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Abstract 

The kinetics of the multicomponent condensation under dynamic external conditions 
is described analytically. The multidimensional problem is reduced to the one-dimen- 
sional case. Concrete expressions for all main characteristics of the process are obtained 
with the help of an iteration procedure. As a result an analytical theory for the whole 
process of transformation of a metastable multicomponent mixture of vapors into a state 
of liquid disperse phase is completely constructed. 

1. Introduction 

The present paper is devoted to multicomponent condensation kinetics in the 

most natural situation when the variation of external conditions has a rather 

smooth character. 

The theory presented here is based on the classical theory of nucleation. The 
basic concepts of the classical theory of nucleation are founded by Volmer [l], 
Becker and Doering [2], Zeldovitch [3], Frenkel [4], Kramers [5]. Some 
reconsiderations were made by Lothe and Pound [6]. The modern state of the 
nucleation theory can be characterized by the contributions of Reiss [7], Reiss, 
Katz and Cohen [8], Feder, Russel, Lothe and Pound [9], Hung, Katz and 
Krasnopoler [lo], Reiss, Tabazadeh and Talbot [ll] and others. 

The creation of stationary nucleation theory allows to study kinetic problems 
of nucleation. Among the first publications devoted to this topic one must 
stress the publications by Wakeshima [12] and by Raiser [13]. The theory of the 
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homogeneous decay of the metastable phase was founded by Grinin, Kuni and 
Kabanov [14]. The theory of homogeneous condensation in the dynamical 
conditions was examined in [15,16]. The theory of heterogeneous condensation 
was investigated in [17,18]. 

Binary condensation was investigated by Reiss in [19] and by Stauffer in 
[20]. The rate of binary nucleation was obtained in [19] and was corrected in 
[20]. The stationary theory of binary condensation with the help of Lorentz 
transformation was investigated in [21]. 

All above cited publications form the base for the theory of the decay of 
metastable mixture presented here. This publication is based on ideas proposed 
in [22-241. 

Some concrete model has to be accepted in order to give an opportunity to 
present concrete calculations. This model includes the following positions: 
-The system is homogeneous in space. 
-The regime of substance exchange between an embryo and environment is 

free molecular one. 
- Thermal effects are neglected. 
All these assumptions can be overcome by modification of the theory and are 
not observed here due to the lack of volume of the publication. 

Coalescence is not considered here. Asymptotical expansions are constructed 
in [25,26]. 

We shall choose the system of unit volume and measure all energy-like 
values in thermal units. 

2. Embryo free energy 

In capillarity approximation we can write the following expression: 

for the free energy F of an embryo containing v, molecules of component a. 
The value of F is taken in units k,T (k, is the Boltzmann constant, T is the 
absolute temperature). The value u, b is the partial molecular volume of 
component b in the liquid phase. The value of a is defined from 

(2) 

where y is the surface tension measured in units of k,T, S is the surface area. 
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In the liquid solution we have for b, 

(3) 

where f, are the coefficients of activity. These coefficients are regarded here 
and below as functions of v~/C, Us. When f, = 1 the solution is an ideal one. 
Here rz, is the molecule number density of the vapor of component a, it,, is 
molecule number density of the pure vapor of component a saturated over the 
plane liquid phase. 

One must note that the analytical structure of expression (1) will be essential 
in justification of further approximations. We suppose also that coefficients h 
are rather smooth functions of their arguments. 

3. Flows and velocities 

Let us introduce the following values: 

We have the following expressions for flows of the vapor molecules on the 
droplets: 

C({%,,>) -rJ,, S% 5 (5) 

where vt, are thermal velocities and condensation coefficients (Y, are put to 
unity for simplicity. In any case we can put them into effective values of 
thermal velocities. We can rewrite the formulas as follows: 

(6) 

where 

7, - hJ4‘z-’ (7) 

is some characteristic time. For fraction W:/Wl we obtain 

(8) 

which does not depend on droplets size. 
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Now let us define inverse flows. The equilibrium distribution must satisfy the 

following equation: 

w,‘n”({u~}> = W,(v, + 1, {%b)bh?) n’(u, + 1, {~b)h)bZJ. (9) 

As far as 

~“(hJ> = ~exp[-W~J)l j (10) 

where in the last equation N is the normalizing factor, we have for W, the 

following expression: 

W,(ua + 13 {~bJb#J = w,+ exp[-F({v,l) + F(v, + 1, {~bl-bfa)l . (11) 

In order to justify the substitution of finite differences by the derivatives we 

calculate the free energy derivatives for super-critical embryos: 

d2F 'b 

--+ ua'a(cb 'b'b) 
-0. 

au, 

(12) 

(13) 

To obtain (12), (13) we must take into account the Gibbs-Duhem equation, 

which realization in this particular case is the following one: 

(14) 

We must get this equation in the limiting case of supercritical embryo 

corresponding to the limit in (12). So we have 

(15) 

This equation helps to expel the crossing terms in derivatives of dFldvi. So we 

have for inverse flow 

(16) 
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For velocity of v, changing we have 

dv (C, vbue b)2’3 a- 
dt -- 7, 

545 

(17) 

4. Supersaturation and ideal supersaturation 

In order to characterize the power of metastability in the system we shall 

introduce supersaturations bY 

So the laws of growth can be rewritten in the following form: 

(18) 

(19) 

To extract the external influence we introduce the values of ideal supersatura- 

tions as supersaturations which can be formed in conditions when there are no 

vapor consumption by droplets. We shall mark them as Qa. The role of these 

values is stressed by the fact that they are controlled by external conditions. 

Moreover one can see that all essential external influences upon the system are 

going through the variations of the ideal supersaturations. So we have 

Here ntota is the total molecule number density of component a. 

Traditionally the smooth character of ideal supersaturation variation is 

ensured [16-B] by power approximation of ideal supersaturation in time. 

When this approximation is adopted for one component it is necessary to 

justify this approximation for another components. 

In the case of isochoric cooling due to the well known thermodynamic 

formula, we have 

n&3 = n,,(Td exp P, ( T)> (21) 

nbb(T) = nbb(To) exp Pb ( -y), (22) 
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where p, and @, are partial molecules heats of condensation. Hence, we come 

to the following equations: 

(23) 

. (24) 

When @a is given by the power approximation 

@&) = @Jto) ($y” 
5 

(25) 

with parameters t, and m,, the variation of the temperature occurs according 

to 

So, we have for Qb the following expression: 

q(t) = @&J ($yoma’Pa . 
zc 

It is also power approximation with parameters t, and mb = m,&,i/3a. 
In the case of isothermal compression we have 

wo > 
@a(t) = @&“> v(t> ) 

where V is the volume and 

(26) 

(27) 

(28) 

(29) 

Hence, it follows that power approximation of one component ensures the 

power approximation for another component with the same parameters. 

In the case of adiabatic cooling the temperature and volume are connected 

by the equation 

T(t) V’-‘(t) = T(t,) VYml(tO) , (30) 

where 
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(31) 

where ng is the passive gas molecule density, cp a, cp g, c, L1, c, g are heat 
capacities of component a and passive gas under the constant pressure and 
constant volume respectively. So we have 

Qa(T) = QO(f) l’(‘--l) exp( -p, 9) , 
0 0 

(32) 

(33) 

Due to p, % 1, Pb 9 1 for the majority of substances in ordinary thermo- 
dynamical conditions the relative deviation of the temperature is small and we 
have the following approximative result: 

and this case is reduced to the case of isochoric cooling with renormalisation of 
values 

(35) 

The variation of the external conditions leads to the metastability in the 
vapor mixture. But at the beginning of the process of condensation the power 
of metastability is rather low, the activational barrier of nucleation is very high 
and practically in the system there is no droplets of the new phase. We shall call 
this period ‘the period of preparation’. 

The action of external conditions leads to an increasing of the power of 
metastability. So, embryos of the new phase begin to appear in the system. 
Certainly, they begin to accumulate the molecules from the vapor. This 
accumulation is effectively compensated by the action of external conditions. 
At some moment the power of metastability attains a maximum value. Near 
this moment the majority of the supercritical embryos are born. We shall use 
for this period the abbreviation PIFD (‘the period of intensive formation of 
droplets’). 

Later the intensity of accumulation of the vapor phase by droplets increases 
and the external conditions cannot compensate for the exhaustion of the vapor. 
So the power of metastability falls and the rate of nucleation vanishes. Now we 
have a system with a fixed given number of droplets. We shall speak about the 
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evolution of such systems as about ‘the further evolution’. This evolution will 

be investigated up to the beginning of the process of coalescence. 

Let us stress that this picture is too general and a very approximative one. 

All necessary details, proofs and estimates will be given below. 

5. Stationary intensity of embryo formation 

In order to obtain the intensity of formation of the droplets we shall note the 

following facts: 

- Under the conditions of validity of the capillarity approximation for the 

critical embryo, the main role in vapor consumption is played by supercritical 

embryos, i.e. by droplets. 

- Under the same conditions as the current ones the state of near-critical 

embryos can be regarded as quasi stationary one. 

These facts can be proved analytically. 

For stationary rate of nucleation we have 

where 

(37) 

and index “c” here and below marks the values at the saddle point. The value 

of 2 is the factor of Zeldovitch [3,20] and it is a rather smooth function of 

supersaturations. All other terms in (36) are initiated by the equilibrium 

distribution in the region of small sizes of the embryos. With probability V$ the 

critical embryo is formed on the a component molecule and for formation of 

the critical embryo it is necessary to spend the work A,F. 

