Compact Riemann Surfaces

Intreduction

Everything in these notes is contained in R.C. Gunnﬂé's Lectures on

Riemann Surfaces (Princeton Mathematical Notes 1966). My aim has only been
to illuminate a part of the material from this book and the reader is
therefore urged to study Gunn{%'s book for more detdils, and of course we have

not touched the whole material. Roughly speaking we cover page 1 - 110

and Abel's Theorem , as stated on page 162 as Corollary 3. In particular

we have not entered the discussion of the topology of the Picard variety

of a compact Riemann surface.

In any case these notes may give some uséful’. comments to Gunning's book

and in any case our subsequent presentation at least gives some nice

glimpses of the classical theory of Riemann Surfaces.

Perhaps the results are not as important as the methods. We are going

to use sheaves and their cohomology groups and therefore we have included
a preliminary chapéer which contains what we need about sheaves.

Otherwise the material in Chapter 2 is rather self-contained. The
complex analysds we are using is always standard, using such facts as the

residue theorem or the Frechet topology on @(U) = the holomorphic functions
on an open set U in the complex plane 01 '

The differential geometry we use is also standard and since we work

in two real dimensions only, the versions of Stoke's Theorem are easy and

can be understood inthitively.
Let us remark that a compact Riemann Surface X is a connected and
orientable compact 2-dimensional manifold. The topological structure of X

is therefore wellknown, X is a sphere with a finite number of handles



CHAPTER 1 . 1
Sheaves and their Cech Cohomologx

Let X be a topological space. A sheaf (of abelian groups) over X

is a topologlcal space 15) together with a mapping n:cf—avx ,such that
1) n is a local homeomorphism
2) For each point x ¢ X, the set 5, = n-1(x) has the structure of an

abelian group

3) The group operations are continuous in the topology 0!;9

Remark Hence the sheaf \5}consists of the sets { s, }xs x @&nd the
abelian groups Sx are called the stalks of the sheaf (57' Let ug illuminate
condition B)Vabove. First, let ¢ and B be two elements in a stalk Sx ; Since
Sxis an abelian group we qan.oonsider the sum a« + §, or the difference a - B

in the abelian group Sx o At the same time 1) shows that a has a neighborhood
v in«fr and B has a neighborhood W' such that n: W —U and =t W' — 0!

are 1-1-maps into open sets U and U' in X, Here both U and U' are neighbor-

hoods of the point x = n(a) = n(B) and without loss of generslity we can

éssume that U = Ut ,

If y ¢ U we get a unique point a(y) € n'1(y)(\w and similarly we get

e unique point B(y) e u-1(y)[1W' .
Here both a(y) and B(y) belong to the abelian group Sy . So we can
consider a(y) - B(y) = o(y) say. Then 3) shold mean that

lin o(y) = a(x) - 8(x) = a - B . More precisely, if 1) is applied %o
y—->x

the element @ - B in S_ ,we get another neighborhood W" of « = B such that

ns W' —» U" where U" is another open néighborhood of x and to each point

y € U' we get a unique point ¢(y) e n"1(y)r\W“ and 3) means that

?(y) = a(y) - 8(y) if y € UNU" and both U and U" are sufficiente

~lu small open neighborhoods of x.



The local homeomorphism mf—-;)x is called the projection .

1. Sections with values in a sheaf

Let ‘.(y'be a sheaf or; i:he fopolog-ical space X, If U is an open set in X
we consider the family of continuous maps f:U—?y satisfying 2 o f(x) = x
for all x ¢ U. This means that £(x) 8, for all x e U,

This i‘a.mi:'.!.y of mappings is denoted by F(U,J’) and the elements

in ﬂ(U,g) are called sections over U with values in the sheaf ,57,

. Let us observe ‘the following
Lemma 1.2. Let f and g ¢ f’(U,.f') and suppose that £{x} = g{x) for
some point x € U, Then f m-g in a neighborhodd of X
Proof 1) implies that the point a = f(i) = g(x) has a neighborhéod W
such that ns W —>U'is a 1-1 map , where U' is an open neiéhborhood of .
We 'ce;,n assume the.a.t-U' c U (shrir;king W if necessary). Since both f and g
are continuous maps from U inte f s it follows that there exigts a
neighborhood U" (with U" cU') such that £(U") and g(U") both are contained

in the neighborhood W of a.' -

By agssumption n o £ and n 0 g glve the idéntity maps. It follows that

if y € U" then f(y) = g(y) = the unique point in Tt_1(y) nw.

Summingrup, Lemma 1.2, gives a local uniqueness principle for sections,
i.,e. two sections which are equal at a given point x are egqual :i..n some
neighborhood of this point. |

Condition %) implies that f'(U,S') are abelian groups. In fact, let
£ and g £ /(U,§"). To each point x € U we get the two elements f(x) and
g(.x) in the abelian group S_ . Hence the sum £(x) + g(x) and the difference
f(x) - g(x) is defined in S, + Now 3) means that the map |

x —» £(x) - g(x)} is a continuos mapping from U into f‘and this
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defines the section f - g in F(U, Sr) sand so on,

Let ns also obseme that the =talkse in the sheaf Jv are recaptured from
locally defined sections. |

Lemma 1.%. Let a ¢ S, be given, where x is some point in X. Then x

has some neighborhood U and there exists some f ¢ f(U,f) such that
£f(x) = a

Proof 1) _méans that @ has a neighborhood W such that n: W-—>U is a
1-%1- and bicontinuous map from W onto an open sét U in X,
If y € U is given we let f(y) be the unique point in wnn"‘(y) and

then f: U— S gives a continuous map, iee. f af'(U,S') and we see that

£(x) = o

Summing up, each point s E,JV is contalned in the image of some

section, and the images of all such sections form a basis for the open
neighborhoods of s in the topological spaoe"y .

1s4e¢ The zero section In each a,belian group Sx we h_a,ve the- unique

zero element denoted by Ox . It is easily seen that 1) - 3} imply that
the map which sedns x € X into Ox is a globally defined section and

this is called the zero-section of the sheaf f.

145, Sheaf homomorphisms Conslder two sheaves 45’ and (R, over X.
A sheaf hqmomorphism ‘P:.S""’(R is a continuous map from 15 into (R,
satisfying: ¢ commutes with the projection =, i.e. ‘B(Sx)é Fx for all x
and finally, the redtriction of 9 to a single sta.}.k'szsc gives a group
homomorphism from Sx into the abelian group Fx .

Let ‘P:,f’—’iﬁ be a sheaf homomorphism and consider a section

f s/ﬂ(U,,S’ ) where U is some open set in X. Then the composition

? o £ is a continuous map from U into # and since both £ and ¢

commute with n, it follows that ¢ o f commutes with =. Hence
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90f eﬂ(U,ﬂ )¢ Finally, since ¢ restricts to a group homomorphism
from the stalks of.J7 into the stalks of f,it follows that the

resultni_né; map 9%:/(U,S5) — /_’(U,ﬁ ) is a group homomorphism,

¢* is called the induced homomorphism of the groups of sections

with values in J’ and ﬁ respectively.

1.6+ Subsheaves and factor sheaves

Let ‘sz'-?ﬁf be a sheaf homomorphism. The zero section in ﬂ is an open

subset of  and hence the inverse image 91 (Oég) = {ace S 9(a) = On(a) }

is an open subset of i.)ﬂo
If we restrict the attention to a stalk then
-1
97 (0p )8, = {ac 5. ¢ 9la) = 0 } = the kernel of the group
homomorphism which ¢ determines from S, into F_ .
So if 2’-—. Pl (0Op }, then the sets J -_-yn 1:"1(::) are subgroups of
R/ x

fx for all x € X, In addition jis an open subset of«)ﬂ and 1) = 3)

. are conditions which give similar con;i‘itions‘on ; « We conclude that
f is a new sheaf on X which is ocalled the kernel of 9 and denoted by
ker(?). |

In the same way we cap prove that the image of ¢ is a sheaf., In fact,
verify first that Im(9) is an open subset of ﬁz,énd 80 Ol

Finally we can construct factor shaves, such as JY/Ker(‘P). Here is

the procedure for this construction:
In general, let Jy be a sheaf and let Jbe a subsheaf of Jr, which

meang that y ig an open subset of fa.nd that the stalks Jx are subgroups

of 54 for all points x ¢ X,

The faetor sheaf (or the guoijent sheaf ) Jf/}’ is constructed

as follows: To each point x € X we gef the abelian group Rx = Sx/JJ'[
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*

and it remaing to define a topology on the disjoint union v Rx =%
. _ : xeX

Of course, the canoniod_l- map ‘i’:f—-)ﬂ which to each « ¢ S}c associates
its coset in Rx = Sx/‘Tx commutes with the projection 'n: from Af’
respectivley from ﬂ .

On ﬂ we introduce the quo'ﬁl:ent :top'ology, i,e. a set W! inf is open

if and only if ‘P"1'(W') is open in f/, Then it is easily seen that K s
a sheaf and that @:J’aﬂ iz & sheaf homomorphism.
Returning to the sheaf homomorphism fP:,f——?ﬁ we see
that Im(9) is isomorphie to the factor sheaf ‘)/Y/Kelr(?). 0f course,
by an isomorphism of two sheaves we mean the following:

Two sheaves ._fa.nd f‘ are isomorphic if there exists a bicontinuous

map ‘P:f-—)f' which is a group isomorphism between the stalks Sx and S"x

for a1l x & X.

1e7e Exact sequences of sheaves The diagram

y --?L-%f ._f.{.mf . will be called an exact seguence of sheaves

if the image of ¢ is precisely the kernel of o.

Similariy, a longer string of sheaves will be called an exact sequence
if for any two consecutive homomobphisms, the image of the first is
precisely the kernel of the second.

In particular, if O denotes the trivial sheaf whose stalk at every
point in X is the zero group, then a seguence
.9 g ‘ : .

07 —> S>>0 is exact, if and only if ¢ is injective and

¢ is surjective and Ker(c) = Im(%).

An example If y is a subsheaf of Jd, the inclusion mapping i:y—atf”

is injJective and the map from ,f' into J’/;’ is surjective and

0> —=5~> '57/0'7 —> 0 is an exact sequence of sheaves,



2. Cohomology of sheaves

Consider an open covering L¢= { U& }.of the space X, That is, each Ua

is an open subset of X and their union U'Ua = X+ No further aésumptions
: t : :
are made, in particular some Ua 8 can overlap, and so on,

To each finite set of indices, say %y eee Gy We can consider the

(possibly empty) intersection Ua fl ...()Ua » When this set is non-empty

o P
it is denoted by Ua o and following the terminology used in
| ° "y
algebraic topology, the seta v, « 18 called <he support of a
o*** : .

prsimplex determined by the open covering U?.

