)2, and ȳj = Σk:Xk=jyk/nj.

A.3 Derivation of Joint Conditional Distribution

The joint conditional distribution can be written as

P (µj, σ
2
j |y1:n,X1:n, . . .) ∝ σ−1

j (σ2
j )
−(υ0j/2+1) exp

{
− 1

2σ2
j

[
υ0jσ

2
0j + κ0j(µ0j − µj)2

]}
×

× (σ2
j )
−nj/2 exp

{
− 1

2σ2
j

[
(nj − 1)s2

j + nj(ȳj − µj)2
]}

∝ σ−1
j (σ2

j )
−((υ0j+nj)/2+1) exp

{
−
υ0jσ

2
0j + (nj − 1)s2

j

2σ2
j

}
×

× exp

{
−κ0j(µ0j − µj)2 + nj(ȳj − µj)2

2σ2
j

}
.

Let us now expand the last term in the expression, which can be written as
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exp

{
−(κ0j + nj)

[
µ2
j − 2µj

κ0jµ0j + nj ȳj
κ0j + nj

+
κ0jµ

2
0j + nj ȳ

2
j

κ0j + nj

]}
.

Making the variable substitution

B =

[
κ0jµ0j + nj ȳj
κ0j + nj

]
,

the expression can be written as

exp

{
−(κ0j + nj)

[
µ2
j − 2µjB +B2 −B2 +

κ0jµ
2
0j + nj ȳ

2
j

κ0j + nj

]}
= exp

{
−(κ0j + nj)

[
(µj −B)2 −B2 +

κ0jµ
2
0j + nj ȳ

2
j

κ0j + nj

]}
.

Returning from the variable substitution, the expression can be written as

exp

{
−(κ0j + nj)

[(
µj −

κ0jµ0j + nj ȳj
κ0j + nj

)2

+
κ0jµ

2
0j + nj ȳ

2
j

κ0j + nj
−
(
κ0jµ0j + nj ȳj
κ0j + nj

)2
]}

= exp

{
−(κ0j + nj)

[(
µj −

κ0jµ0j + nj ȳj
κ0j + nj

)2

+

(
njκ0j(ȳj − µ0j)

2

(nj + κ0j)2

)]}
.

Hence, the posterior distribution is proportional to

P (µj, σ
2
j |y1:n,X1:n, . . .) ∝ σ−1

j (σ2
j )
−((υ0j+nj)/2+1) exp

{
−
υ0jσ

2
0j + (nj − 1)s2

j

2σ2
j

}
×

× exp

−
njκ0j(ȳj−µ0j)2

nj+κ0j
+ (κ0j + nj)

(
µj − κ0jµ0j+nj ȳj

κ0j+nj

)2

2σ2
j


∝ Scaled N-inv-χ2(µ̃j, σ̃

2
j/κ̃j; υ̃j, σ̃

2
j ) ,

where

µ̃j =
κ0j

κ0j + nj
µ0j +

nj
κ0j + nj

ȳj

κ̃j = κ0j + nj

υ̃j = υ0j + nj

υ̃jσ̃
2
j = υ0jσ

2
0j + (nj − 1)s2

j +
κ0jnj
κ0j + nj

(ȳj − µ0j)
2 .
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A.4 Backward Recursion Forward Simulation

The backward recursion forward simulation is a method that can be used to sample
the latent state sequence, X1:n, during the Gibbs sweeps. The probability of sam-
pling a state, P (Xk = j), has to be computed for every j ∈ {1, . . . ,m}, where m is
the total number of states. After the probabilities have been computed, the state
Xk is sampled in the Gibbs sweep.

Moreover, we allow this process to be a non-homogeneous Markov chain since we
allow for different transition probabilities between different time periods.

A.4.1 Derivation of the Probability of Sampling the Initial State

Throughout our derivations, we implicitly condition on the parameter vector, ϑ.
The probability of sampling X1 = j can be written as

P (X1 = j|y1:n) ∝ P (X1 = j,y1:n) .

Rewriting the expression in terms of conditional probabilities gives

P (X1 = j,y1:n) = P (y2:n|X1 = j, y1)P (X1 = j, y1) .

The probability of observing y2:n given X1 and y1 only depends on X1, in accordance
with the structure of HMMs. Thus the expression can be written as

P (X1 = j,y1:n) = P (y2:n|X1 = j)P (X1 = j, y1) .

Finally, using conditional probabilities, the expression can be written as

P (X1 = j,y1:n) = P (y2:n|X1 = j)P (y1|X1 = j)P (X1 = j)

= β1(j)fj(y1)πj .

Since the probabilities are only up to proportional in j, they need to be normalized
in order to obtain the correct probabilities.

A.4.2 Derivation of the Probability of Sampling a State Conditional on
the Previously Sampled States

Similar to the previous derivation, we implicitly condition on the parameter vector,
ϑ. The probability of sampling Xk = j conditional on the history of the chain,
X1:k−1, and the data, y1:n, can be written as

P (Xk = j|X1:k−1,y1:n) ∝ P (Xk = j,X1:k−1,y1:n) .

Furthermore, the expression can be factored as

P (Xk = j,X1:k−1,y1:n) = P (yk+1:n|Xk = j,X1:k−1,y1:k)P (Xk = j,X1:k−1,y1:k)

= P (yk+1:n|Xk = j)P (Xk = j,X1:k−1,y1:k) ,
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where the last relation holds due to the property of HMMs. Writing the expression
as a product of conditional probabilities gives

P (Xk = j,X1:k−1,y1:n) = P (yk+1:n|Xj = j)P (yk|Xk = j,X1:k−1,y1:k−1)×
× P (Xk = j,X1:k−1,y1:k−1)

= P (yk+1:n|Xj = j)P (yk|Xk = j)P (Xk = j,X1:k−1,y1:k−1) ,

where the property holds because yk only depends on Xk. Using the Markov prop-
erty, the expression can be written as

P (Xk = j,X1:k−1,y1:n) = P (yk+1:n|Xj = j)P (yk|Xk = j)P (Xk = j|X1:k−1,y1:k−1)×
× P (X1:k−1,y1:k−1)

= P (yk+1:n|Xj = j)P (yk|Xk = j)P (Xk = j|Xk−1 = i)×
× P (X1:k−1,y1:k−1)

∝ P (yk+1:n|Xj = j)P (yk|Xk = j)P (Xk = j|Xk−1 = i)

= βk(j)fj(yk)γij ,

Similar to the previous derivation, given that the relations are only up to propor-
tional in j, they need to be normalized in order to obtain the correct probabilities.

B Computational Details

The Gibbs sampler is implemented in Julia, a high-performance computing language;
https://julialang.org/.

JuliaPro-Juno 1.1.0.1. was used as a project interpreter during the implementa-
tion of the code. The implemented code can be found on https://github.com/
mirzaipatrik/Bayesian_HMM.
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