The near-critical region is extracted by the condition 

The time of relaxation in the near-critical region can be estimated from the 

above. Let us transmit by linear transformation to the set of V, i which reduces 

the square form of the free energy to the sum of squares. Thanks to the fact 

that the set {Cj 7~~ j, {pi}jI:-‘} diagnolizes the square form of the free 
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energy, it is easy to do. Every V, i has the same scale as q has. Then we have 

t 
= (diam v,)’ 

rel 
K ’ 

where 

diam V, - perim vC , perim vc = F [2/($)]1’2, 
*I 

(40) 

(41) 

WC = min(Wf ,) , 

(42) 

and derivatives are taken at the saddle point of the free energy. One can obtain 
this estimate by sequential considering the diffusion over the first and over the 
second variable. Long tails of the near-critical region along the diagonals of a 
rectangular with coordinates 

are omitted 

6. Concentration of the solution in droplets 

Now let us define the concentration of droplets at this period. The dynamic 
equations for pi can be written in the following manner: 

(43) 

The first term of the last equation is not expressed through pi because we work 
now in the set of variables {pi}, (C b vbue b)2’3/Cj 9. The stationary solutions 
are obtained from 

5i - Pi.h(Pi) 

‘i 

= EL, 2 lj - Pjfi(Pjui) 

1 

‘j 

(44) 

i 

The values of pi are not independent but satisfy the obvious restriction 
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(45) 

So we have to use the Lagrange method. Let us measure time t here in units of 

(C b v,,vp b)2’3/Ci v/. We obtain the potential U from 

dk. au I= _- 
dt ap, ’ (46) 

The function U exists due to the homogeneous character of restriction (45). 

The equation of conditional extremum for U will be the following one: 

with arbitrary (Y. This equation leads to 

The value of Q must be chosen according to (45). Let us introduce 

and 

A=c ~3~. 
i 

From (48) we see that 

(47) 

(48) 

(49) 

(50) 

(51) 

is invariant for every i. In the approximation of the ideal solution eq. (48) can 

be rewritten as 

(Y + 6, = (I& - 8,q)A (52) 

and gives an expression for ai through A. Substitution of this expression into 

(50) leads to 
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A=?=. 
7, 

Condition (45) also must be expressed through A: 

C 5i + aTi _ 1 

i l+~~d ’ 

551 

(53) 

(54) 

Equations (53) and (54) coincide when (Y = 0. So (Y = 0 ensures an extremum 
and the condition on A is reduced to 

l=+&. (55) 

Due to 5 > 0, 7i > 0, the uniqueness of A is obvious. The last equation is an 
ordinary algebraic equation of power IZ. As far as in solution ordinary there are 
no more than four or five components for which this equation can be easily 
solved analytically. This equation can be also solved by an iteration procedure. 
For a rather intensive process of condensation it is necessary to have at least 
one supersaturation many times greater than unity. This value(-es) can be 
regarded as the leading parameter in the iterational procedure. 

Considerating the limiting case one can prove that this extremum is stable. 
On the base of A, concentrations can be reconstructed with the help of (51). 
Only there we shall use condition pj > 0. The characteristic time of the 
relaxation can be found from 

t rel =maXi{+ (s)} , (56) 

where the derivative must be taken at the stationary value of the concen- 
tration. Here we must put all values to some characteristic values at PIFD. 
They must be taken from further consideration or by simple estimates. Under 
the conditions of applicability of the capillarity approximation for the descrip- 
tion of the critical embryo the following inequality: 

he, 4 At , (57) 

is valid where A marks the variation of the magnitudes during PIFD. After 
obtaining the value of At we can prove this inequality analytically by simple 
substitution. 
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7. Stationary rate approximation 

Let us denote some moment which belongs to PIFD as t, and mark all 

values at this moment by index “*“. For the height of the activation barrier we 

have the following approximation: 

Let us calculate the derivatives in this approximation, 

The last term on the r.h.s. of the last equation is important as far as 

6, = 2av,, .+vi”’ 

at the saddle point. Here 

‘+ = 7 ‘, b 'b 

and, hence, 

b, = b, z 

at the saddle point. So we come to the equation 

dF c- v+ C _-- 
db, *, i 

We can obtain this equation also by differentiating the explicit result 

F, = +avyz. 

Let us introduce 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

In the capillarity approximation these values are rather great in comparison 
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with unity. So the relative variations of 5, at PIFD are less than r,‘. Moreover 
we can obtain that during PTFD it follows that 

(66) 

It can be proved that during PIFD there is no full compensation in formation 
of the droplets by increasing the supersaturation of one component and by 
decreasing the supersaturation of another component. 

On the base of obtained expansions the following approximation: 

(67) 

can be constructed. 

8. Period of the intensive formation of droplets 

Due to (67) at this period we have approximately 

5, = @a * (68) 

in all functional dependencies except (67). We shall regard Al;, as P~({@~ *}). 
So, the following correspondence can be obtained: 

dv LL dv a=a-L 
dt pb dt ’ 

For the velocity of growth we have 

We shall use the variables 

(70) 

(71) 

l/3 
Pa=va ’ 

Their velocity does not depend upon the values of these variables, 

(72) 
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(73) 

Let us introduce z, as the coordinates on axis p, of the embryo formed at 

t = t,. Then 

’ dp 
z, = J $dt=h,(t-t,). (74) 

Instead of the distribution functions over {v,}, t we shall use the distribution 

functions over {p,}, t. We shall mark them by the letter 5. We can also consider 

instead of the full distribution function s( {p,}, t) the brief distributions 

s,(p,, t). We shall normalize them on the total embryos number in unit volume. 

Zeldovitch equation can be rewritten as 

as ds. dp. z=_rr 
at dp; dt (75) 

with the well known solution 

sc(PiT t> = S,(xj) ) x; = z, - pi . (76) 

To obtain the form of functions s,(x,) one must use the boundary condition 

in the region of rather small sizes. Namely, we must use the boundary 

condition at the bound of the near-critical and supercritical region. One can 

prove that in a macroscopic (thermodynamical) description of the critical 

embryo the quasi-stationary approach is valid. So have 

The solutions of the Zeldovitch equation have the form 

Due to 

(77) 

(78) 

(79) 

we can consider in the set (75) only one equation. 
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9. Balance equation 

To obtain &, s,, the dependence on time and on x,, it is necessary to 
consider the balance equations for the substances. Let us denote the number of 
a component molecules in all supercritical embryos as II,,. Then for g, we have 
the following equations: 

g, = ‘(za -x,)3+Lx,. I aa 
-m 

We have a simple connection between g, and g, , 

(80) 

Balance equations are written in the following way: 

q = 5, + gi . (82) 

Let us linearize the ideal supersaturations as functions of x,: 

@a = @a * + k,x, . (83) 

After obtaining the explicit formulas one can 
linearizations. 

easily check the validity of these 

On the basis of the approximation for the rate of nucleation one can obtain 
the approximation for the stationary distribution function: 

(84) 

Taking into account the balance equations and expressions with linearizations 
we obtain 

where 
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(87) 

Then from this expression we can find the closed equation for g,(z,): 

The structure of this equation coincides with the one component case and the 

methods from [15-181 can be applied. It is not necessary to analyze it here. As 

result we obtain the explicit formulas for all characteristics of PIFD and can 

directly check all assumptions made above. 

The crucial point in the description of this period is the solution of the 

equation for the parameters of the spectrum. We can write this equation as 

follows: 

Js(cPa,, ~3~) q = k4n,,h, x const. (89) 

The value of const depends on the manner of choice of t,. When t, is chosen as 

the moment when the droplet formation is at maximal intensity or the moment 

when half of the total number of droplets is formed then the calculations can 

be made with the help of the procedure described in [17,18]. So we can get all 

necessary information about the considered period. The equation of the 

parameters of PIFD is an ordinary equation. We can easily solve it with great 

effectiveness by iterations considering 

as the unknown part. In the reconstruction of t, and @a _+ on the base of the 

already known value of F, we can construct internal iterations in the manner of 

heterogeneous condensation kinetics [27,28]. In further constructions we shall 

use the approximation of the ideal solution. The generalization is obvious. 

Let us stress that the given description is based on the thermodynamical 

capillarity approximation. Although the capillarity approximation cannot be 

observed directly in the final formulas, it must be taken into account in 

justifications of approximations (67), (73), (84). These justifications are based 

on the analytical structure of the expression for the free energy in the 

capillarity approximation. Certainly, it is possible to include here the micro- 

scopical corrections to the free energy. 
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10. Further evolution 

Let us stress that soon after the end of PIFD the size spectrum is 

monodispersious in pi. So we can write evolution equations as follows: 

(90) 

where S = (C, u, b v~)“~. For arbitrary components of the embryos with given 

S the increasing of V, initiates the decrease of dv,ldt and the increase of du,ldt 

for another component. Analogously, the increasing of u, initiates the decrease 

of du,ldt and the increase of du,ldt. Hence, the size spectrum remains 

monodisperse in p,. From the last equation it follows that 

(91) 

and the velocity of the S1’2 growth depends only upon pa. So it is constant for 

all embryos. As soon as after the final PIFD the spectrum is monodisperse, it 

remains monodisperse in the further evolution unit coalescence. 

In the monodisperse (in S”2 and pa) approximation the system of kinetics 

equations can be rewritten in the following form: 

(92) 

where N is the total number of droplets. 

We shall describe the further evolution on the example of the isothermal 

evolution with a homogeneous source of vapors. The situations considered 

above can be in some sense reduced to this one. If m, < 3 for all components, 

the period of essential formation cannot be reproduced, during further 

evolution, more than a number of components. We shall investigate this 

situation. Even in this situation the second peak of droplet formation can 

appear. This is obvious from comparison with the situation when we have a 

vapor mixture of substances which cannot be mixed in the liquid phase. So we 

must utilize the methods developed in the description of the simultaneous 

action of heterogeneous and homogeneous formation in the dynamical condi- 

tions [29]. This forms a separate publication. Here we shall analyze the 

solutions for the last kinetic equations with given N. 