Let us now consider a sheaf &jv on X, A p~cochain of U7 with values in

&57 is a funotion f which assoclates to every p-simplex { Ua ,...Ua }
o P

a section f e /(v y S
O asell [+ S e 4
0 Y o D

The set of all such p-cochains is denoted by CY({7,5 ).
Observe that Cp(b7,j7) is an abelian group. In fact, by definition

o®(U7,5) is the direct sum of the abelain groups {/T(Ua . ,31) .
o'"*p

2¢1+ The coboundax& operator &

To each p ) O we can define a mapping &: CP(LV,;Y ) — Cp+1(&7,51)

which is called the coboundary operator. Namely, let f E'CP(Z7}57) be

given and consider a (p+1)-simplex { U, o }. Then we can define
O * o0 .

p+1

a section (of) € /7(U S ) as follows:
aooc aooooa

'ap+1 p+1
imp
i .
(1) = I (=) (£ : .
%ot %p41 1m0 HCRRARE TR LA P RRR s

where (£f) denotes the restriction of the section

GpreoBy q9@; qeeel ajf7(Ua oot e ) to the smeller

~17%341
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open set U, _ . = ghe intersection_éf U aﬁd U,
o ap+1 @y Xioely 490 , qeed

P+
for each 0 £ i £ p+1.

The chéice of thée signs (-1)T imply easily that §2 = 0,

2.2 Cocycles and coboundaries
To each p > O we have the coboundary operator & CP(ZGZ§1)’*CP+1(57,J?)
and its definition shows that & is a group homdmorphism. Let

2227, 5. ve the kernel-of § and Bp+1(07,5’) = 8(cP(U,5)) the

image of 4.

The groups ZP(J?,J’ ) are called p-cocycles and the groups

32( W, .57) are cailed'pfcoboundgries.
Since §° = 0 .wé get fhe inclusions BY(/,5) < Zp(éf,g?’).for
all p > O. The quoiﬁ%nt groups
zP(LV;g?f/BP(LVﬂjf) are denoted ﬁy g?()7,5) eand they are

called the cohomology groups of Zz7with coefficients in the shesf &57.

| We begin to study these cohomology groups HP( &7,57). In.
particular we study their behavious as we pass from ﬁne open covering &f
to another open covéring L/Lon the space X. We begin with
Lemma 2.3, E(U,5 ) ’é’f'(x,-f;)
Proof By definition HO(ZS) = Zo(lyﬂjr) beauce we have no coboundarie;

~g in 00(67,57). A zero-cohain f is a function which to each open set U

associates a section f s/ﬂtUa,‘f3 and the condition that 6f = O means
thqt‘fa = fB when U'a{]UB is nonwempty. It foliowé tﬂat these locaglly

F
defined sections { fa } build up a globally defined sectioéﬁgver X

where the restriction of F to each open set Ua is fa .



This defines the map from £ = { £ } ¢ 2°(/,J) into /'(x,87).
The map is obviously injective, because F = O in /'(X,ﬁy) means that

‘each f = 0 in /"(Ua,ﬁ"). Finally, if we start from F ¢ [(X,S) we conaider

the restrictions £ = F'Ua and then £ = { f_ } e ZO(M,E). Hende

we have proved Lemms 2,3,

In order to have a cohomology theory associated intrinfically to the space

Xy, it is necessary to consider various possible coverings of X. Let us

begin with

Definition 2.4. An open covering V= { Va } is called a _refinement
of the covering W= { UB }, if there exists a mapping G:V.——)W which
to each o gives some o(a) such that the open set v, < Uc(a)' The index

mapping ¢ is called the refining mapping.
of course,l/" can be a refinement of w by various different refining
mappings and this will be studied in Lemma 2.5. below.
Notice first that if G:V:—"Mis a refining mepping, then ¢ induces
a mapping from CF( 07,5’) into ¢P(V*, S ) for all p > 0 as follows:
If £ e cP( W,f) is given and if we consider some ;)pen set

then we get a section (of) 5/7(\1’ ) as follows:
A aeoll 2 esaslX A seall
o p o Y v D

To each 0 L i K p we get V_ CUc(a ) and in the p-cochain f
i i '

we have the _s_ection fo,(ao).‘.o,(ap) E:/-/(UU(QO)QQQ_G(GP) ’J)’). Now

vaoo._.ap < Ud(ao)...o(ap) and hence we can restrict this section to

v . :
oco...ap y 1eee put (Gf)ao..-ap = fﬁ(“o)"'g(ap) restricted to Vao”'ap N

The resulting map )Cfom c‘P(I//,J’) into CP(V, 15,) is obviously a group
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homomoxrphism which commutes with the coboundaryﬁ.opera’cors & on
(U, S) ama XU, 5 ).

In particular o z¥( W,,S’)) < zP( V',.(S,) and similarly for the

coboundaries, We conoludé that there éxist homomorphisms

ot HP(W,f_) — w2/, .5 ) for a11 p > 0.

Sunming ﬁp, a refinixig map O3 //‘ 2l induces group homomorphi sms from
g2 (U7, 5) into B2(/,.5) for all P ) 0.

Now we can prove that ‘Ithese induqed maps onl the cohomology groups
are independent of the particular refining map.

Lemma 2.5. ‘Let ¢ and n be itwo refining maps from % into j& Then

their induced maps from Hp( W,f) —r gP( V,j’) are equal for all p > 0,

Proof If p = 0, then Lemma 2.3, shows that the induced maps'both

correspond to the identity maps on /’(X,‘)d).

It remeins to study the case £ > 0. In this case we can construct a
map © : CP(U,5) — Cp"1(V,JY)_as follows:

Let £ ¢ ¢(/7,57) ve given and consider some open set Y, ...
o

p~1
J=p=1

and define (Gf)a = 1 ("1)j' (ff)c(ao),.o'(aj),n(ﬁj)--oﬂ(apﬂ)

e ol

0 p-1 o 3=0

That is, to each 0 £ j £ p-1 we can consider the support of the
p=simplex (Uo(ao) -o«U(Oﬂj)p'ﬂ(“j) .”n(ap_1) } eand restrict seections on

thls support to the subset V v | of U_, .
- Gpose G,S‘xo)°°°“(“j)n(“j)"“("'pmq)

The point is simply that Va now is a subset of the intersection
J

Ué(aj) N Uﬁ(aj) for all O § J<£ p-1,

Y

Using the coboundary operators we see that

g o 9 is a map from C¥( U?,,S’) into CP(V,,Y ) and similarly
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@08 maps cP(U,5) into CP(I/',SI).

We leave out the straightforward comutation which shows

Sublemme Wa havest 609 =16 -0-006 forall p 3y 1.

. In particular, let f ¢ Z,P( W,f) go that 8f = 0, It follows
+,
that n(£) = o(f) + &( (£)) in c®(}5,.5).
* *
Here 6( o(g)) e BP(UN,)}) and we conclude that n(f) and o(f) have

the same images in HY(J7,)/).
Summing up, Lemme 2,5. shows that if %( w s then there exilsts o

unique homomorphism from HY( W,i) into HP(VL,J’) for each p ) 0, which

can be defined by some refining map o: V—"? W .

The set of all coverings of X is partially ordered by the relation <

and we can introducé the dirgct limit groups

HP(X,,Y)V - di:c.limw w2 (U, 5) for each p 3 O,

Definition 2.6. HP(X,S’) is an abelian group which is called the
g-th'cohomolo& g Toup o_f the space X with values in the sheaf Afa

3+ Fine sheaves

In Section 2 we have defined the cohomology groups HY(X,S ) of a sheaf
qu Here we try to compute these groups in anotlf_ler waye

From now on we make a restrictive assumption on the topologloal space
Ko Nammly, we assume that X is paracompact and Hausdorff. This means that

every open covering of X has a refinement which is a locally finite

covering and it is sufficient to consider locally finite coverings when

we pass to the direct limit which defines HP(X ,‘57)



Let us first observe that if n:,f"'?ﬁ. ig a sheaf homBmorphism

then n determines maps from CP(U/,§) ='o /‘I(Ucﬂ u“a' . 5
0 b
into ‘Cp( W, fg ),‘for‘ every open -covering wof Xe It is obvious 7
thg.t 'this- homor_norphiém commutres with the c-cabounde.ry operator and we
conclude that n-indtlmes s homomorphism n> : HP( W,,Sj ) into P ( M7, K )

for all p » O, Passing to the direct images we get the induced mappings

n* HP(x,S’) —>uP(x, 8 ) for all p .

Let us now consider an exact sequénce of sheaves:

© ’—}‘5‘1 '»J;""j; —7 0, Thiseéxdet sequence gives rise to a

long exact sequence of abelian groups :

0 > 1%(X, 5,) = (X, S,) > KO (X, 53) —1'(x,J,) »u'x, fz)m-,\-__

This will be proved later on, using the famous Exact sequence in

Homology which we announce here

In general ,let A% 0 —>A°-(-1> A1 ...‘l A2 — eee be a complex of

abelian groups, i.e. each Air is an abelian grouvp and d: Avw-;» Av+1 are

group homomorphisms and d2 = O. Now we can consider an gxact sequence of

complexes : O —> A% —»B* (% —>0, This means that we have a,diagran

cV--‘l —_— cv — CV+1 — ‘Com"'q'{a_lfiygﬁ}
Bv-1 —> g7 > g7t —>

P

Av—‘lﬁ__* AV s Av+1 —

*e e

>

where the rows are complexes and each cc[zumn is an exact sequence

0 -»AY >+ BY— ¢V ->0 of abelian groups.

V-1)

Introduce the cohomology groups HV(A?) = Ker(q) A' /a(a and

similaxly for the two complexex B and C* » Then we get a long exact

sequence vel, % v, % - S~ v,z v, g .
eo 7 (0%) > HY(AF) —HY (B%) —EV(¢F) =ETT (AF) P e
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Let us now introduce a family of sheaves whdse cohomology vanishes

when p > 0, We begin with

Definition 3.1, Let = { U_ } be a locally finite open covering of X.

A partition of the unity of a sheaf 453 y subordinate to the covering
is a family of sheaf homomorphisms : 7 + F > F  such that
7 0, (F) =0 forall x e X~T_ and

2) I m(s)=s for every s ¢ F v

Definition 3.2, A sheaf 7: for which there exist partitions of the

roatcs

unity, subordinate for every locally finite covering of X, is called a
fine sheaf .

With these notations we can prove

7 . ;
Lemma 3.3 It S is a fine sheaf then‘Hp(X,?r) = Q for each p > 1,
Proof Let 57 be a 1ooally\finite covering of X. It is sufficient

to prove that HP(ZV;7:) = 0 for some given p > G. To prove this we consider

a p-cocycle £ & ZP(J/,F) and when « is fixed and {U }ois s

50”'-61)—\1

();ince 1 (Jx) = 0

o

(p-1)~simplex we can consider the section:

bis . which exist on U
a,Bo“.BE_,I h . Boeooﬁp_,l

n‘UQ;

when x £ X N U, we see that the section -ﬂa( faeﬁo"°BP-1

extén&ed te . a gection over U s Where it is the zero =section

Byee By

in the complementary set U ~N U |
. Socouﬁp_,j a,BO...BP"‘1

In this way the p-cochain f defines the (p-1)w-cochain



Fa = { na( fa;leo"'Bp-‘l) = FBOU:OBP_»l } .

z

. is the induced map on HP(L7,77) which arises from the

If n
sheaf homomorphism Ny :77’7‘77 y then it is an easy computation to
prove that &F = naxf for all £ & ZP( U, F)

Finally, since the covering D? is locally'finite, it follows that

-1 o .
i, F, ¢ PN UL FY and 8( %y B, } = z, nxaf = f, where the last

equality follows from 2) in Definition 3.1. above,

Henoe f € B*( [/,F) and we have proved that the quotient group
®2(J7,F) = zP/8P 2 0, as required.,
4
‘Let us now apply Lemma 3.3, to compute the cohomology of a sheaf;ﬁ o

The idea is to construct a fine resolution of the sheaf‘éj.

