Kursplan

för forskarkurs

Elektronkristallografi	7.5 hp
Electron Crystallography	7.5 ECTS

Kurskod:KZ41010Gäller från:VT2022

Institutionen för material- och miljökemi

Förkunskapskrav och andra villkor för tillträde till programmet

Admitted to the graduate program.

Antagen till forskarutbildningen.

Lärandemål

Institution

After completing the course, the student is expected to be able to:

From the theory (3.5 hp)

- understand the fundamentals of electron crystallography.
- understand the relationship between crystal structure, structure factors and symmetry.
- explain the relationship between diffraction data and space group and unit cell.
- understand how 3D electron diffraction (3D ED) can be used for structure solution and refinement.
- comprehend the use of high-resolution (scanning) transmission electron microscopy ((S)TEM) for structure determination.

From the lab practices and project (4 hp)

- get hands-on experience on how to perform acquisition of 3D electron diffraction data
- use electron diffraction data for determination of unit cell and symmetry.
- use 3D electron diffraction data for structure solution and refinement of a crystal structure.
- get practical experience to interpret and process high resolution (S)TEM images for the purpose of extracting crystallographic information, so called crystallographic image processing.
- plan and perform the structure determination of an unknown crystalline specimen.

Innehåll

The course gives an overview of how to use different methods in the transmission electron microscopy in order to obtain crystallographic knowledge about a specimen. The course will cover the theoretical background in crystallography necessary to be able to analyse electron diffraction and (S)TEM images from a crystalline specimen. The course will introduce the concepts of how to obtain and use 3D electron diffraction data in order perform structure solution and refinement of a crystal structure. The course will also cover how to retrieve crystallographic information from high-resolution (S)TEM images.

The course includes two parts: 1) Theory, 3.5 hp 2) Practical sessions and Project, 4 hp

Obligatoriska moment

The course includes two compulsory individual assignments:1) home-assignment covering the theory part,2) project report; written and oral presentation

Participation in practical sessions and project work are compulsory.

Examinationsformer

Part 1 (3.5 hp): Written exam Part 2 (4 hp): Participation in the practical sessions, oral project presentation and written project report

Arbetsform

The course contains two parts:

- (1) Theory: lectures covering the theoretical content of the course.
- (2) Practical sessions and Project:
 - (i) Practical sessions including exercises, data collection and hands-on computer labs for data treatment and structural analysis.
 - (ii) Project work includes sample preparation, literature search, data collection, data processing and structural analysis on both 3D ED and images, oral presentations and preparation of written report.