To investigate these equations we can apply some methods of investigation 

similar to the situation of the decay of the binary mixture [30]. So only new 



558 V. Kurasov I Physica A 207 (1994) 541-560 

methods will be discussed here. We shall leave out the activity coefficients for 

simplicity. These coefficients must be introduced in every place where concen- 

tration appears. The evolution equation leads to the following equation for S: 

In initial approximation we consider S to satisfy the following equation: 

(93) 

(94) 

which can be easily integrated. On the base of S as function of time we can 

obtain V, as functions of time from the first order linear differential equation 

(95) 

Actually we are now at the first step of the iterational procedure, which can be 

continued in an obvious manner. The values of S(t), v,(t), q,(t) obtained at the 

previous step are the initial values in the iteration procedure: 

dva (i+l) S(i+l) ‘a (i+l) V a (1) ~=- 
dt 7, 

@/Ny-- 
aa c h ‘b (I) 

(96) 

(97) 

In order to investigate the final period one can take as initial approximations 

the new values of v, ,im. These values can be attained when all supersaturated 

substance is in the droplets. We can define these values from the equations 

Then we can calculate S in initial approximation, 

‘lim = (T 'b lim ut b)*” . 

(98) 

(99) 

Several intermediate approximate procedures must be taken into account 

also. At some periods of evolution when @a + 1 we can neglect va / C b vb. Let us 

stress that for the possibility of rather rapid condensation it is necessary that 
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coo B 1 (100) 

for some component a (we choose components in such a way). So we can 
substitute 

V, ‘a lim 

-+ ‘alim + ‘b+a ‘b ‘b ‘b 
(101) 

and utilize this substitution in the whole evolution process. 
We must also stress the possibility 

basis of the initial approximation 

“b = ‘b lim ’ 

The next approximation is obtained 

of investigation of the final period on the 

(102) 

bY 

(103) 

s(i) = (C V (104) 

The combination of the last iteration procedure for one component and the 
previous iterational procedure for another component is also very effective in 
intermediate situations. 
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Abstract 

The process of nucleation is described by an analytical theory which takes into account the 
influence of the profiles of density and the temperature around the droplets. The theory predicts 
all main characteristics of the process. The comparison with the already known results is given. 

1. Introduct ion 

Among numerous examples of the phase transitions of the first order the case of 
condensation of supersaturated vapor into a liquid phase is investigated most completely. 
Namely, the new methods in the description of the phase transition of the first order 

are introduced in this example. The classical theory of nucleation was formulated by 
Becker and Doering [1] and was completed by Zeldovitch and Frenkel [2] at the 
end of the forties. The formulation of the classical theory of nucleation did not solve 
all the problems in the description of the first order phase transition. The classical 
theory was reconsidered by Lothe and Pound [3] by some corrections. The role of 

such corrections is the matter of discussion during the last 30 years. The construction 
of realistic kinetic pictures of the phase transformation was started by Wakeshima 
[4] and Raiser [5]. These efforts were continued in the last years. As a result the 

kinetic theory of the homogeneous condensation after the instantaneous creation of the 
supersaturation was presented in [6]. Some kinetic problems of the phase transitions 
under the dynamic external conditions were investigated in [ 8 ] by means of the steepest 
descent method and in [7] with the help of a iteration procedure. A complete theory for 
the heterogeneous condensation under the same conditions is given in [9]. The theory 
for the multidimensional kinetics of  the phase transformation is presented in [ 11 ]. 

Elsevier Science B.V. 
SSDI 0378-437 1 (95)00425-4 
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All the kinetic theories mentioned above use the free-molecular regime of the growth 
of the droplets. This implies the collective character of the vapor consumption by the 
droplets. So, the vapor in the system is regarded as being homogeneous in the volume. 

Due to the consumption of the vapor by the super-critical embryos the density of 
the vapor around every super-critical embryos is smaller than the average density in the 
volume (at least than the density far from the droplet). The consumption of the vapor 
in the region near the droplet initiates the process of diffusion. 

In many important cases the process of diffusion cannot completely compensate the 
consumption of the vapor. Thus, one can observe the profile of the density of the vapor 

around the droplet. Only in the case of the "pure free molecular regime of the substance 
exchange" this effect can be neglected. 

The same picture can be observed in the distribution of temperature around the 
droplets. The extraction of the heat of the condensation leads to the increase of tempera- 

ture around the droplet. The process of heat conductivity can compensate this extraction 
only partially. The mathematical structure of equations in this case resembles the case 
of the density profiles of substance. In order to present the most simple variant of the 
theory which is easy to understand on spot we shall take into account only the density 
profiles of the substance. The generalization is rather obvious. The situation of the decay 
of the metastable state of the vapor will be considered as the model for the external 
conditions. The generalization for the external conditions of the dynamic type [9] is 
also presented. 

The aim of this publication based on [ 10] is to construct a theory of the condensation 
when the density profiles are taken into account. 

Due to the lack of the volume only the sketch of such a theory will be presented. 
This publication has the following structure: 
- In Section 2 the density profile of the single droplet will be considered. 
- In Section 3 the boundary of the region of the nucleation will be extracted. 
- In Section 4 some kinetic models of the global evolution of the phase transformation 

will be presented. 

- In Section 5 the theory will be spread over all regimes of vapor consumption. 
All results will be valid only when the critical embryo can be described with the help 

of the capillary approximation, i.e. when the critical embryo contains more than a few 
dozens of molecules. These conditions appear to be natural in the frames of thermody- 
namics. Such conditions will be called as the capillary approximation conditions (CAC). 
The inverse number of molecules in the critical embryo will be the small parameter of 
the theory. 

2 .  D e n s i t y  p r o f i l e  o f  t h e  s i n g l e  d r o p l e t  

The construction of the theory implies some simplifications which are necessary to 
present some concrete mathematical model of the phenomenon. These simplifications 
are based on some rigorous statements which are presented below. The validity of CAC 
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gives the restriction from above on the supersaturation in the system. Due to the vapor 

consumption by the droplets the supersaturation can only decrease. As the result we 
come to the following: 

Statement O. I f  the CAC are valid at the beginning of  the process the. remain to be 
valid during the whole process of the nucleation. 

The next statement is not so evident as the previous one: 

Statement 1. In the CAC the leading role in the vapor consumption is played by the 
super-critical embryos, named later as "droplets". 

The most simple way to prove it is to note that the characteristic length of the 
spectrum in this case is greater than the characteristic length in the pure molecular case 

[9] where this statement is valid. Also one can directly check the validity of this fact 

in the final expressions for the length of the spectrum. 

The process of  condensation after the instantaneous creation of the external metastable 

conditions can be split into several characteristic periods. At the initial moment of time, 
the rate of nucleation, i.e. the rate of appearing of the super-critical embryos of the 

liquid phase, attains a maximum. Later this rate vanishes due to the vapor consumption. 

One can correctly define the moment when the rate of  nucleation becomes inessential 
and extract the "period of  intensive formation of the droplets" (PIFD). 

The rate of the embryos growth is approximately proportional to the density of the 

vapor in the system. The rate of nucleation, i.e. the rate of appearing of the super- 
critical droplets is a very sharp function of the vapor density. That's why it is possible 

to observe the vanishing of the rate of nucleation under some small relative variations in 

the density of the vapor (and in the rate of the droplets growth). Namely, this situation 
takes place in the nucleation. Also one can come to 

Statement 2. In CAC the growth of the super-critical embryos has no influence during 
PIFD on the rate of  the growth of the neighboring droplets. 

Thus, we can describe the evolution of the single separated (isolated) droplet in the 

volume, which will be the matter of our consideration in this section. The derivation 

of the stationary rate of  the nucleation implies that the density of the vapor is con- 
stant in time and the system is homogeneous in space. The next statement establishes 

the connection between the stationary rate of the nucleation and the real rate of the 
nucleation: 

Statement 3. In the CAC during the PIFD in the given spatial point in some moment of 
time the rate of  the nucleation is approximately equal to the stationary rate of nucleation 

with some current values of  the characteristics of the vapor considered as the constant 
ones. 

The last statement has at least two aspects: the variation of the density in time and 
the profiles of the density in space. In order to prove the last one an interpretation of 
the rate of the nucleation as some probability for the super-critical embryo to appear 
must be taken into account. Only in the rather small neighborhood of the droplet these 
conditions are essentially non-stationary ones. These regions do not play any essential 
role in the kinetics of the process of nucleation. 

Later it will be shown that all the volume can be approximately split into two 
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regions. In the first region (the "unexhausted region" - UR) the density of the vapor 

is practically unperturbed so that the current density corresponds to the practically ideal 
rate of nucleation. In the second region (the "exhausted region" - ER) the rate of  
nucleation is negligible in comparison with the rate in the first region. So according to 
Statement 1: 

In the CAC the leading role in the process of  the growth of  the ER belongs to the 

subregions around the super-critical embryos (not around the small embryos). 
The statements mentioned above allow us to construct the mathematical model of the 

process of condensation. 

Denote the concentration of the molecules in the vapor as n(r) .  The evolution in time 
t of the density profile will satisfy the diffusion equation 

~gn 
- -  = DAn,  (1) 
at 

where D is the coefficient of  diffusion. This coefficient is considered to be approximately 
constant. The density n is now the function of the spatial argument r. 

We shall use the diffusion regime of droplet growth because this situation, as it will 

be clear from the further considerations, is the worst one for some estimates in the given 
theory. 

As far as the density of the vapor is now the function of the spatial coordinate, the 
value of the supersaturation 

n(r)  - n o o  
if = ( 2 )  

n o o  

is also the function of the spatial coordinate. In (2) the value noo is the concentration 
of the molecules in the saturated vapor over the plane liquid. 

The value of the ideal supersaturation introduced by 

/ / t o t  - -  n o  
¢, = , ( 3 )  

nc¢ 

where ntot is the total number of the molecules in the unit volume i,  is not the function 
of the spatial coordinate. 