That is, we construct an exact segquence of sheaves

0 =550 s 571 572 s |, , where 57" are fine sheaves

for all v 2 0. . Let us begin with

3040 The existence of fine rgsolutions

Let,,S7 be a sheaf on X. If U is an open set in X we can consider the

family 17;(U,j?) of all functions f: U - satimfying f£{x) = x for x & U,
That is, we do not impose any continuity condition. /FE(U,&fv) are
abelian groups for all open sets and we get abelian groups S°x for each

point x € X when we take the direct limits
s°, = di.rlin o d(U,JV) where U moves over all neighborhoods to x.

The abelian groups { S°x }xax are the stalks in a sheaf J?O whose

seotions /T(U,5°) = 4/;(U,57) for every open set U.
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‘_j"-o is called the sheaf associated to the discontinuous sections of ,(jye
Tt is obvious that §’° is a fine sheaf. Also, since /'(T,.S ) are

subgroups of /’(U,fo) and each stalk Sx = dir.lim, /(0,5) (See Lemma 1.2,
‘ . o . . /’f

and 1+3.) it follows that 5, are subgroups of §°, = dir.lim; d(U,y )

for every x & X,

Hence J’ is a subsheaf of ‘510. Now we can consider the quotient sheaf
J"O/‘)” and repeat the construction to get (J°/¢)° = SV« a tine sheas

and the exact sequence O""J’ —>i°~—&5” and continue, Summing up, we

have proved

Lomma 3.4, If /j’ is a sheaf then there exists a fine resolution

0—-—>,)"—~>J’°—"’.5'1"" ees TWhere {,5’0,,)"1, sae } are fine sheaves .,

¢% 5 HP(

/
long exact seque/dce

0 H°(//, ) H°( , )y EHY
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4o The long exact seq

If U is an open subset of X and Lr is a sheaf on X, then Jdcan be restricted

to a sheaf on U. In fact, put S-IU a 1:-1_'(U) - U S, ¢ Obviously SIU is a
4 '
sheaf on U and we can compute its cohomology groups which we denote by
BP(U,5)

In order to avoid %oo many notations and rether tedious passages to direct

limits we shall restrict the attention to sheaves which have a locally itrivial
cohomology, as explained belowes Let us also remark that this family of sheaves

actually plays an important role, and Leray's Theorem which is proved later on

plays a cruckal role when we begin to study certain sheaves on compact

Hiemann surfaces,.

4e1e Leray coverings of sheaves

and locally finite/
Let U= { U, } be an openYcovering of X and let ‘57 be a sheaf on X.

Then U7 is called a Leray covering with respect to the sheaf A;Y if the

following is true : HP(_UOC ,Jv) = 0 for every p 32 1 and every

..a
o]
non-empty intersection of finitely many sets Ua y so Ua from the covering
Definition 4e2s & sheaf J?’satisfies Lexray's condition if every open
covering of X has a refinement 07 which is a Leray covering with respect to

the sheaf Q?.

Remark Recall that we assume that X is paracompact. So in the definitions

above we have restricted the attention to locally finite coverings of X,

With these notations we can announce

Leray's Theorem Let ¢y'be a sheaf on X and lét i be a Leray covering

of §' Then HP(x,5) 2 wP(U,S) for all p .

Before we enter the proof we present the details of the following result:
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Propogition 4.3. Let 0 —F§ —a F 220 be 'an exact sequence of
sheaves and assume that H' (X,,§’ ) = O, Then
0—?/-’(}{,5)”/4(}(,?’) —>/" (X, £ ) —> 0 is an exact sequence of

abelian groups.

Proof ,J' can be identified with a subsheaf of F and the inc’lusion
7,5 ——-7/7()(, /}-:) follows.Suppose now that f e/ﬂ(X,’}r) and that

of = 0 in/ (X, R). At a single stalk this means that o(f(x))= O in R
and since O0-—»S -»F ~> R -2 0 is exact, it follows that f(x) ¢ 5,

for s8ll x € X, This means that f ¢ /"(x,j’) and we have proved that

Ker(9) = c(f'(x,,S’)). It remains only to prove that o meps / (X, F )

onto ./A(X,ﬁ).
So let g ef(X,ﬁe) be given, If x £ X then g(x) ¢ R and we can find
g, & F, such that ‘c(ocx) = g(x).

Lemma 1.3+ gives a neighborhood TX of x and some section

% ef'(Ux,?) such that f£5(x) = E, in F_ .
Now o £ ) & r(Ux,(fZ) and this section is equal to g at the point x.

Lemma 1.2. shows that they are equal in a neighborhood of x.
Summing ﬁp, we have proved that to éach point x there exists some
neighborhood U- of x and some f € f'(Ux,”;) such that o(f*) = grin (IR
Thése open sets cover X and passing to a locally finite refinement
we can assume that there exists a locally finite covering {J= { U, }

and sections { £, ¢ 7(T,,F) } such that o(5,) = g in U .
Now we congider the differences £, - fB in U, N UB » Since
or(fa) = G(fﬁ) in this intersection, it follows that

£ . = - _
o fﬁ ef'(UqB,S’) and we put haB £, fB o Obviously the l_family

{ hye } velongs to Z1(W,,S7).



Of course we can pass to a refinement of the covering W and get a
similar cocycle in A/ Y

Since H1(X,,f’) = 0 by sssumption, it follows that we can choose the

covering U7 in such & way that the resulting cocycle { hp = Ty~ T }
velongs 10 B (4S5 ).

Hence we can put fa. - fB = sia - SB where 8, s/ﬂ(Ua,J’) for all «.

But then the family { £, 7 8, } give a globally defined section
Fe f(X,?f) (exactly as in the proof of Lemma 2¢3.) and we see that
o(F) =
(Pmpositiogl

Using - .3, and the Long exact sequence arising from an exact

sequence of complexes of abelian groups, we can begin to prove
Proposition 4.4, Let Oﬁ—)f-‘? F -S5p30 be an exact sequence

of sheaves and let [/7 be a Leray covering with respect to f. Then

we get the long exact seguence

|7

o-»/*(x,,sv Y=/ (X, F Y7 (X8 ) — H (ms’)—eﬂ W, F) — 85 (ULR)

s B UL, S ) =2 B2 DT F) = aee

Proof Let us put AP = ¢®(U,5) , BF = CP(WJ’/) and finally
we lot P = the image o(CP(U,F)) in (VLK)

We observe the following

Sublemma CF = ¢P( U7 ,# ) for all p.

Proof When p 3 O then CP(Ul, ® ) are the airect sum of

/
[”(U(JC ven ? .x ). Since Ul is a Leray covering with respect %o Lfg we

know that 151(U ,5’) = 0 for every p-simplex and Propasition 4.3,

O secl
0 14

- -
implies that O /.'(Uao...ap,f)'*f(uao....ap"}:) ‘“/‘/_T(qu..ap WKL) >0

is an exact sequence. Passing to the direct sums we conclude that

0 — cP(U7,8) 2 QP(W,F) — (1, 4) -~?l‘0 are exact
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sequences for all p } C.

Proof continmed Using the notations above and the coboundary opexator

& which commutes with the maps ¢ and ¢ induce on CP(}/,S) and ¢®( [, F)

we get the following commutative diagram

Q

@ —» ¢V —
Py

Bo_-=- ?1-—-9’132-—-—;» e
.3:0-.-» Al =42 = ..

where the columns are exact and in each row the cohomology groups are
given by { H (,*)} and so on. Hence we can read off Proposition 4¢4.

from ithe Exact sequence of homology as stated in Section 3,
Corollary 4.5. Let O —-*,)'"”7:;"’%*7"0 be an exact sequence of

sheaves where ’57 satisfies Leray'§ condition. Then we get the long

exact sequence 0 —rHO(X,.S) -—}HO(X,?“) > 1°(x,K) —H (X,S )= ses

4
Proof Since f satisfies Leray's conditions we can obtain the
exact sequences sbove, using arbitrary fine coverings Wof X. So when we

compute the cohomology groups by direct limits we can read off Corxollary

45+ form Proposition 4.4,

Using Corollary 4.5. we can prove that the cohomology of a sheaf

can be cémputed using fine resolutions. The result is
Lemma 4obo Let S —> 5% 51-—7 +ee be a fine resolution of a
sheaf S satisfying Leray's condition. ‘fhen the cohomology groups
{ BP(X,5): p » 0} are the cohomology groups in the complex

0=>/1%,5°) =+/(x,5 Y =/ (x, $% ) ~*...

Proof Since {Sv } are fine sheaves we know that HP(X,J‘:J) = 0 for



all p > 1 and we redall that H°(X, Sj) = (X, §9) for all j.
To prove Lemma 4.6. we first consider the exact sequence of sheaves

0 0 — 5 —>5%%> 5%5 —> 0 and then Corollary 4.5.

.o
gives the exact sequence 07/ (X,5)>/(X,$S N> %, 5%/ 5 )-a>H1 (X,5)~*0
If we let 32 = d(5’1) be the image of the sheaf ST under the map
14 o2 g0 1 2 : |
§ - S§° 4 then 0-> /s —>»S —»F°—> 0 is exact and again

Corollary 4.5. gives the exact sequence O'?/‘(X, $/s )“’/(K931)*?f(xv£2)’?

— 8 (%,5°/5) —»0

The kernel of the map from /'(x,51)»+/'(x,.5'2) is denoted by Z' .

Of course %' = the kernel of the map from f(X,51) . into f(X,fz)
since ,32 d(Sq) and hence the last exact sequence above gives
2V e [(x,5°/¢ ) and then the first exact sequence

shows that H1(x,-5',) '—;-"z1/1as1 where B! = the image of [ (x,5°) in
/J(X,'S‘o/s ) and since 50[5’ = 4(5°) is a subsheaf of 5‘1, this means
that B! = the mage a(/(X,5%) in /(x, 5.
By definition the factor grpup '21/31 is a cohomology group in the
complex 0-2/(%X,5%) —/ (%, 51) -2 vo» and hence our discussion has proved
that HY(X, S )% H'(/(X,S%)) = the 1st cohomology group of the

complex / (X, 5%).
The case when p > 1 is proved in the same way. In fact, now we can
repeat the discussion above, with ; replaced by 50/5' and starting with

the fine resolution 0~ 35°/5 sV —52-  ana conclude that
2 ‘ 1
RS (%, §%) % 6'(x,9°/S)s

' -r &
Finally, we apply Corollary 4.5. to O —*’5—»50.-* J‘Q/_S' and writing out
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the whole long exact sequence #vhi ch conta.ins
B (X, 50 = &'(x,5°/5 ) = 5 (x,$) —>u¥(x, )
and using the fact that 5° is fine, we get
g1 (x,5°%5 ) HQ(X, ) ;a,nd hence  we have proved that
.HQ(X,_.S.) < Hz(/—(X,Sx)) and the ‘case when p > 2 1is now proved

in a similar way where we leave out fhe detials as an exercise.