For the stationary rate of the nucleation in the Fokker-Planck approximation the 
following expression is valid [2]: 

is(if) ~ ~/-~ (if -4- 1)_ . . . .~  2 exp ( -Fc (~ )  )noo , (4) 
VTr  T 

where a is the normalized surface tension, ~- is the characteristic time between collisions 
of a fixed molecule of vapor with another molecule of  vapor, Fc is the free energy of 

J The process of diffusion is excluded from the consideration here. The value of 4' is the imaginary super- 
saturation in the system where the formation if the droplets is forbidden. So, • is described by the external 
conditions. 
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formation of  the critical embryo.  Some microscopical corrections to the free energy can 

be introduced in the manner o f  Lothe and Pound. In the CAC Fc is given by 

a( 
F c - - ~  3 1 n ( ( + l )  (5)  

In the CAC one can analytically prove that the following approximation for the 

stationary rate given by (4)  as function of  ( is valid during PIFD 2 : 

I s ( ( ) = l s ( 4 ) e x p ( F  ( - 4 )  
4 " ( 6 )  

Eq. (6)  remains valid with the microscopical  corrections taken into account. Here the 

value of  F is defined as 

4Vc 
r -  4 + 1 ' (7)  

where Vc is the number of  the molecules inside the critical embryo, 

( 2a ) ~ 
vc- -  3 1 n ( ( + l )  (8)  

In order to obtain ( in the approximation (6)  it is necessary to solve Eq. (1) .  Let us 

consider the single droplet. One can use the spherical symmetry of  the system and put 

the droplet  into the center. The variable r will mark the distance from the center of  the 

droplet. To solve Eq. ( 1 ) one can put the following natural boundary conditions: 

n(r  = cx~) = ( 4  + 1 ) n ~ ,  (9)  

n(r  = rk) = n e ~ n o ,  (10) 

where rk is the radius of  the droplet  and n e is the the concentration of  the molecules in 

the vapor which is in equil ibr ium with the embryo of  the given size. 

The stationary solution of  the equation of  diffusion has a rather simple form, 

4 n ~  r k 
nS(r)  = - -  + ( 4 + l ) n ~ .  (11)  

r 

On the base of  the evident inequality, 

( 4 +  l ) n ~ - n S ( r )  >_ ( 4 + l ) n ~ - n ( r )  >_0, (12)  

where n(r )  is the real concentration of  the molecules in the vapor 3 , it is seen that 

the supersaturation ( ( r )  can be essentially deviated from 4 only when r is near rk. 

2 it is necessary to substitute (5) into (4), note that the most essential dependence on the supersaturation 
is concentrated in the argument of the exponent, calculate the first and the second derivatives of Fc on (, 
take into account that when [ - (  + q~ [>> ~/F the rate of the nucleation is negligible and the result is not 
essential. Then we compare the weight of the first and the second term in the Tailor's series and see that the 
second term is negligible (in the whole essential interval) which leads to (6). 

3 This inequality can be proved on the base of the Green's functions superposition if we note that the flow 
on the droplet in the nonstationary situation continuously grows in time. 
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Namely the ratio e x p ( 1 ) r / r ( k )  defines the characteristic scale of  the region o f  the 

essential perturbation of  the supersaturation (not  the essential perturbation of  the rate of  

formation o f  the embryos) .  

When in the region r < rk exp(1 )  one can see the stationary density distribution, the 

stationary flow of  the molecules on the droplet  can be introduced according to 

j s = _4  7rr2 D On. (13) 
ar 

The stationary approach in the calculation of  (13)  is valid in the CAC. The distribution 

( 11 ) of  the density gives the following expression for the flow: 

js = --47rCDrk noo . (14) 

In the region r < e x p ( 1 ) r k  due to ( 6 ) , ( 7 )  and F >> 1 the rate of  the nucleation is 

negligibly small. The region where the vapor is only slightly exhausted is important for 

the nucleation. 

One must establish the profile of  the density in the region r < exp(1) r~  in order 

to know js. Then the flow js  is already known on the base of  (14) .  At  the distances 

r >> rk one can consider  the droplet  as the point  source of  the vapor consumption. So 

the density o f  vapor at r >> rk can be obtained on the base of  Green 's  function for the 

process o f  diffusion 

t) exp ( - r 2 /4Dt )  
G = O( (47rDt)3/2 . (15)  

For the intensity of  the vapor consumption by the point source situated in the point  

r = 0 the fol lowing expression: 

d___~u = Att/2 (16)  
dt 

is valid 4 . Here v is the number o f  the molecules in the droplet  and the constant A is 

defined as 

( Vl ~ I/2 
A = (4"rr) 3/2 \~--~] (qbnooD) 3/2 , (17)  

where vt is the volume in the l iquid phase per one molecule. For the total number o f  

the molecules in the droplet  the fol lowing expression: 

( 3vt ~ ,/2 
v ( t )  = (47r) 3/2 - - ~ ]  (2qbnooO)3/2t3/2 (18) 

4 The analysis of the behavior of n(r) on the base of the Green's functions superposition shows that in the 
region r _< rk exp( 1 ), i.e. in the region of the essential deviation of the supersaturation, one can observe 

- srs ~ ~ - s r, where srs is the supersaturation in the stationary approximation. So we can use (16). But as 
it will be seen in the further considerations the asymptotes where r >> rt~ exp( 1 ) will be the most essential. 
To get these asymptotes we must use the nonstationary approach as far as • - ~rs >> ~ - ~" for the tail of the 
density profile. Certainly, the approximation (16) can be treated as the zero approximation in the iteration 
procedure, and the first step is fulfilled in this paper. 
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is valid. 

One can spread the rate 5 of  the droplet  growth (18)  over all values of  v and come 

tO 

t / ( " )  ~xl/2 exp d x .  (19)  
n ( c ~ )  - n ( r )  = 8 ( D z r ( t  - -  X ) ) 3 / 2  4 D ( t - -  x)  

0 

Assuming n (c~ )  = no~(q~ + l )  one can get the following equation: 

4~ - ( ( r )  = co~ 3/2 v~ f ( f l ) ,  (20)  
\ v . /  

where v,, is the volume in the saturated vapor per one molecule. 

It is necessary to stress that the rigorous demonstration for expression (4)  can be 

given only in the free molecular  regime o f  the vapor exchange. As far as according 

to Statement 2 the characteristic size of  the droplets strongly exceeds during the PIFD 

the critical size there is no contradiction between the free-molecular regime for the 

near-critical embryos and the diffusion regime for characteristic droplets during the 

PIFD. 

Note that the approximation (6)  accumulates the analytical structure and is based 

mainly on the estimate 

I~ ~ e x p ( - F c )  . 

This estimate is obviously based on the Boltzmann distribution, which is evidently valid. 

Only the value of  Fc may be slightly reconsidered according to the sense of  Fc as the 

minimal work of  the formation o f  the critical fluctuation. 

The function f ( f l )  has the form 

oo  

-, 
f ( f l )  = 2 x 2 J  e x p ( - x 2 ) d x ,  co = , (21)  

# 

and the variable fl  is defined as 

F 

fl = 2x/-D-t" (22)  

The universal profile is illustrated by Fig. 1. 

In the case of  the arbitrary Knudsen numbers the value of  q~ - ( will decrease with 

the growth of  r sharper than in the case under consideration. This will lead to some 

more strong inequalities forming the base o f  the theory. 

5 We use the law (16) for the super-critical embryos. According to Statement 2 we can consider only the 
embryos with the size which strongly exceeds the critical one and we can formally prolong the law (16) until 
v = 0. This approximation leads to the relatively small errors. Certainly, we have to use for the rate of the 
droplets formation the expression (4) which is obtained on the base of the fluctuations and of the precise law 
of the embryo evolution. 
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Fig. 1. The universal profile of the density f ( f i ) ,  the relative intensity 1/I(oo) and their asymptotic ap- 
proximations. Here A = co~ 3/2 (Vl/Vv)J/2. In the calculation of relative intensity l / l (oo) and fist, fifth the 
coefficient k is put to 30. 

3. Ap p rox imat ion  for the rate o f  nucleat ion 

The essential feature of Eqs. (20)-(22) is the fact that the profile of the supersatu- 
ration essentially depends only upon one variable ft. Let us introduce the characteristic 

values of fist and flfin by equations 

f(flst) (1)-I/2(Uv/Vl)I/2 = , (23 )  
Fco exp ( 1 ) 

f(flfin) ~- | / 2 ( vv / v t ) l / 2  
= =-- c f .  (24 )  

Fco 

In the region of r corresponding to fl > fist the rate of the nucleation practically coincides 
with the unperturbed value I s ( ~ ) .  This conclusion is based on (6), (20)-(22).  For r 
corresponding to fl < flfin, the intensity of the droplet formation is negligibly small. The 
va lues  rfin and rst are defined as the distances where fl attains the values flfin and ~st 
correspondingly. 

Consider the supersaturation in some spatial point r0. For 

r°2 (25) 
t < tst = 4f12t D 

one cannot observe any essential deviation of the rate of the droplets formation from 
the ideal value and for 

r°2 (26) 
t > tfin=gfl~n D 
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the rate of  the droplets formation becomes negligibly small. 

Eqs. (23) , (24)  lead as far as F >> 1 to 

f(flst,fin) << 1, (27) 

which can be attained only at 

fl~t,fi. >> 1 .  ( 2 8 )  

For fl corresponding to the last inequality the asymptotic behavior 

e x p ( - f l 2 )  
f ( f l )  ~ /3 3 (29) 

can be observed. It shows that the relative deviation finn from fist is very small 6. So 

the value of  the parameter 

tfin --  tst 
& = - -  (30) 

tfin d- tst 

is also small. The intensity of  the droplets formation in the relative time scale remains 

practically constant and then rather fast turns to be negligible. Note that in (23) , (24)  

another small parameter (vt/vv)1/2 exists. So (27) , (28)  appear to be a matter of  dis- 

cussion. It seems that practically in all situations ~ is really small, but rigorous proof is 

absent. Despite this we shall formally follow ( 2 7 ) - ( 2 9 )  and later the generalization will 

be given. The small value of  6 together with the smooth behavior of  I s ( ( ) / I s (~)  as the 

function of  ( for 15 - q~l < qV 2F allows to use the value of  fleff as some characteristic 

value defined in the following manner: at the distances corresponding to fl > fleff the 

rate of  the droplet formation is considered as an unperturbed one and at the distances 

corresponding to fl < fleff the rate of  the droplets formation is negligibly small. 

Let us define the variation in the whole rate of  nucleation connected with the formation 

of  one droplet of  given size. It is convenient to introduce the parameter 

F ( ~ - ~ )  ( v t )  '/2 
k - - Fcocrp '/2 (31) 

f ( f l )q~ 7 

The deviation from the maximum intensity is given by the following expression: 

AI,. I , , 7 ( 1 -  ( - F ( @ -  ( ( r )  ) = exp ~ ) )47rr2dr ,  
0 

(32) 

which can be reduced to 
O 0  

A ls = Is47r( 2DI /2tl /2) 3 / ( 1 - e x p ( - k f ( f l )  ) fl2dfl . 
o 

(33) 

6 As is seen from Fig. l the values fist, fifth are not so big in reality. So, the asymptote (29) is not so close 
to f(fl). But the final conclusion that the relative deviation fist from fifth is very small remains valid. Only 
this conclusion will be essential in the further consideration. 
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We are going to introduce the following function AI ° via some expression: 

# 

Al ° = 4,r(2Dl/2tl/2)3 / x2dx. (34) 
J 

0 

The value of fleff (and correspondingly reef) is defined from the following equation: 

A10(fleff) =als. (35) 

Inside the volume 

Ve ff 4 3 = ~ ~'rett (36) 

there is practically no nucleation. Outside this volume the rate of nucleation is not 

perturbed by the droplet situated in r -- 0. It is essential that the value Beer remains 
constant during the PIFD, 

O O  

fletr = const. = 3 / [  1 - e x p ( - k f ( f l )  ) ]fl2dfl, (37) 
t d  

0 

and can be easily found from (35). The value of k as it is clear from the r.h.s, of (31) 
is not a function of r , /3  and t. On the base of/3eft one can find the value of 

reef = 2/3effDl /2t 1/2 , (38) 

which is the evident function of time. The volume Veff grows in time as 

3 2 ~ 3  / '~3 /2 t3 /2  
Veff = -~-" /"eff ' -"  " ~ Cv t3/2 • (39) 

4. Kinetics o f  the nucleation process 

Until the current moment only the single droplet was considered. This droplet was 

formed at t = 0. Now the interaction between the droplets will be taken into account. 
Certainly, all already formed droplets interact through the exhausting of the vapor. The 
direct interaction between some already formed droplets is rather weak according to 

Statement 2. But one must take into account the interaction through the interruption of 
formation of the droplets. Note that 

The relative deviation of the supersaturation by the small value of F -l leads to the 
interruption of the droplets formation. 

To deviate the rate of  growth another droplet must be formed too close to the droplet 
under consideration. It can be done only at the same moment as the given droplet is 
formed. It can be shown that the probability of  such coincidence is too small. 

As far as we have seen that essential deviation of the supersaturation (not the rate of 
growth) occurs in the region r < rk exp(1) it means that the distance between droplets 
must have the order 2rk exp( 1 ) So, the time distance between the moments of formation 
of these droplets must be shorter than 
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[ rk 12 
Atint "~ / ~ J  " 

But this interval 7 is negligible in comparison with the characteristic time of  the process 

of  droplet formation which can be found from the results of  this section. 

So, relatively fast every droplet forms the ER with such a size to guarantee that the 

rate of  growth will be unperturbed by the other droplets. Hence, the majority of  the 
droplets are formed at such distances that their rate of  growth is unperturbed. 

In this section three models will be presented. The second one seems to be the most 

accurate, but the all o f  them are necessary in order to see the inclusion of  this picture 

into already investigated situations [6] .  

4.1. Model without overlapping 

The total volume Weft where the rate of  the droplets formation is negligibly small can 

be approximately written in the following form: 

t 

Weft " ~  / c , , ( t -  t ')3/2p(t~)dt', (40) 
, /  

0 

where P ( t ' )  is the probability of  the formation of  the droplet in the moment t'. For the 

value of  P ( t ' )  the following expression can be presented: 

P(t ' )  = / s ( ~ )  ( 1 - Weft). (41) 

Expression (41) closes (40) .  In (40) , (41)  the overlapping of  the ER is not taken into 

account. 

The system (40) , (41)  can be reduced to the Volterra equation. The kernel is rather 

trivial and this equation can be easily solved (in Laplace representation it is extremely 

simple). 

This model, however, has some disadvantages. The main disadvantage is that the over- 

lapping of  the ER is not taken into account at all. We shall overcome this disadvantage 

in the next model. 

4.2. Model of  the chaotic overlapping of  the ER 

Let us introduce an equation for the evolution of  the value Wfr~, i.e. the volume in 

which the rate of  the nucleation is practically ideal (unperturbed). Approximately this 

evolution can be described by the following equation: 

dWfree _ d ~ Veft Wf~ , (42) 
dt dt 

7 Certainly, for r -,~ r~ the model of the superposition of the Green functions which leads to the above 
estimate is not suitable. But as far as we need the estimate from above for the interval, we can use instead 
r ~ rt~ e x p (  1 ) some value of r corresponding to rk << r << N - 1 / 3 ,  where N is the total number of droplets 
that appeared during the process. For such value of r all conclusions remain valid. 
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where the sum is taken over all existing droplets. The term Wfree in the r.h.s, of (42) 
can be considered as some probability that the new ER is going to occupy the free 
(unperturbed) region. Taking into account the evident relation 

d ~ Vaf dV~ft 
dt = ~ d----t-' (43) 

we have the following expression: 

d ~  Veff 

where 

t 

- -  3- f c . ( t -  t ' ) U 2 p ( t ' ) d t  ' dt - 2 
0 

(44) 

P(  t ')  = Is( ~ )  ( 1 - Weft) = Is( @) Wfree( t ')  • (45) 

Then one can come to 

t 

dWfreedt = 3 f c.(t - t ' )U2Wfree(t ' ) Is(~)dt tWfree(t) .  

0 

(46) 

After an integration of (46) we have 

! 

- In Wfree = / I s ( ~ ) c v ( t  - t ')3/2Wfree(t')dt ' + const. (47) 

0 

Due to the initial conditions the constant of the integration const, is equal to zero. In 
terms of function F = - In Wfree one can reduce (47) to 

F ( t )  = f Is(q~) ( t  - f f ) 3 / 2 c  v e x p ( - F ( t ' ) ) d t ' .  (48) 

Eq. (48) coincides in the mathematical structure with the free-molecular case and was 
investigated in [ 12]. 

4.3. Model with the formation o f  the droplets inside the ER 

Eq. (42) in the last section states the chaotic overlapping of the ER. Certainly, this 
fact is rather approximate. Here we shall try to analyze the role of the overlapping of 
the ER. In order to see this role let us formulate the following model. 

Imagine that the ER are initiated also by the droplets imaginary formed in the ER of 
the other droplets. This statement is not certainly valid but it allows to formulate the 
model corresponding to the first iteration in the iteration procedure and, thus, to clarify 
the physical sense of  the first iteration. 

The ER of the "new" droplet "imaginary formed" in the ER of the "old" droplet can 
appear outside the ER of the "old" droplet. Namely, this fact leads to the error of the 
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last supposition and to the error in the value of  the volume free for the formation of  the 

droplets. But nevertheless let us accept this model for a moment. 

So, instead of  (45) one can use 

P ( t ' )  = ls(q~). (49) 

Then instead of  (46) one has 

~t _ 3 G , ( t -  t t ) U 2 1 s ( q ) ) d t ' W f r e e ( t )  (50) 

and after an integration 

- in Wfree = fls( )cv(t - t ' ) 3 /2d t  ' + const. (51) 

The value of  const, is equal to zero due to the initial conditions. 

The role of  the model under the consideration appears from the last expression. It is 

an expression for the first iteration in the iteration solution for the second model. Such 

a solution can be given analogously to [ 12,9]. So, now the physical sense of  the first 

iteration is clear. 

Also one can show that the results of  the second and the third models are very close 8. 

As the result one can see that some concrete manner of  the overlapping of  the ER is 

not very important. This note will be used in the next section. 

5. Collective character of the vapor consumption 

The next problem to discuss is to consider the generalization of  the theory for the 

arbitrary regime of  the droplet growth. One can extract the following regimes of  the 

droplets growth. 

- The pure diffusion regime of  growth. 

This regime is extracted by the condition 

rk 
- - > > 1 ,  
R free 

(52) 

where Rfree is the average length of  free motion of  the molecule in the vapor and for 
simplicity the coefficient of  the condensation a here and later is put to be equal to 

unity. This case was considered above. 
The regime of  intermediate Knudsen numbers. 

8 In [ 121 the calculations were stopped at the first iteration and it was shown that the first iteration forms 
the base of expressions which are near the exact solution. 
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This regime is extracted by the condition 

rk 
- -  ~ 1 .  ( 5 3 )  
R free 

This situation can be described by the simple resubstitution of the intensity in (16) 
by another intensity obtained from the macroscopic law of droplet growth which 
is a well-known one. Intensity of the droplets growth can be approximated by the 
dependence of the power type. 

Now we are going to investigate the regime of the free-molecular growth. This 
regime is extracted by condition 

rk 
- -  << 1. ( 5 4 )  
R free 

We shall extract two subregimes 
- The subregime of the pure free-molecular growth. 