4.7. Remark Of course,.the proof above shows that if we consider
o 1 2
an exact sequence O-->J"—->'F —y F =T > ..., where the sheaves

{73 }  satisfy Hp(_X, Fj) = 0 for all p > O and all j, then the cohomolo~

gy of the complex O /‘(x,’F°)~+/‘(x,F1)">‘ sss computes the cohomology

groups { BHP(x,5')}

We finish this section by

Proof of Leray's Theorem
Let V7 ve a Leray covering of the sheaf ;/O. Choose a fine resolution
O‘“”'S"’SO——?\S“ '—"’5 2 ¥ secae

Since HP(UOC‘ o ,S) = 0 for all p > 0 and all finite intexrsections
o.l! q

of gets from M, we gee that Lemma 4.6; and_the same argument as in the
proof of the Sublemme in Proposition 4.4. implies that

0 — cp(ﬁf,f)ﬂ cP(ur,s%) = cP(U,sY ... are exact
sequences for all p 2 0 . Now we introduce the cobouwndary maps and

the double complex
i !
AU, $°) — A (1,5 —
, ' p
¢(vr,5°) —c'(lr,sH T

r P
¢O(27,5°) — (21,5 1) — (U, 5% —...
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In this commutative diagram we see that the rows are exact
except for the terms which appear when we compute the kernels of the

maps from CP(M7,S5°) — CP(UY,S1) and these kemnels are the ghoups
(U, 6.
Finally, if we restrict the attention to a single column we are

computing the &~cohomology of +the complex

o ¢(,sYH — ¢! (7,5Y ... whose cohomology groups

ave { HP(M7, S} and since {§?} are fine sheaves only the group

B 5 = /(x, Sq) appears.

Summing up, computing the cohomology in the rows gives the string

(U, ), C1(W,5) y oo+ along the first column. Computing the
cohomology in the .columns gives the ‘string

[x, 59, f(X,51), .eo along the lowest row.

At this stage an easy diagram chasing proves that

the cohomology of the two complexes

0SS Y= (W, 5 VY2, amda 0/ (%, 50~/ x, 5~ ...

are equal, By definition this means that

HP(W, 3) are the cohomology groups which appear in the

complex O—*/-(X, SO) '#’/-(X’ $1)_> ees and finally' Lemmsa 4560 shows that
these cohomology groups are HY(X,J).

5« Some Fina]l Remarkd

During the last part of the proof of Leray's Theorem we encounter a
- special case which deals with the hypercohomology of a double complex
and using the machinery based upon spectral sequences we could have given

more sophisticated proofs of the results in Section 4. We refer to other

notes for results about spectral sequences. Let us only remark that this

more powerful approach is necessary when we begin to consider complexes



of sheaves 00— 5’°f?5'1—* 5~2~? ses and trﬁ to understand

how thelr cohomology groups are related to each other, It turns out

that the natural device in such & situation is the following: If Z47 is
an open covering of X we get the double complex
2 0
C(URS™) —>
7

/’\ \‘;-‘.:,,_,‘_,_,
W) TP, 5Ty el (w,s By~ - -

and in this double complex we can compute the s0 called hypercohomology

along the diangonals and these groups are called the hypercohomology

groups of the complex of sheaves., Then we can recaputure the hypercchomology
by various spectral sequences and in favourable cases this glves a good

information about the complex

02/ (%,5°% =/ (x, SH—> ..u.
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Chapter 2
Let ue first define compact Riemann surfaces. A compact Riemann
surface is a compact and connected topological space X which is equipped
with an open covering { U, }  satisfying the following :

To each a there exists a homeomorphism m, s U -~/ = where Kﬁp

is5 some open disc in the complex plane and { Ua,ﬁa, a} satisfly the

following condition when two sets Ua and U§3 have a non~empty intersection:

Looking at the piciure below

we get the map 95 from ﬁa(Ua(\UB) into wB(U@(\Uﬁ ) and we

require that UaB is a biholomorphic mapping between these two open subsets

or ¢!,

We say that { Ua,na } is an atlas which defines the complex analytic
strucutre on X and the open sets‘{ U, } are celled charts.
0f coursey, since X is compact we can assume thatb { Ua } is a finite
family of open sets,
From now on this atlas is fi'xed@/ we /W’”% W:[&‘“{.}
1.1+ The sheaf éb o Let U be an open set in X, A function f in U in
holomorphic if the funciions fa(z) - f(namq(z)) are holomorphic on

na(Ufan) for all «. In particular we observe that if g atﬁ(zla) 18

for some o
given &nd if we define f(x) = g,{n, (x)) for all x e U, , then £ is

holomorphic in the open set Ua ¢ 30 in each chart Ua there exisd

holomorphic functions.

Let /(U,00) denote the set of holomorphic functions in an open subse:
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U of X. Hence f(Ua,(Q) 144 @(&U_) for. every chart.
We get the sheaf Cv of holomorphic funections on X where /’kUgﬁ?)

are the sectionsover epén 5346 U

In the same way we get the sheaf Zﬁ of meromorphic functions on X,

A gection T s/rkU,?yb is a function on tle open set U such that the

functions fa(z) = f(ﬂam?(z)) are meromorphic on ﬂa(U ﬂUa) for all wo

Let us observe the following
';['-‘Jme_m_-g_l_% 1020 /W(X;.(Q) = C

FProof Let £ be a globally defined holomorphic finction on X. Hince X

is compact and £ is a continuouvs funection, it follows that the absolute

value ffl attains a maximum at some point x € X, Here x ¢ Ua for some

chart and the maximum principle for analytic funcitions in the open digae 4@0

shows that the function fa(z) = f(ﬁa—1(z)) is constant in A\ , which
means that £ is constant on the whole chart Ua e Since X is connected we

can pass to other charts and conclude that £ is & constant on X.

The question arises if there exist non~constant globally defined
meromorphic functions on X. This is not at all obvious and we give the
croof in  Sectior 3 below.

te3e X as a differentisble manifold

The complex z-plane can be considered as the real 2-dimensional
(xgy)mspace, where 2 = % + 1y « Since holomorphic functions are differenti-
able the atiﬁs { Ua,wa } defines a differentiable structure on X. Hence
we can speak about (infinitely) differentiasble functions on X, and of

differential forms of order 1 and 2, where X is a compact and Z2-dimensionsal

differentiable manifold,



In particular we can Introduce the following objects.

i .
l1e3070 £ = The sheaf of complex-valued C ~functions on X
debs20 51 = The sheaf of differential t-forms on X with coefficients in

£

Remark Consider a chart U, . vwhere we define z, = nawq(z) g0 that 1z,

1s a holomorphic function in Ifa and gives the complex coordinates in Uao
We can wrlte B, = Xt :Lya where X, and V., are real-valued and then

the differentlals dx  and dya is a basis for the 1-forms on U, o This
means that if ¢ = f(U (ﬂ) then 9 = £ dx + g d where £ and heton
28105 (IQC’ = 1,0%y g‘a ya 4 o © gf! e LONG
o2
bo ¢ (U, ).

12%25 The sheaves 5091 and 81"0 °

The complex avalytic structure on X enable us to decompose 1~-forma
using the differentials dza = dxa + 1dya and dza = dxa - :J.dya in the
various charts Ua o This gives the sheaf 61’0 where a section

1,0y ‘ ' . . s
¢ ¢/ (U, £ } is a differential t-form such that in each intersection
UNU. we get § = £ dz_ = £ {(dx. + idy. ) for some £ e C°(unvU ),
a o a a o o o o
Similarly 5:'091 is the sheaf whose sections in the charts Ua

are expressed by g‘;&;:a
In this way 51 e 5'1’0 0] 6091 and the udual exterior differential
((j‘,? 1 . . ‘a g 1,0 - 041
d s E splits into 2 '—?‘g and D & E
ilore precisely, in a chart U, we get df = Qf/;!:xa dx, Qf'/gyo, d'ya‘
and we cen write df = Jf + jfg where

o€ =21/5z, dz, eand f = 26/33, da,

The condition that f is holomorphic is that 3 £ = O, i.e. this

is expressed by the Cauchy-Riemann equations.
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10340 The sheaf (7°°

1,0

150 . . .
£ 77 contains a subsheaf g whose sections in a chart U

.
5
have the form h dz,  where h, ¢ /M(U&, &) #1955 the sheaf of

holomorphic 1~forms. The global sections /f(X,éﬁqgo) is the set of

abelian differentials and they play an imporfart role later on.

Tedo The Dolbeault Isomorphism

v
Let ws firet recall thaet C functions on manifolds admit partitions of

the unity. It follows easily that 5951, g?"‘o ,£O’1 and &7 ave

fine sheaves. In particular their cohomology groups venish when p > 0.

—

Let us also recall that the ~equation can bhe solved in open discy din

g
the complex plane. This means that if p(z) ¢ ¢ % (A ) <hen there exists

P - - -
some g € ¢ (&) such that Jg/d% = p which means that 2g = p dz .
We leave out the easy and wellknown proofs

Passing to the Riemann surface X , the similar conclusion holds in the

charts of X and hence we get the following exact sequence of sheaves:

ot

0 @ — £ 2ot 5 g
If we consider the global sections we get the exact sequence
0-» /’(x,@)ﬂ?/’(xgg‘)é/”(x,g%") — B (X, 0) = B (%, £ ).
and since HT(X?éT) « 0 we conclude that
H(x,0) = S, /3(/(X,E)). This 4s the Dolbeult

isomorphism.
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Te5s Holomorphle Line bundles

Let é?x he the sheaf of holomorphic funciions on X which are
nowhere~vanishing, This means that a section £ e/ (U,0%) is a

holomorphic function in U which nevex is zero.
. A ;

The group structure in the sheaf @ arises when we talke the products
fg of two sections,

W . O i = o e

Ve get a sheaf homomorphism from into using the exponential

. . . \ 2nig . ¥

mapn which to every holomorphic function g gives @ e in O ®

Heve of = 1 in &% if and only if g is locally constant with

integer~values.

So if Z dis the constant sheaf wﬁose stalks are the groups of
integers, then we get the exact sequence of sheaves i
o~—>g,-»—>(7——%(9ﬁ—ao
Before we continue we observe

Lemma 1.501. Let U= { U, } be the covering of X of charts { U_ }. Then

Ul is a Leray covering with respect to O and with respect to OF .