This regime is extracted in the following manner. The macroscopic law of droplets 
growth gives the intensity of the vapor consumption. So one can put the stationary 
diffusion problem with the given intensity and solve it. In the situation 

¢(c~) 
~ ' ( o o )  --  ( ( R f r e e )  << 

r ( ~ ' ( o o ) )  ' 
\ 

one can speak about the pure free-molecular growth. Namely in this case the con- 
sumption of the vapor has the collective character and was investigated in [6]. 

- The subregime of the intermediate free-molecular growth. 

This regime is extracted by the same procedure as the previous case but with 
condition 

((oo) 
( ( o o )  - ((Reree) _> 

r ( ( ( o o ) )  " 

Certainly, restriction (54) must also be observed. Here the evolution is rather com- 
plicate because one must take into account the collective consumption of the vapor 
and also the profiles of the density. 

The answer is nevertheless an extremely simple one: Eq. (48) coincides in the 
mathematical structure with the balance equation in [ 12] and this fact states that the 
second model describes also this case (with renormalizations). In [ 12] one can find 
the iteration method of the solution of the balance equation and notice the following 
interesting fact: 

The solution of  the third model is the first iteration in the iteration solution of the 
second model. 

Meanwhile it is known [ 12] that the first iteration as the base for the final result 
leads to the practically precise solution. The relative error in the number of droplets 
calculated on the base of the first iteration 9 is less than 0.01. It means that the 

9 It can be shown on the base of the monotonous properties of  the functional which corresponds to the 
number of  the molecules in the droplets (see [ 12,9] ). 
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solution of the second model is practically the solution of the third model and the 

physical effects of the overlapping lead to rather small errors during the PIFD. Thus, 
one can use the second or the third model and describe with the help of such models 
all situations. Certainly, the macroscopic laws of the droplets growth must be chosen 
in the appropriate way. 

The same situation takes place with inequalities (27),(28).  Now it is clear that in 
principle (27), (28) are not necessary. If they are not valid then the situation resembles in 
the mathematical construction the subregime of the intermediate free-molecular growth 
and can be solved analogously. 

The approximate coincidence of the results from the second and the third models has 
one more important consequence. Let us clarify what is the reason of such coincidence. 
The total volume of the ER grows so rapidly that the droplets formed at the beginning 
of the process (when the probability of the overlapping of the ER was rather small) are 
the dominating consumers of the vapor. Their ER play the leading role in the ensemble 
of the ER of all droplets during the whole PIFD. So, the problem of overlapping is 
not so important as it seems from the first point of view. This notice is important 
in the problem of justification of the models. All of them contain rather approximate 
suppositions that the chaotic appearing of droplets leads to the chaotic overlapping of 
the ER. This approximation is suitable due to the relatively small role of the interference 
effects of the overlapping at the beginning of the the PIFD and due to the leading role 
of the droplets that appeared at the beginning of the PIFD in evolution during the PIFD. 

In the dynamic external conditions [7,9] the theory can be constructed by the formal 
generalization of the presented procedure. 

In Section 1 Statement 0 is not valid now. Now one must require the validity of the 
CAC near the maximum of s r. This requirement remains also natural in the frames of 
thermodynamics because the majority of droplets appears when the supersaturation is 
near the maximum. This conclusion is based on the following statement. 

Statement 4. For 

d2qb 
- - < 0  
dt 2 - 

it follows that 

d2¢ 
- - < 0  
dt 2 

during the PIFD. 

Note that the possibility of the definition of the boundaries of the PIFD is based on 
the last inequality together with Statement 3 and Eq. (4).  

The function ~b introduced by (3) becomes the function of time. The following 
statement can be proved: 

The relative variation of  • during the PIFD is very small. The influence of  the 

variation of  q~ upon fist and finn is negligible. The relative duration of  the PIFD is 
rather short. 
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The last statement gives the base for approximation (6). According to (6) and to 
Statement 4 one can see that the relative variation of • has the order of F - t ,  

A~ 
_ _ < F  - l  

- • ( 5 5 )  

Due to the last statement l0 the function • as a function of time can be linearized in all 
practically important situations, 

cl)(t) = ~,  + ct. (56) 

Here index • marks the values at some characteristic moment during the PIFD, c is the 
parameter of the linearization. This moment can be chosen in some different manners. 
For example, it can be the moment when ( attains the maximum [8] (in the situation 
of the decay this moment was chosen at t = 0). Then according to (6),  

l s ( ( ) = I s ( q ~ , ) e x p ( ~ - ' ~ c t ) e x p ( F ( ~ *  *)  . (57) 

The value of ~0, is constant in time and in space. 

According to (55) all equations concerning the consideration of the single droplet 
remain valid. Certainly, the r.h.s, of (23),(24) are the functions of time now, but this 

dependence is very weak. The perturbation of ~st  and finn during the PIFD is negligible. 
The results of Section 3 can be accepted. 

In the description of the kinetics of the nucleation one must put in the r.h.s, of  (41) 
l,,(q~) as 

ls( q~( t/) ) = Is( ~,  ) exp ( ~---~ct') . (58) 

The same improvements must be done in (45) - (51) .  The lower limit of the integration 
in (40) , (44) ,  (46) - (48) ,  (50), (51) must be put to -c~ .  Then Eq. (48) becomes 

analogous to the equation from [7] corresponding to the balance of the substance. The 
last equation can be solved by iterations. Eq. (51) corresponds to the first iteration. 
The relative error of the first iteration for the second model (corresponding to the third 
model) is small. Note that in order to consider the transformation to the collective 
character of vapor consumption this error must be calculated in the free-molecular 
regime of vapor consumption [7] where it is less than 0.15 (in the arbitrary regime it 
is less than 0.25). 

The process of the heterogeneous condensation is analyzed in the same mathematical 
manner as in [9] with some improvements going from this consideration. 

The effects of the extraction of the heat of the condensation can be taken into account 
by the simple renormalization tl . 

Jo This statement is justified on the base of  the iteration procedure. 
H In the pure free-molecular regime the renormalization is given in [7]. Here the process also allows the 

renormalization which is a little bit more complicated. 
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6. Discussion 

The consideration of the density profiles in the kinetics of condensation leads to the 
more deep understanding of the evolution of the system during the first order phase 
transition. But the final formulas of the presented approach give us also the opportunity 
to compare the quantitative results of this approach with some already known ones. For 
example we shall choose the situation of the decay. 

Earlier the process of the condensation with the arbitrary Knudsen numbers was 
described in [ 13,14] with the help of the mean field theory. Namely, the profile of the 
density is assumed to be homogeneous and the value of the density independent from 
the space point is given by the solution of the balance equation. The homogeneous 
profile of the density was introduced without any demonstration. Here we have seen that 
it is valid only in the case of the pure free-molecular regime of the vapor molecules 

exchange. 
To clarify the difference between the final results of the two theories let us introduce 

the following new artificial model ("intermediate theory"). Imagine that instead of 
the real profile of the vapor density we have the profile corresponding to the density 
n ~ ( @ +  I - @/F) in the ER and to noo(@ + 1) outside the ER. The boundary of the 
ER is chosen to ensure the same given lack of the molecules of the vapor caused by the 
vapor consumption by the droplets. This model is rather close to the model [13,14]. 
The difference is only due to the double overlapping of the ER and due to the nonlinear 
behavior of e x p ( ( ( -  @)F/@) as the function of s r for s r going from @ to ¢,(1 - l/F). 
As far as this non-linearity is not so essential this theory approximately coincides with 

[ 13,14], but allows the clear comparison with the new theory. 
To construct the density profile in the intermediate theory one has to spread the lack of 

the density with the relatively small difference between no~ (@+ 1 ) and no~ (@+ 1 -@IF). 
Note that this difference is defined by the rate of the droplets growth and does not depend 
on the type of the theory for the separate droplet. The size of the ER strongly exceeds 
the size of the ER in our theory (see Fig. 2). Under the diffusion regime one can get 

lbr the ratio (Veff)intermediate/(Veff)profile, i.e. for the ratio of the volumes given by the 
"intermediate" and "new" theories: 

( Veff)intermediate 7/"1/2 k 
(Veff) profile 4 flesft ' 

with the big parameter F and the relatively small magnitude of the value (vt/v,,) I/2 
inside parameter k. 

So, the rate of the exhausting of the free volume in the intermediate theory strongly 
exceeds this rate in our theory. As a result, the total number of droplets in our theory 
strongly exceeds the number of droplets in the intermediate theory and in the mean-field 

theory. 
When the regime of the vapor exchange is going to approach the pure free-molecular 

one, the discrepancy between these theories turns to be not so essential. The supersat- 
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Fig. 2. The density profile and the sizes of the ER for the different models in the situation of some adaitrary 
regime of the vapor exchange with intermediate Knudsen numbers. In the upper axis the function similar to f 
and the relative intensity l / loo arc drawn. The value of Rbouad is defined as max{rk, Rfree}. In the lower axis 
the model profiles for relative intensity in the "intermediate" ("clas") and our ("new") theories are shown. 
They have here absolutely different orders of the magnitudes. The absence of units on the r / 2 v ~  axis shows 
the qualitative character of this picture. 
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Fig. 3. The density profile and the sizes of  the ER for different models in the situation of the free-molecular 
regime of the vapor exchange. In the upper axis the function similar to f and the relative intensity !/!oo 
are drawn. The value of Rlmund is defined as max{rk, Rfree} = Rfree. In the lower axis the model profiles for 
relative intensity in the "intermediate" ("clas") and our ("new") theories are shown. They have here one and 
the same order of  the magnitudes. The absence of units on the r/2v/-'D axis shows the qualitative character 
of this picture. The curves are drawn so close to axis to compare them with Fig. 2. 
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uration falls at the distance Rbound (see Fig. 3) only to some value relatively close to 

and non-lineari ty in e x p ( ( ~ " -  ~)1-'/¢,) does not lead to the error in the order of  

magnitudes.  