Proof DBach non-empty intersection U, g 18 biholomorphic with an
. OBQD p
open and simply connected subset of the complex plane . By Riemann's Mapping
Theorem these seits are biholomorphic with an open disc N . 8o it s
sufficient to prove that HP(A,#) = B(A,0%) = 0 for all p > 0.
To prove this we first observe that the Dolbeallt isowmorphism and the

existence of solutions to the d-eguation in a disc implies that

H1(£99;3) = 0, Similarly, we have the whole exact seguence

0 *—&(47~M?g'jlgﬁ’ow~¢ 0 where é?and. Eﬁyo are fine sheaves

and it follows that the cohomology groups {8’ 2,@)} are the

cohomology groups in the complex 0-»/(X, §)—/(X, 50’1)~% 0. This

implies . that EP(X,@) = 0 for all p 2 2 and of course



we also get HY(A,@) = 0 for all p > 20

Fext, since a disc 2\ is contractible as a topological spiee, it Tollows
that HP(AQ,2 ) = 0 for all p > O.

.’I‘he exact sequence O —» 2 q@v—?@x —» 0 gives the long exact
sequence O”?/‘(.(_),_?‘,;) I (Loy &) —*f([x M%) —> H?(z’;yh‘f/i) i (&, )%

"‘""}’ I’IJE(A ,Ux) M%‘ o e
and we conclude that HY(L,0%) = 0 for a1l p > 0.

When A is replaced by X we get the exact seguence

0= /15,2) =/ (%,0) =/, 0%) =8 (x, 2) = (,0) —»1' (1,075

—»Ho(X, §) ~» HO(X, O)
We have already proved that HQ(X, &) = 0 and that

/X, @) = ¢ and similarly (X, %) = ¢® and of course /'Y(X, L) =2

%

b

and the sequence 0 —»7 ~»{ C” ~»0 is exacts We conclude

Proposition 1.5.2. There exists an exact sequence

0 —> H1(X, 7 ) ->zi1(x,(9) —Ayzzq(x,[gg) — Hz(X? 2 ) >0
We shall return to this exact sequence in section 3.

195050 _?_l}e Sbﬁ%’v‘ﬁﬁ. (0(&)

Consider an element & € H¢i (X, X)a Since W is a Leray covering with
respect to (7® we can represent & by a cocycle in Zli( 7, 0%, thig means

. i " , .
that there exists a family { gfIB £ /’P(UonUﬁg@ )} satisfying
5(_{0, = EocB gBU in each dintersectlion U U8 N Ug o

The cocycle { EGB } is unique module an element in }31([//; %), This

means that if { E'aB } is a,nothér cocycle representing the cohomology

class &, thon there exist functions { g, 8/‘(%’@%) } such that
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g?aﬁ = (ga/gﬁ)gaﬁ for all « and B.
When { E(xB 1 e Zq( V7, 0%) is given we define a sheaf (P(E) as follows:
If U is an open subget of X then a section in /?U,, (D(£)) consisty of
a family { £ af(UﬂUag 7)) satistying s fq = F”ﬁocfa in each nonw-empty
intersection U(‘[’Ua{}Uﬁ a
It is easily seen that the sheaf @(E) is unigue, wp to an isomorphismn.
In fact, if { ﬁ’aﬁ } is another coclycle representing £ ond if &(&1) is

the sheaf defined by this cocyele then we see that if

ria {01, b e (0, 0En) then £ = {$fg, 3 e /(U 0))
where ataﬁ = (ga/gﬁ)«‘;as and this is a sheaf isomorphism.

Summing up, if £ ¢ B (%, @™ then we get a sheaf (L),

Of course, the sheaf (2(£) is locally isomoxphic to (7. In fact, we see
that HEYE (D over each ehart U, and we can say that A(E) is a
locally free sheaf of @«modules of rank one.

Te%5e40 The canonical line bundle K @

The sheaf (5’190 from Section 1.3.4. iz of the form.ﬁ(}f) for some
oo (X, /%) Tet us explain this. In each chart U, we get a

complex cooxdinate function d.za o If UCZ QUB is non-empty bthen

dza or dzﬁ can be used as a basis for holomorphic differentisl forms in
U U, . In particular we get dz, =% , dz  where 10 £ /N(U Ay -@X)
o« B g YaB Y - aB ot pEt

and obviously { nth } g ?31( ?/79 @x) and hence this cocycle represents

5 cohomology class }(o e

By definition a section f s/iU,, D)) consists of a collection
{ £, e/‘(UnUa,(ﬂ) satisfying £, = n,,fy in U 00y 0U }

These eguations 7?1‘113 A



I dz ﬁz] de/ - f d:r and hence there exists a holomoxphic

1=form (4} on U whose restriciion to UNU, ds f 4z, for all a.

In this way [ (U, phs° yE (U, 0(K)).

Q) = (019° is called the canonical line bundle on X.

2s The Duality Theorem

Let { £, Ve 21 (U, (0F) rvepresent a sheaf (Z(£). We can also define
the sheaf & (§) whose sections over an open set U consist of families

{r ec (unu, ) s, = £,afp 10 AU, AT, )

Then (7(§) is a subsheaf of £ (&) . Let us also observe that if

o S
£ o= f,eC (UnUa) Ve /‘(U,E(ﬁ)), then we can consider the

(0,1)~forms { Bfa } and since & are holomorphic we see that

afp

af of

Hence we can say that d defines a sheaf homomorphism from

afa = g 8 for all o and B.
5(&) into 50’1(5) where EO" (&) has sections glven by a

. 1 e
family { wa € f(U nUa,f;‘o’ ) T, = EchWB in "U/\UOEJF\U8 }

Both &£ (E) and E,,o’q(fi) are locally free sheaves of (g«-modules
and in particular they are fine sheaves, We get {exactly as in 1a4.¢)
the exact seguence of sheaves 0-3@(E) — £(E) "’?équ(ﬁ) —2 0 and

the following isomorphism :

w'(x, 006 & 77(x, £°0708)) 2 [(x, £(8))

At this stage we observe that / (X, go"i(ﬁ)) has a natural structure

ag & topologlical gspace., Indeed, this is a linear space and using the
usual topology on Cwnfunctions, /(% 8091((‘;)) is a Frechet space

AV meSutbaing g epave Xy WDY) Pam e,
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Tt is not obvious that-g( [(%,6(8))) is a closed subspace. | Buf if
follows 4f we can prove

Theorem 2.1, Let £ & H'(X,0%). Then HO(xX, (0(£)) and ¥ (X, O(E)) are
finite dimensional complex vector spaces,

Proof The idea is to use some wellknown facts about holomorphic

functions. Recall that 4if { fv } is & bounded sequence of holomorphic

functiong defined in some open suvbsel of 01, then { .{‘v } contalins a

subseguence which is uniformly convergent over relatively compact svbsets.

In particular we get the following
Sublemma 1., Let V<<V' be two open subsets of G/i g lege V is a
relatively compact subset of V' , Let /;(V,@) denote the set of

nolomorphic functions £(z) in V which are square integrable, i.e.

j fi@),Q dxdy < o2 , /,(;(Vgﬁ) and C(V'ﬁ,@) are both Hilber:t spaces
v .

and the restriction mapping from /'O(V,W) into /:)(V',,-[Q) is a bounded

linear operator which maps bounded subsets of ﬁo(vgﬁ) into relatively

‘ closed/
compact subsets of /;(V', {?Y. In particular, if T is some/linear

subspace of /:)(Vf.(ﬁ) whioh is contained in the image of /"/O(Vg@)g then

bagic functional analysis proves that L is a finite dimensional subspace
of [ (V,0)
It remains only to see how this Sublemma can be applied to the present

situation.

The cohomology clasg & can be represented by a cocycle { EaB } in

21_( U, @*)  where U7 is some covering of X with charts.

How we can considexr CO( U],@(E)) = the O-~cochains repreéented by



families { g, ¢ /;( Vs @y g = Eqp 8 in Yy NV }

Hence CO( W, @(E)) ia the set of square integrable cochains of
with coefficients in (Z(8).

: . 1 ﬁy ., .

Similarly we consider the set C_ (U1, 9(8)) of squave integrable

t-cochains of U with coefficients in @(5).,

Since the coboundary operator involves restriciions and finlte

oo

summations (0f course U = { v, } is taken as a finite covering of X )

it is clear that & maps Cop( U, (&)Y into Cp';q( Ul , (&)Y ana we

get the correspending " suwgare-integrable cohomology groups" defined by

B VT, 0) = 2 P(UL (&) s(c P (U, #(6)))
The inclusions Cop (mo(e)y = ¢®(17,0(8)) induces a homomorphisn

from Hop( U7, 7(8)) into WP U7, [7(€)) for each p .

With these notations we can prove

Sublemma 2, Let V: § v, }oand ()= {ﬂa } be two open coverings of
\ l/i o

X by charts, where is a refinement of {1 such that v, C"Qa for all
a » Then HOP(V;M(i)) ﬂHP(VQ@(E)) for p = 0 and p = 1

Proof Let us first observe that the map i~ s Hop( V‘g ((8)) into
BP( [/, ()(8)) ts en injection for p = O and p = 1. When p = O this is
entirely obvious because H:( V; @) = /T)(Xy (9(E)) which appears as a
subspace of /f(){, ((€)). 1f p = 1 we can arsue as followss

Select a cocycle { fa:ﬁ }e ZJ(V:@(E)) and suppose that { up }
‘ . 1 V“ .
is cohomologous to zero in H { /', /(£)). This means that

faB = £ - f8 s where ( £, ) € 01(!/:@(%;)) and it suffices %o

prove that each fa ig squere integrable over U’a, for then { fa } belongs



to COO([/; G(E))  ana { fop } = 5’({ fa} ) has the image zero in
(V0.
To prove this we select an open set Ucc and consider some boundary

)
point p ¢ QVa . Yow p ¢ \JB for some B and a neighborhc)od\/of p staye in

i

UB and we have faB foc . fﬁ in uﬂﬁa o

and fB are square integrable in Vaﬂ U (if U is chosen

Here both £
. GB

g0 that U« c\fﬁ) end hence 'fa is locally sguare integrable in a neighbo

hood of each boundary poini of Va » oince Q'V'a is compact, Heine-Borels

Lemma implies that £, ¢ /’O(Va, @), as required,

Proof continued Since V and ,Q_ are Leray coverings with respect to

the sheaf (J(¥) we can apply Leray's Theorem and conclude that
BV, 08) % ¥, 0) - #2(x, O(2))

The restriction maps Cj(_(l , (&) into COJ([/: D(E)) so this
isomorphism implies that & cohomology class in HY( VQ&(E)) can be
represented by the restriction of some cocycle in zP((21, ((&)) to {/ sand
this restriction belongs to 7. ( V4 O(%)) and we conclude that the ma.p

P . P b . N .
from HO(}{@(ﬁ)) into HP( X, (€)) is surjective . This proves Sublemma 2.

Final part of the oproof

We can choose 3 Leray coverings V<< [/" << V " where the two
paivs ( V,V') and (l/'!, [/ ") satisfy the conditions in Sublemma 2.
Hence Sublemma 2 gives HP(X, 7(8)) = B, P( Vo, 008)) = w2 (7(8))
for each p = 0 and 1, Finally, the restriction map from
/ : '
ZOP(V. (€)Y  into Zop( V,@(E)) send§ vounded sets into relatively
compact sets and at this stage we leave the final details which uses

functional analysis and proves that EP (%, O(8)) are finite dimensional .
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2:2s The Duality Theorem ., Let & ¢ H1(K9 éﬁz)o We get the sheaf é?(g)

and we have proved that HP(X, £(E)) are finite dimensional veotor spaces.
We can study thelr dual spaces and the result we prove is this.
Theorem 2.20 ( B (X, Q(E))* & 8%, O™ ) where we recall that

}{ is the cancnical line hundle.

Proof Since E (X, Z(8)) = /(x,§° &)/ DS %, £EEN)

we begln tq%tudy continuous linesr forms on the Frechei space

/;(X,,f 9’?5)) which vanish on the subspaceﬂg(/«(xgéz(a)))a

Let L be such a linear form. We begin to consider the restriciion of
L to ceriain subspaces of /M(X,EEO91(§)) arising as follows:
In general, & is represented by the cocycle { &aB } € Zq(Un(QK)
and if U is one of these charts and if f ¢ C;O (Ua ) then £ gives

a globally defined gection «(F) in /wbx,é?o’1(§)) as followss

Fivst, since f has a compact support in U, , the (0;1)=form
fd%a in U, extends to a globally defined (o0,1)-form on X when we define
its value to be mero outside Ua s

Now we cah put w, = deU and for the remaining indices § we can
restrict the 1-form fdﬁa to the open set UB and since supp(f) < U,

we see that supp( £ aEa ) c:UOC N U, inside U, which means that we can

B B

miltiply by the holomorphic function Eﬁa and get the teform

B, £42, = &5 w_ - for all B # a,

8 T “pa Ba "o

The definitlon of the sheaf 620’1(5) shows that the family
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of all these (o0,1)~forms gives a global seotion oF) e/ﬂ(xgézo31(&))
Hence f ~» «(F) is a linear map and this is s continuous map form
the Frechet space C;%J(Ua) into /*(x,§f°’1(£))° In fact, the Frechat

space topology on the global sections of the fine sheaf g;°f1<a) is defined

. by these eonditions for all o,

The linear form L therefore gives a linear form LOE on C;%?(U

)

04

defined by L( o(F)) = La(f) for all f ¢ ca“?(Ua Ye This means that there

exists a distribution /“ﬁ on U such that La(f) = < fgf*c >

i

Now we observe that if g ¢ Cga(Ua ) and if f ggAQEa sa that

£ai_ =g, then o(F) ~ Da(c) where € - | gy = Eguf ) e [ (x, £ee)

and since L = 0 on M/ (X, £(8))) , we conclude that

D o . o 1 ave “ha
< g/?za ,/Ha >= 0 for all g e C (U, )o This means that the

distribution/ﬁd satisfies the 3’mequation in the chart UOC . Recall that
theﬁg—equation i1s elliptic, Hence Weyl's Lemma implies that /&a is smooth
and the Cauchy =Riemann egquation gives a holomorphic function gy on Ua

| o Iy
such that La(f) = /j; g, 4z, Adz for all f & CJ (Ua)

Summing up, the linear form L gives a collection of holomorphic

functions { &, e//(Ua,é7) } and it remains to see how these functions are
relatedtto each other in non«empty.intersections UaﬂUB o

To see this we'begin with some f ¢ ng)(U& QUB Yo We get the element
a(F) in /f(Xg£‘0’1(£)) and now we try to find some f% ¢ C;x’(Ua(jUB )

satisfying ; 8(F") = o(F)

Looking st the construction of a{#) , and B(F') ,where B(F'!) arises



when f' is considered as an element in CC‘?O (UB )y we see that

«(F) = B( F') holds if fdz = Eup7'dmy  holds in U NUg

Recall that d= dz, which gives dEB - % dga and hence we

B~ Tap
put €= £ TS £
The equality ofF) = 8{F') gives

Lo:(f) = LB(J‘.“) which means that the two double integrals

ff g, dza/\dEa nff' 85 dzBAdEB

o . " . w ] gy W]
dza/\dza and since f! = (&,GB) (n "¢

2
i o f

Here dzB A (1"2& = lﬂaﬁ

we conclude that fg, dza/(dEa m f g (EaB)mqﬂaB dza/\dza

oo
Since this equality holds for all f e C_ (UmmU[3 ) we see that

8y = (gaﬁ)m1naﬁ &g for all o and B.

But this means that { &, } defines a section in RXg @(§m1}f’)) =
= H°(X, (9(5“1/{)). Conversely, the arguments above show that such
. , //' 0y
global sections enable us Vo conmstruct linear forme on [ (X, E°7'(E))

and they wvanish on the subspace ([ (%, £(£)))s This completes the proof.
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2e%a Divisors and their Line Bundles
A divisor on X is a finite colilection { P9V, } where { Dy see P }odis

a finite set of points on X and vy eve ¥y are integers., We write
b= L v,§
17pg
Hence the divisors is a free abelian group where the points on X give

s free basis. We can add divisors and so on,

The degree of a divisor I = I Vigp is defined as the integerx
i

L v, ond this integer is denoted by 8]

L) ..
N e

2.3¢%1e The divisor of a meromorphic function

If £ is a meromorphic function on X, the zmeros and the poles of f

is & discrete subset. Since X is conpact there are only finltely many

zeros and poles and we get the divisor & = div(f) = & viﬁp
i

where A >0 when f has a zero of order vy at the point Py s while v, <0

+f £ has a pole of order vy a8t the point Py o
Divisors arising from globally defined meromorphic functions on X
are called principal divisors, The principal divisors forxm a subgroup

because div(fg) = div(f) + div(g) when f and g & /rkxgﬁkx) , where %

is the sheaf of meromorphic functions on X which are not identically zexo.

2.3.20 The sheaves (7(8)

Let 6 = £ vjép be a divisor on X. We get a sheaf (P(8) as follows:
T
If U is an open subset of X then /rEU,éj(é)) consdésts of all meromorphic
functions £ on U satisfying div(f) 2 & din U, This means that f is
with vy >0 t%gﬁy

nolomorphic outside the points { Py } and if P, ® J'we reguire thai

has a zero of oxder ; vy and if vy < 0 we require that f has a pole of



order & Voo
In each chart U we can find some f_ ¢ f(Ua JNE) such that
div(fa) =8 in U and it followg that the functions EaB = f_B/i‘cz is
a cocycle in iq(W, @:&;) and hence they represent a cohomology class
E in H‘I(Xg@w)o
We claim that £ depends on the divisor & only. In fact, if { g, is

another set of meromorphic functions satisfying div(ga) = & in each U,

il

. . %
amd if E' gg/g‘a then we observe that & = ga/fa 6f(Ua,@ ) and

B

B

we get §ta5 (E'B/Eé)s’aﬁ which means that the cocycles { ’éaB } and

{ £ } are cohomologous.

Summing up, & divisor & gives a cohomology eclass in H1(X, W‘”) which

we denote by [a].-

If &= [ 67 +then we get the sheaf (P(&) and we clain

Lemma 2.3.4, ((8)EO(E) as sheaves on X

——

Proof Let E’aﬁ = { £4 / £, } be a cocycle which represents & = ]:_ 5 1.

The definition of the sheaf (V(8) shows that if £ e/ (U,(0(5)) then
div(f) 3 div(f)) in UnU, and hence g, = £/f & /'(Unva,@)

and the family { &, }  satisfies &g = (fa/fﬁ )ga = ﬁﬁaga « These

equations means that { &, }oe (U, (0(E)) and Lemma 2.3.4. follows.
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2¢3.5. The Riemann-Roech Theorem

Let & be a divisor. Theorem 201e and Lemma 2,3.4. imply that

HO(X, &(8)) and H1(Xpﬂ9(6)) are finite dimensionsl complex vector space

Hence we can compute their dimensions and to simplifly the notations we put

n,(8) = aing(H°(x, 0(5)) and b, (s) - aim,(H' (%, 0(8))s Recall also that

e
]6] is the d@;ee of the divisor, With these notations we can prove
Proposition 2.3.5. ho(é) - h1(6) ~ 18] = a constant X for all

divisors & ,

Proof If & is a given divisor and if P is a point on X it is sufficien

to prove that h (8) ~ &, (8) - |6 = n (8') - 0, (8') - |6 where

&' = & + CP o In fact, if this is proved® we can move from the
divisor &: to any other divisor in a finite number of steps, where we add
or subtract single points on %o

So let 6' = & + & o This means that in the sheaf ©(8') we allow

sectlons to have a pole at p with one order > then the order of the pole

at p for sections in&(8). Or , if & contains p with some v(p) > O then
seotions in &' are allowed to have zeros at p with mulbtiplicity v(p)-1.

Outside the single point p, the two sheaves 2(8) and @(5') are cqual.
Hence the quotient sheaf Kp(S?l/éb(é) has stalks zero outside p and

at the point p, the stalk is C. This means that % = O(s)/0(8) is a

80 called scyscraper sheaf. Obviously ﬂ€ is fine and/r(K,%E) = (o,
The exact sequence of sheaves 0> (8)*0(51) > — 0 gives the

long exact sequence 0 —> HO(X,(?(6))~%*HO(X,59(6E)—>/P(X,&E) -
- H1(X,C7(6))"?‘HT(XQC?(é'))-“?> ¢ and computing the dimensions of these

finite dimensional complex vector spaces we . gsee that
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b (8) - h,(8) + dimg (/7 (%, ®)) = n (6') ~ ny(8")
Finally, we observe that |8'] = |&] + 1 and since dimc(/’(X,&l)) =
the result follows.
How we compute the constant which appesars on Proposition 2.3.5,
It é = 60 ig the zero divisor, i.,e. no points with v % 0] appeafg then
67(6) = (7 and |8] = 0 and we get

K = aim{ BO(X,(9)) - ain(E (X,0))
Since global holomorphic funciions on X reduce tqﬁonstamts we see that

aim(H°(X,0)) = 1. 1If we apply the Duality in Theorem 2.2, with

E=1 we get (H(X,0)% « %X, 0(X)) = i%x,0"1° )

and hence aim(E (X, #)) = aim( EO(X, #'*° )) and this integer is denoted by

g and we conclude that X = 1 -~ g,
2:3s6, The integer g is called the genus of the Riemann surface X.