In the linear problem we can rearrange the profile in any possible manner so that the 

total lack o f  the substance be kept constant. The results of  the new theory are going to 

approach the results o f  the old mean field theory. So, the inclusion of  this theory into 

the theory for the free-molecular regime of  the droplets growth [9] is observed. 
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Abstract

The theory for the multicomponent nonisothermal nucleation is constructed. It is shown that
the Fokker–Plank description is not suitable and a new more advanced description is formulated.
The di�erential kinetic equation for this process is derived and solved by the Chapman–Enskog
procedure. The relaxation stage is described without any special limitations on the power of
thermal e�ects. The further evolution is investigated with the help of a new way to cut o�
the tails of decompositions which appeared in the Chapman–Enskog procedure. As a result all
main characteristics for the nucleation process are established analytically. The comparison with
experimantal results and already presented theories is given. c© 2000 Published by Elsevier
Science B.V. All rights reserved.

The �rst-order phase transition usually occurs in the systems with many di�erent
components. During the process of nucleation, i.e., formation of droplets, the heat of
condensation is extracted and changes the rate of nucleation. Theoretical description of
this process should take into account these two features. Hence developement of the
nonisothermal theory for the multicomponent nucleation is of great importance.
The adequate theoretical description of the nucleation stage was given for many

di�erent situations starting from the pure isothermal nucleation of one-component sub-
stance. Even in this case described by the so-called classical theory of nucleation no
coincidence between theoretical predictions and experimental results occurs. Neverthe-
less, this disagreement cannot be the reason to reject all further modi�cations of the
theory to grasp the e�ects of the heat extraction and to extend the theory for the
multicomponent case.
The �rst theory where the thermal e�ects were taken into account rather adequately

was presented by Kantrowitz [1]. In this publication embryos of given size were char-
acterized by the unique average temperature. Only the so-called “weak thermal e�ects”
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were considered there. But an essential decrease of the nucleation rate occurs under
the “strong thermal e�ects” considered by Kuni [2].
Certainly, there exists the distribution of the embryos of given size over the temper-

ature. Feder et al. [3] took this phenomenon into account for the weak thermal e�ects.
The energy distribution of embryos under the strong thermal e�ects was studied by
Kuni and Grinin [4].
The standard way to construct kinetic equation is to use the Fokker–Planck approxi-

mation. Then kinetic equation can be solved using the approaches developed by Langer
[5] and by Kuni et al. [6] respectively, for the stationary, nonstationary cases.
The methods described in Ref. [5] allow to study various problems. Namely the

binary nucleation was studied by Lazaridis and Drossinos [7] under the Fokker–Planck
approximation.
Concerning the mentioned publication [7] one has to note that due to a rather large

quantity of the molecular heat extracted in the elementary act of a molecule condensa-
tion the restriction by the Fokker–Planck approximation is not su�cient. Then kinetic
equation contains high derivatives and one has to use the Chapman–Enskog procedure
to solve it.
Until now the most advanced approach for the nonisothermal nucleation is the appli-

cation of the Chapman–Enskog procedure which was suggested by Kuni and Grinin for
the case of one-component nucleation [4]. In Ref. [8] this approach was generalized
to include the binary nucleation. Unfortunately, it was not done in a rigorous way.
Therefore, the subject of current publication is a natural development of the theoretical
methods described.
Particularly, this publication is aimed at presenting the nonisothermal theory of nucle-

ation in the multicomponent mixture and to correct some of the errors which appeared
in Ref. [8]. We shall present self-consistent theory which gives the analytical expres-
sion for the nucleation rate. To make our presentation more consistent we omit some
standard details (for example, the solution of kinetic equation in the Fokker–Planck
approximation).
In this publication we are going to use all standard de�nitions of the classical nu-

cleation theory. The unit volume will be considered. All quantities with the energy
dimension will be measured in the units of an elementary thermal energy kbT (kb is
the Boltzmann constant and T is the temperature), and all quantities with the heat
capacity dimension — in the kb units.

1. Substance exchange

Here, we shall derive kinetic equation from the balance equation for the distribution
n over the embryo sizes. This balance equation can be written in the following form:

@n
@t
= V + G ;
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where V is the operator associated with the substance exchange between the embryo
and the environment (one also has to take into account here the energy exchange 1

due to the extraction of the condensation heat) and G is the operator associated with
the energy exchange with the help of the passive gas molecules due to the di�erence
of the temperature T of the embryo from the temperature T0 of the environment (the
e�ects of the heat extraction are already included into V ).
The function n is the number of embryos of given size in a unit volume. Later, we

shall specify variables of the embryos state description.
At �rst, we shall study kinetic equation without thermal relaxation by a passive gas,

i.e., in the form

@n
@t
= V (1)

and then we shall study thermal relaxation, i.e., operator G.
We shall suppose that there exists a vapor mixture with i0 condensating components.

All these components can be found both in the vapor and in the embryo (contrary to the
passive gases which can be found only in the vapor phase). The distribution n({�i}; t)
of embryos is the function of i0 variables of the number of molecules �i of the ith
component (substance) inside the embryo and also the function of time t.
The process of the absorption of a molecule of the jth component occurs with

intensity W+
j �jcond where W+

j is the intensity of collision of the given embryo with an
arbitrary molecule of the jth component and �jcond is the condensation coe�cient for
the jth component. The most natural is to suppose that the length of the free motion
in the gas media strongly exceeds the linear size of the embryo (the so-called free
molecular regime of the substance exchange). Then the value W+

j can be easily found
by the gas kinetic theory

W+
j ∼ Snj ;

where S is the surface square of the embryo and nj is the molecular number density
of the jth component. 2 Due to the small relative size of the near-critical region 3 we
can see that W+

j remains practically constant in the near-critical region. 4

Any reliable information about the condensation coe�cient �jcond is absent (in the
literature one can �nd rather di�erent estimates). But we believe that �jcond is a rather

1 The condensated vapor also plays the role of a passive gas.
2 One has also to note that in the near-critical region all embryos are in quasiequilibrium with the surrounding
vapor. This quasiequilibrium also leads to small inhomogeneities in the vapor phase. These inhomogeneities
would lead to the di�usion ows on the embryo. That is why one can approximately say that the vapor
around the near-critical embryo is unperturbed and calculate the ow by the previous formula.
3 One can use the standard classical nucleation theory for this estimate.
4 Rigorously speaking, one has to take into account the functional dependence of W+

j . Then one has to

apply also to W+
j the Taylor decompositions analogous to those made later. All formulae will be more

complicative but the detailed analysis shows the validity of the W+
j approximation by a constant.
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smooth function of the embryo state and can be regarded in the near-critical region as
some constant value. 5

The process of absorption of the molecule leads to the variation of the number of
the molecules inside the embryo

{�i} → {�i 6=j; �j + 1}
and also to the extraction of the condensation heat �j (measured in the natural thermal
units) and this e�ect is going to increase the temperature of the embryo T by the value

T → T +
�j∑
i ci�i

;

where ci are molecular speci�c heats 6 in liquid phase (taken in units of kb), the
sum is taken over all components. The value W+

j depends only on the state of a
vapor–gas mixture. Contrary to W+

j the intensity of the ejection of the molecule of
the jth component W−

j strongly depends on the temperature of the embryo. The em-
bryo has to be characterized by the temperature T of the embryo 7 or some function
of the temperature. Instead of T one can introduce the value of additional energy E
according to

E =
(

T
T0

− 1
)∑

ci�i ;

where T0 is the temperature of the media. The evident advantage of E is that the
equilibrium value coincides with the zero point. Now, we shall normalize E in order
to have no coe�cient in the square form of the equilibrium distribution 8 ne along
additional energy near E = 0:

ne ∼ exp(−�2) :

To �nd � we shall start with the Clapeyron–Clausius formula for the molecular number
density n∞ j of the saturated vapor over a plane surface of liquid

n∞ j(T ) = n∞ j(T0)exp
(
�j

T − T0
T0

)
:

As long as 9 the planar surface

W−
j (n∞ j) =W+

j (n∞ j) ∼ n∞ j ;

5 This follows also from the model where �jcond appears as the probability to overcome the energy barrier
near the surface of the liquid phase.
6 They are close to those de�ned under the constant pressure.
7 We suppose that the temperature relaxation inside occurs very rapidly. It can be justi�ed by estimates
analogous to Ref. [4].
8 We shall omit the normalizing factor �−1=2 of the equilibrium distribution. It can be easily reconstructed
anywhere.
9 Here we suppose that the surface tension does not depend on the embryos temperature. Details of this
approximation can be found in [9].
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one can come to 10

W−
j (T )

W−
j (T0)

=
n∞ j(T )
n∞ j(T0)

= exp
(
�j

T − T0
T0

)
: (2)

One the other hand,

W−
j (E)n

e(E) =W+
j ne(E − �j)

and

W−
j (E = 0)n

e(E = 0) =W+
j ne(−�j)

which leads to

W−
j (E) =

ne(E − �j)
ne(E)

W−
j (E = 0)

ne(E = 0)
ne(−�j)

=W−
j (E = 0)exp

(
E�j

@2F
@E2

)
;

(3)

where F is the free energy of the embryos formation and it is taken into account that
the equilibrium distribution ne ∼ exp(−F).
Eqs. (2) and (3) will coincide when

@2F
@E2

=

(∑
i

ci�i

)−1
:

Then 11

� =
E

(2
∑

i ci�i)
1=2 :

One can write kinetic equation (1) in variables {�i}; � in the following form:

@n({�i}; �; t)
@t

=
∑
j

W+
j n({�i 6=j; �j − 1}; � − �j)−

∑
j

W−
j n({�i 6=j; �j}; �)

−
∑
j

W+
j n({�i 6=j; �j}; �) +

∑
j

W−
j n({�i 6=j; �j + 1}; � + �j) ;

where

�j =
�j

(2
∑

i ci�i)
1=2 :