Hence g = dimc(u4 ) wheve A= /”(X,é71’0 ) is the linear space of
abelian differentials on X. It turns out that g is related to the

topology on X. In fact, consider the sheaf C vwhose stalks are the complex
fidld C. Then we can prove
Proposition 2.3.7. dim,( # (X, ) = 28
Proof If f e/ (U, ) for some open set U then df = of ¢ f(UpéQ190)
and of eourse f = O if and only if f is locally constanty j.e. if
f E,WYU, C )e In a chart U, we can solve the equations f = Pg/aza

which gives fadza ='Bg and hence we get the exact sequence of sheaves
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0 — §.~4767 jaa(y1’0 —» O and the long exact sequence
0 — 1%(x,¢ ) = EO(X,0 ) — 10 (x, 0 V°) >yl (x,0 ) - B’ (%, [7) ~3
o1 (%, OV10) > E2 (1, 0) > B2 (X, 0)
Here we recall that Hz(X,@7) = 0 and that the Duslity applied to
£ =K gives dimc( H1(691’O)) = dimy( HO (X, (7)) = 1.
Of course HO(X, ¢ ) = C because X is connected . Finally, since ¥

is oriented by the complex analytic charts it follows that HQ(X, C ) =
and the exact sequence above is reduced to the exacit sequence
0 —» 80(x, 0 0% — 5Y(x,0) 2 (X,(0) —7 0

Another application of Theorem 2.2, gives dimC(H1(X9£9)) =

= dimC(Ho(X,éaj’o)) = g and we can read off Propogition 2.3.7.

2:3¢8, Remark Using the De Rham isomorphism we deduce an interesting

consequence of Proposition 2.3.7. In fact, H1(X, ¢ ) is the quotient
space /ﬂ(x,é?q)/ a(/ (X, )) = closed 1-forms/ exact 1-forms
Now we observe that if w E¢4 then w is a closed differential

1-form and hence w has a cohomology class [jw 7 in Hq(xgg Yo The exact
sequence which appears in the preoof of Proposition 2.3.7. shows that
the map from,d%? into Ha(X, C ) is injective, i.e. abelian differentials
cannot be exact . This is easy to prove direcily,; for if we assume that
oo . .
w = df for some £ ¢ C (X} and restrict the attention to a chart
- . 2¢/ , e /ve dn el

Uy » then w =hdz = 2£/oz dz, + Pf/Pza dz, and we get 2£/pn, 0

which means that f €/ (X,(/) and hence f is @ constan%t so that af = O.
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Sunming up, Jg appears as a g-dimensional subspace of Hq(X9 2 ).
Now we can also consider the antkholomorphic differential 1-forms, l.e.

differential 1-foums which in a chazt Ua are given by (})ad‘;a swhere

the complex conjugate functions 9 Elf(Ua,éﬂ)o

—

If /4 is the set of antiholomoxrphic differential 1~fprms on X it

ig easily seen ﬁhatvggig and hence they have equal dimensions.
mon £ §ecoens® dimenstond arg@ t’?lrzdy//

Yow Ao A = Hj(x,g )  hold: £ So this means that if (A2is some

closed differential i~form on the manifold X, then there exists sonme

abelian differential 9 and some ¢! a«g such that w ~ (9 + 9') is exact.

2s3:9s The existence of meromorphic functions

If & is a divisor , then h1(5) is non-negative  and Proposition
2.3.5, implies that h (8) > 1 = g - |s]

So if p ¢ X is a glven point and if we choose § = = (g+1)&p s then
[8] = ~g-1 and we get ho(é) > 2 which means that /ka,é7(5)) contains
non~constant sections, i.e. there exists & non-constant meromorphic

function £ on X whose divisor satisfies aiv(f) 3 w(g+1)§p s Lo€o

f is holomorphic outside p and the order of its pole at p is at most

««(g”r?)o
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3. The Divisgor Class group

In Section 2,3, we defined the sheaf @{6) when & is a divisor and

proved the existence of a unique cohomology class & ¢ 1—11(}{,(92{") such that
E= {671, 1.ee @(E)2@(8). Let us now prove the converse.
Proposition 3.1, If & ¢ H%X,@a) then there exists a divisor & on X

such that & = [ & ]

Before we enter the proof we recall that £ arises from some cocycle

{ EaB } e 2 (If,X) and we can consider mercmorphic sections which arise

from a femily { £, EF(Ua,W? ) : £, = &anB in UanUB }. We denote these
globally defined meromorphic sections by [/ (X,72(E)) and prove

Lemna 3.2. [ (X, (E)) # 0 : . -

Proof We can use similar methods as in 2.3.9, In fact, fix some point
p € X and if v is a positive integer we consider the sheaf @(& Cpmv )
whose sections in an open set U ig X consists of families

{ &, Eﬂ(UanU,W’[) : g, = éO;BgB in Uny, OUB and div(ga) > - vﬁp g
i.€e we require that 8, is holomorphic outside p and allow poles of order
< v at the point p }. (F(& Cp_v) contains (I(&) as a subsheaf and the
quotient sheaf {FEV = (¢ Cpmv) /@(E) is a scyscarper sheaf whose stalks
vanish at all points except at p where (ﬁ?v)p = of

The e};act sequence O ﬁ@(&’,) @@(itp“v) > s 70 gives a long

exact sequence of cohomology groups. Here dimc( F(X9§£v)) = v while

Hq(X,(Jfﬂv) = 0 and we get the equation

ding(B(X, 0 (86,7)))~ aimo(i' (%, O(e6,™))) = v + 4
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where A = dimC(HO(X,@(E)) - dimC(H1(X, @(E)) is a finite constant, using

Theorem 2.7

In particular dimC(HO(Xgéy(E&va))) > v+ A and if we choose
v =-A+ 1 we get a non-zero section in 47(€Cp"v) and this section is
8 globally defined meromorphic section in the sheaf M2(E).

Proof of Proposition 3.1. Let { &;GB Ve 21([/79(ﬂx) reprsent £ o Lemma

3,2, gives a family { £ Ef(Ua,mz) 2 £ = gaﬁfﬁ in U{x(}U8 }

[

Since div(EaB) = 0 we get div(i‘a) div(fﬁ) in U, U,  and hence thex
exists a divisor & on X such that & = = div(f ) in each U, o Finally,
vepeating the construction in 2.3.1. we get L(E)FO(8).

Summing up, Proposition 3.1, shows that every & e H1(X,c?x) arises from

a8 divisor. Let uws introduce the following notations.
Let ;D denote the abelian group of divisors on X, i.e. the elements
in ) are finite swns I vib, whexe { p; } is a finite set of points on X
i
and { vy } are integers .
4 . . 3) . %
In Section 2.%.1, we defined a mapping & —> f §7] from into (X, ©)

and Proposition 3.1, shows that this mapping is surjective, It remains to

degcribe its kernel.

For this purpcse we introduge the Principal divisors which arise

from globally defined meromorphic functions on X when we put &= div(F)
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Let P denote the set of all principal divisors. Since div(fg) =
= div(f) + div(g) obviously holds when f and g ¢ /“(Xs,}'ﬂx)9 we see that

¥ is a subgroup of og .

The quotient group 'D/f) is called the Divisor Class group on X.
With these notations we prove

Proposition 3.3. ;D/f’ x~ }11(X,@X)

Proof Let us first prove that 6p < in the kernel of the mapping
6> [ 6] from o) into H (X,0%). So let 6 = aiv(f) where £ & / (X,77%).
Following the construction in 2,3.1, we can put fa = f in each chart U~ and
get the cocycle E’aﬁ = fﬁ/fa = 1 for all o« and 8. This means that E div(f)j
is reprasenkd by the unit cocyole { 8055 =1} and the corresponding

cohomology class is the unit element in H1(Xy@x) whose associated sheaf
is (1)
Conversely, let & £.) and suppose that [éj =0 in H' (x, 0% ).

This means that if we choose { £ ¢/ (U , M%) : aiv(f) = & in U, )

then the cocycle { gaB = fﬁ/fa 1 e Bq(fﬂg @x)u Hence there exist
{ g, e/-'(Uasﬁx) } such that ga/g;3 - fB/fcx in U, NUg which gives

oty = ngB » This means that there exists F ¢ fd(xmyx) such that ¥ =

g,f, on U, and div(?) = div(ga) + div(fa) = div(fa) = & in each U

This means that & = div(F) e 7 and Proposition 3.3, is proveds
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340 The subgroup .i)oa Recall that 1f & & JD then we get the

integer |8] = vy when 6 = I vi&P and we can consider the subgroup
i

2)0 o { [ i) s |8l = 0 }. We prove
Lemna .40 P <D Lise. laiv(®)[ = 0 for all ¥ e /7 (X,

Proof A meromorphic function F on X can be considered as a holomorphic

napping from the complex analytic manifold X into the Riemann sphere Sge

82 is the complex plane C1 with the point at infinity added and 1/z is

the local coordinate function at e , If p e X is a pole of F, then
Plp) = e,

Put l},a { D E 82 t p is & nonecritical value of the mapping o dicee

if x e F”q(p) then F maps some opeﬁ neighborhood of x biholomorphically
onto an open neighborhood of p } o It is easily seen that 82\11_ is a
finite set. In particular ) is an open and connected subset of 82 and if
p € {) we get the integer #¥ F"1(p) = the number of points x & X satisfying
F(x) = pe The function p > ¥ Fm1(p) is locally constant on.(l because T
is biholomorphic in & neighborhood of each point in F~ (p). Since () is

connected we get an integer w = ## F“1(p) for ali p e {) .

Finally, if p € S() we see that #¢ F '(p) = w if we comat the
" p-values with their multiplicities " . We apply thls when p = 00 and when

p is the origin 0 in C' < 8° and get l|div(F)| = w - w = 0.

3.5, Picard!s variety ;r(x)

Using Lemma 3.4, we gel the group 490/49 - H01(X9ﬁ?x) = {&=|8]:

Js] = 0}
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Now we begin to represent this group in another way. Consider the exact
sequence 0 ~»Z —» (7 2% &g % —> 0 which gives the exaot sequence
2
(

o]
0—u'(x, 2 )"E (X, Q) —> B (X,0%) —> H(X, 2)>0

as proved in Proposition 1.5.2,
IfE = | 6:[ is an element in Hq(x,(ax) we get the integer |8|. This

integer also arises in the exact sequence above , using the topological fact

that HQ(‘X, Z ) 4s the group of integers and hence the mapping

cs HI (X, 0%) - HE(X, % ) assigns an integer c(f) and it turns out

that o([ 61) = |8] for all divisors &.

In particular this proves that & ¢ H01(X, @x) if and only £ arises
from I (X,7 ), which means that there exists an additive cocyecle

{ 2. € Z1(l/7;[0) such that { & . = eZﬂiga‘B represents the
af of

cohomology class &,
Summing up, we have
Lemma 3.6, & € H01(X, (o= } if and only if & is represented by
a cocycle of the form { e%igaﬁ } where { 8yt }e Z1(//7, @)
Remark Of course, the arguments above do not provide a detailed proof

of Lemma 3,6, In particular we have used the topological fact which says
that we zlways have Hn( Yy, 2 Y22 7 when Y is an orientable compact

menifold of dimension n. This is applied with Y = X and n = 2 here.

For the sake of completeness we give a direct proof of one half of
Lemma 346, Namely, we can prove

Lemma 3.7 Let & E:Bo » Then [ 6] & the image of H'l(XQ@)o

Proof The image of H1(X,@) is a subgroup of i (%,0™) and if |€>I =0

we can write § as a finite sum Z 8, s where § = Cq o Z;p for some pair
: v v
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of points py 8nd q, in X, Hence 1t is sufficient to prove Lemma 3,74

for each &§ .
v

S0 let p and q be two given points on X. Then we can choose a finite

string of points g = Gy 3949 eee Qg =D where each pair (qvgqv+§)

belongs to a chart in X.

Since Cq - KP = (Cq -4

1 ) F oeee + (tq 14 }s it remains only to
o

q

9 g g=1

prove Lemma 3.7, when & = Cq - Cp ; where g and p are so close to each olhexr

that.there exists a chart Uo in X containing both g and p.

This means that we can choose a Leray covering { Ua }, where UO
appears and in addition this can be arranged in such a way that U0 contains
a relatively compact open subget Vo, where both p and q & VO while

v Ny

o NV, eare empty for all « # O, This is illustrated by the figure below

In particular we can assume that U0 is biholomoxrphic to an open disc

and Vo is a smaller disc inside Uo’ 80 that Uo \\?5 is an open annulus.
Let us now choose a meromorphic function fo on UO such that

div(fo) = ﬁq - Cp - Hence f has a simple zero and a simple pole in V_

and f is holomorphic and # 0 in the annulus U NV, o It follows that

we can select a single valued branch of log fo in this annulus and we put

cy e , o
g, = (2ni)” " log £, in U SV

If « # 0 then U, al, < Uo\\vb and hende we can introduce
the hqlomorphzc function 8y = 8y In Ua(}Uo and put Boaw = ™ By °

If both o and B are # 0 we put €y = 0. Then

{ gaB } is an alternating 1~cochain of o with values in C? and



the construction of [éj in Section 263¢1, shows: that
[‘ 2nl g
6] 1s represemted by { o ap }

Summing up, we have now established the following 3 isomorphisms.

1
Lemma 3.8, Ho1(’xv(9%) = 0@0 /p & E(xD)

KX, 2)

At this stage we consider the exsact seguence

o
0>C —> 4 "““‘”’b“o —> 0 which gives the long exact sequence
0— HO(X,(O1’°) ->H“(X,_g_) — H (X,/0) —> 0, as observed just above

2658 Remarke
Recall that H1(X, ¢ ) is a 2g-dimensional complex vector space and

identifying H' (X, 2 ) with a subgroup of H (X, C ) , we see that the

quotient group H (X,@)/H1(X,§ ) is isomorphic to the guotient group

y’(x) . H’(x, ¢)
u'(x,2) + 5°(x, &"*°)

2’ (X) is ocalled the Picard group of X and we shall soon begin to

describe this group in more detail, Let us first observe that Lemma 3.8,

now can be rewritten as

Proposition 3.9, Hl(, X, 0% = Q)O /P ’;—-“9&(}{)

We begin the study of 7(3{), Let us first recall

3.10. The cup product on g’ (X, &) »

Firsty; De Rham's Theorem shows that H1 (X,8 ) = closed/e.?cact differential

l=forms on X »
Consider next two 1_-»forms w and n on X, The exterior product wamn is

a 2«form which can be integrated on the compact and orientable manifold %

and gives the complex scalar f wA N
X
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& 1
Since U isTnon-degnerated bilinear form on H (X, C ), we can idenftify
#'(X, ¢ ) with its own dual spaces
In partionlar; let /7 be some differentiable curve on X. That is,

/Va.rises from a differentiable mapping /: fO, 7 —> X« Then we can

integrate differential 1-forms along [7 and the map which sends

Cs W ~—p _{w is a linear form on H1(X, i ). Hence there
F .
exists a unique element o(/') such that

ol Yuo = f!w for a1l ¢ = W inH1(X,£)

Of course, we can consider differentiable curves which arise as
finite sums of curves arising from maps J' E O,U =»X and in particular we

can consider loops which consist of finite sums of closed curves .

Since we restrict the attention to closed 1-~forms when we compube

([ ) for a given curve /7, we see that o(/7) depends on the homotopy
class of ‘/T‘onlyo

At this stage we understand the position of H (X, Z Y in n'(x, [P

o ’ .
In fact, H (X, 2 )& H,(X, & ) and the singular homology with values in 2

is a free sgbelian group of rank 2¢y where a free basis is provided Dby

2z gimple cloged curves /-1' coo /;g s and the homology elass of an

i=2g
arbitrary closed curve /—‘ = L Vs f’i for some integers Vy e v2g o
i=1

Summing up, the whole discussion above gives

Proposition 3,12, Let 0 ¢ H1 (X, € )o Then ¢ belongs to the subgroup

1{1(;{, %2 ) if and only if there exists a differentiable loop T on X

such that oW nfw for all closed 1~forms w on X.
T
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Recell that J(X) = H'(X,8) /( B'(X,2) + 4 ) The position of
H‘(x,g_) + A inside H1(X, C ) is clarified by the next result,
Proposition 3.13. Let ¢ ¢ H1(X, C ) be given, Then o ¢ H1(X,z) + A

if and only if there exisis & differentiable loop J in X such that
U9 = 5P for all 9 e
9-# .

Proof Suppose first that o = o(7) + 9 s where 7 is a loop and ? e A

Since ‘?Uﬂpo = 0 for all ¢ ¢ ﬂ we get

GU9 =;q> for all 9 e 4

Conversely, assume that there exists a loop 7 such that oL = )’(P
' T

for all 9 e A,

Let ‘P.] s00 ‘Pg be a basis for the complex wvector space —'qe The proof

Jev=g

3 oval is non-singular,
gV

of Lemma 3.11. shows that the matrix ( quU"@'v )

Introduce the complex scalars d = f-&v - oul,
| v

and solve the system of equations

J=g .
Z c P =d for 1 <v < g
51 j( @.j U v ) v g

Ueing these g complex scalars Cy eee c€§ we put o' = U + c1fP1 + see * cg‘Pg

and then o'v9 = 4{$. for each 1 { v gand c'u®, = 0P, = j’W.
v ‘7,V J J y J

for a1l 1 £ § £ g, It follows from Proposition 3,12, that o' & H1(X, Z )

and we conclude that o e Hq(X, Z )+ j , 88 reguired.
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3,14, The mapping from "Do/ﬁp into ;‘f(x)
Let us first consider a divisor § = Cq - ?;p where q and p are two poinis
on X Then § has an image in ﬂo/éa f;’j(x) and we let j(&) denote the

corresponding element in F(X).

Proposition 3.13. shows that if j e?‘(x) is given and if ¢ and o' are
two elements in X' {Xy C ) whose images both give j, then *the;"r:e exists a
ioop 7 on X such that GU® - g'U® mg_tp for all 9 e A ,

This can be expressed by saying that ?:’(X) is identified with the

dual space of ﬂ/ those linear forms which arise when we integrate

abelian differentials along loops in X,
After this digression we announce

Proposition 3.14, Let & = &q - Cp and choose some differentiable curve

ﬂin X which joins q to p. Then 3(8) is the element in 2‘()() which arises
from the linear form ‘P-}}):‘P on /49
Remark Observe that the resulting element j(&) depends on the two
points q and p only. For if /7' is another curve which joins g %o Py then
(/) o/ "1 is a closed curve sand S0 on

Proof of Proposition 3.14, By the duffe method as in the beginning of

the proof of Lemma 3.7, we can assume that q and p belong to a chart UO

where we have p,q € Voccho and a Leray covering { Uo: } where UO appears

and U, 0-—{’; are empty for all a # 0.

During the proof of Lemma 3.7, we constructed the cocycle { €40 }oin

1 et L
2' (U7, (?) where we recgll that g = - g, = (2ni)  log £,

and £ is a meromorphic function in U, with daiv(f) =b, A+ ?2

./Vaf’.r'cc’ﬁ /%c’ I"M/(/;’ /p/’ jfjm W/J(G/Ar/,re ) /%(o (,,ﬂj%M¢ﬂ¢A /’1’4’1]&5—3
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Now { Bup } £ H1(X,@) and in the exagt sequence
0 —>E(X, 07 ) =r'x,0 ) —H(X,Z) —>0 we get an clement
ceH (X, C) whose image in B (X, (P) is the cohomology olass represented
by the cocycle { €.8 }e
Identifying H%X,_g ) with closed/exact 1-forms, and tracing thiofugh th
identifications, it follows that ¢ corresponds to a closed t-form

wihech can be constructed as followss

Let { b, } be & partition of the unity, subordinate to the

covering { U, }o That is, each h, € Cooo(Ua) and I h = 1. Since

Vo o U0 and Uan;f_o are empty when a # O, it follows - that hO

satisfies ho'n 1 in a meighdborhood of -fo .

To each @ we put H = I h-ﬁgaﬁ . Then { H, e Coo(Ua) 7 and
since { gaﬁ } € Zq( UZ,@) and L ha = 1 , a compuation shows thatb
‘ o

the (o,1)«forms SHa =—§HB in Ua UB o Hence there exists a glo ally

defined (0,1) =formWon X satisfying W= aHa inU,

UJ is a closed form and ail our identifications give

J{8) = the image of W in ?(X)p Hence Proposition 3.14. follows

if we can prove that Wue = jw/\ ¢ = ,(‘P for all ¢ & .4 s where
X 7

/-Tof course can be chosen sc that it Joints ¢ and p and stays inside the

open disc Vo °
To prove the egquality above we recall that gaﬁ = O when both a« and f

are # O while g == g = (2ni)”1log £, =&

a0 Q

oo

We conclude that if « # 0 then

Hy = I hggig = gy = hogy and Hy = Zheg g ==(1-h)g, =



==gy * hog, and it follows that (W= g,Jh,

In particular supp(J) < supp(d hé)c:c Uo‘\,V;

Let us also recall thet ho = 1 dm al neighborhood of ?0 s

To make everytihng explicit we can assume that we are working in a disc
in the complex z-plane (corresponing to the chart UO }  and assume that

h(z) = 1 when |z] = 1 while supp(3h) < 1< [a] <2

and finally 8o is holomorphic and = (211:3'.)“1 log fo o A0 #?Urhﬂ/“5

e
1/2 < |zl <2 and q and p belong to |z < 1/2 . (is holomorphigf:\
Pinally, if ¢ € 4 is given we can write 9 = @0(z)dz in |z{<2 where @0
Let us now consider the differential fornm i

?ogohodz in the open annulus 1 < la] < 2
Siee "?ZJL An holomorphic there we see that
- S WA
d(‘Pogoho dz ) &(@Ogo h, dz ) ¢

and Stokes Theorem gives

f Wa o = j WA - = f 98,87
X

1<{z] <2 [z]=1
where we used the fact that supp(l0) < Uso \'v‘o and that ho(z) = 1

when |z] = 1 while ho(z) = 0 when |z| = 2,

Now ¢O is holomorphic in the dise {z| < 2, so we can choose a

primitive functilon @ s Loes @ is holomoxphilc in lzl < 2 sand @‘ = @0

A partial integration gives = IJ{. @Ogodz = ,.Jf @80' dz
7| =1 fgl=1

Finally, g,' = (21\*.1)"1 £ /fo and the Residue Theorem shows that

the last integral is §(q) - §(p) = J/@ » This completes the proof.
7