10 More carefully, one has to go at �rst from the critical embryo to the planar surface, then use the mentioned
relation for the planar surface and �nally return to the critical embryo.
11 More carefully, it can be done in terms of the �nite di�erences.
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One can present the following split of the last equation:

@n({�i}; �; t)
@t

=
∑
j

[Jj({�i 6=j; �j − 1}; � − �j)− Jj({�i 6=j; �j}; �)] ;

where the ow Jj is de�ned by

Jj({�i}; �) =W+
j n({�i 6=j; �j}; �)−W−

j n({�i 6=j; �j + 1}; � + �j) :

Now we have to substitute the �nite di�erences by derivatives.
One has to mention that the elementary steps 1 along �i are small in comparison

with the characteristic scale corresponding to the essential variation of exponent of the
free energy. This allows to substitute the �nite di�erence along �i only by the �rst
derivative. 12

An elementary step �j along � corresponds to essential violation of exponent of
the free energy. So, one has to substitute the �nite di�erence by the whole Tailor
decomposition. As a result we have

@n({�i}; �; t)
@t

=
∑
j

∞∑
l=1

(−�j)l

l!
@l

@�l Jj({�i 6=j; �j − 1}; �)

−
∑
j

(
@
@�j

− 1
2

@2

@�2j

)
Jj({�i 6=j; �j}; �) :

We have to note that the possibility to substitute Jj({�i 6=j; �j−1}; �)−Jj({�i 6=j; �j}; �)
by −(@=@�j)Jj({�i 6=j; �j}; �) can be made when we consider the situation near the qua-
sistationary one. Then in one-dimensional projection on �j we shall get the small value
for Jj({�i 6=j; �j − 1}; �)− Jj({�i 6=j; �j}; �) which allows to substitute it only by the �rst
derivative. 13

The ow Jj can be expressed with the help of a function

f({�i}; �) = n({�i}; �)
ne({�i}; �)

as

Jj({�i 6=j; �j}; �) =W+
j ne({�i}; �)[f({�i 6=j; �j}; �)− f({�i 6=j; �j + 1}; � + �j)] :

The analogous substitution of the �nite di�erences by the whole Taylor decomposition
gives

Jj({�i 6=j; �j}; �) =W+
j ne({�i}; �)

[(
− @

@�j
− 1
2

@2

@�2j

)
f({�i 6=j; �j + 1}; �)

−
∞∑
m=1

�mj
m!

@m

@�mf({�i 6=j; �j + 1} ; �)

]
:

12 This produces certain restrictions and this e�ect will limit later the Chapman–Enskog expansion.
13 We decompose until the second derivative to ensure at least the same power as in the one-dimensional
case.
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To be close to the standard form of one-component nonisothermal theory [4] we
shall use instead of function f the following function:

P({�i 6=j; �j}; �) = n({�i 6=j; �j}; �)
exp(−�2)

:

The free energy F of the embryos formation can be split as

F({�}; �) = F({�}; � = 0) + �2

which gives

f({�}; �) = P({�}; �)exp(F({�}; � = 0)) :
One can present an expression for Jj in terms of function P as

Jj({�i 6=j; �j}; �) =W+
j ne({�i}; �)

[(
− @

@�j
− 1
2

@2

@�2j

)
exp(F({�}; � = 0))

×P({�i 6=j; �j}; �)− exp(F({�i i 6=j; �j + 1}; � = 0))

×
∞∑
m=1

�mj
m!

@m

@�m P({�i 6=j; �j + 1}; �)
]

or

Jj({�i 6=j; �j}; �) =W+
j ne({�i}; �)

[(
− @

@�j
− 1
2

@2

@�2j

)
exp(F({�}; � = 0))

×P({�i 6=j; �j}; �)−
(
1 +

@F
@�j

+
1
2
@2F
@�2j

+
1
2

(
@F
@�j

)2)

×exp(F({�i i 6=j; �j}; � = 0))
∞∑
m=1

�mj
m!

@m

@�m P({�i 6=j; �j + 1}; �)
]

:

Having introduced an operator 14

Lj = L0j +�Lj ;

where

L0j =−W+
j

[
@F
@�j

+
@
@�j

]
;

�Lj =−W+
j

[
1
2

(
@F
@�j

+
@
@�j

)2]
;

14 We ful�l decompositions until the order appeared in the isothermal theory.
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one can present the last expression for Jj as 15

Jj({�i 6=j; �j}; �) = exp(−�2)LjP({�i 6=j; �j}; �)

−
(
1 +

@F
@�j

+
1
2
@2F
@�2j

+
1
2

(
@F
@�j

)2)
exp(−�2)W+

j

×
∞∑
m=1

�mj
m!

@m

@�m P({�i 6=j; �j + 1}; �):

According to the smooth dependence along �j one can go from the argument �j ± 1
of function 16 P to the argument �j with the help of the �rst terms in the Tailor
decomposition.
Then as long as(

1 +
@F
@�j

+
1
2
@2F
@�2j

+
1
2

(
@F
@�j

)2)∣∣∣∣∣
�→�+1

=

(
1 +

@F
@�j

− 1
2
@2F
@�2j

+
1
2

(
@F
@�j

)2)
;

the kinetic equation can be presented as

exp(−�2)
@P({�i}; �); t

@t

=
∑
j

∞∑
l=1

(−�j)l

l!
@l

@�l

[
exp(−�2)Lj|�j−1

(
1− @

@�j
− 1
2

@2

@�2j

)
P({�i}; �)

−
(
1 +

@F
@�j

− 1
2
@2F
@�2j

+
1
2

(
@F
@�j

)2)
exp(−�2)W+

j

∞∑
m=1

�mj
m!

@m

@�m P({�i}; �)
]

−
∑
j

(
@
@�j

− 1
2

@2

@�2j

)[
exp(−�2)Lj|�jP({�i}; �)

−
(
1 +

@F
@�j

+
1
2
@2F
@�2j

)(
1 +

@
@�j

+
1
2

@2

@�2j

)
exp(−�2)W+

j

×
∞∑
m=1

�mj
m!

@m

@�m P({�i}; �)
]
:

15 We shall forget about �Lj and use instead of Lj operator L0j . We shall also neglect the di�erence between
Lj|�j−1 and Lj|�j . The reason is that we shall get the nucleation rate in the main order. From the comparison
with the isothermal case as the limit one it is clear that it will contain operator Lj only one time and take it in
the main order. But still we have to calculate several �rst approximations and have to control the appearance
of Lj . If operator Lj appears more than one time then one has to take into account the mentioned di�erences.
But fortunately Lj will appear only once.
16 Later, it will be seen that @=@�j produces some small parameter as far as the action of @F=@�j . We write
this equation in the �rst two orders of this parameter. This corresponds to the order essential in the isothermal
version of the theory.
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We shall neglect − 1
2@
2=@�2j in comparison with @=@�j in the last part of the kinetic

equation. When − 1
2@
2=@�2j is applied after Lj then the order of the small parameter

will be too high. When − 1
2@
2=@�2j is applied to the second part of Jj then it will act

on the same level with @F=@�j. We shall control the appearance of @F=@�j in the �nal
result. If it appears in the �nal result then we cannot neglect the action of − 1

2@
2=@�2j .

Fortunately, @F=@�j is absent in the �nal formulae.
The action of @=@� on exp(−�2) where  is the arbitrary function is obviously

given by

@l

@�l exp(−�2) = exp(−�2)
(

@
@�

− 2�
)l

 :

Certainly one cannot take 2� away from @=@� and has to consider (@=@� − 2�)l as
sequential action of operators in brackets. This turns kinetic equation to

@P({�i}; �)
@t

=
∑
j

∞∑
l=1

(−�j)l

l!

(
@
@�

− 2�
)l

×
[
Lj

(
1− @

@�j

)
P({�i}; �)−W+

j

(
1+

@F
@�j

− 1
2
@2F
@�2j

+
1
2

(
@F
@�j

)2)

×
∞∑
m=1

�mj
m!

@m

@�m P({�i}; �)
]
−
∑
j

@
@�j

[
LjP({�i}; �)

−W+
j

(
1 +

@F
@�j

+
@
@�j

) ∞∑
m=1

�mj
m!

@m

@�m P({�i}; �)
]

:

We decompose the �nite di�erences along �j until the second derivatives (or the
second order of the small parameter) because in the classical theory of isothermal
one-component nucleation two derivatives have to be taken into account (an account
of the �rst derivative could not lead to the suitable rate of nucleation).
One can easily note that operators

S1j = 1− @
@�j

;

S2j = 1 +
@F
@�j

− 1
2
@2F
@�2j

+
1
2

(
@F
@�j

)2
;

S3j = 1 +
@F
@�j

+
@
@�j

are absent 17 in Ref. [8]. Really, in the �rst two steps of the Chapman–Enskog pro-
cedure described later these terms will not be essential. But it occurs only in frames

17 Also, the di�erence between Lj and L0j and the substitution of @=@�j − 1
2 @
2=@�2j instead of @=@�j into the

last term of kinetic equation have to be taken into account.
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of the Chapman–Enskog procedure and cannot be seen directly from kinetic equation.
We shall call S1j; S2j; S3j as the shift operators.
Now, we shall turn to the thermal relaxation by the passive gas in order to include

it in the presented equation.

2. Thermal relaxation

The physical reason to consider the interaction of the embryo with the passive gas
is rather simple. Really, due to heat extraction the temperature of the embryo is higher
than the temperature of the environment and the embryo heats the molecules of the
passive gas. Certainly, the temperature of the embryo falls and this e�ect reduces the
ejection rate. This has to be taken into account and the consideration of the interaction
with the passive gas is important.
An obvious restriction only by the regular term in the presence of the big quantities

of the passive gas will lead to the thin spectrum in the energy scale of the �-function
form. Certainly, this does not coincide with the equilibrium distribution. Thus, one has
to use at least the Fokker–Planck approximation. The physical reason is rather obvious
— molecules of a passive gas have di�erent velocities and equilibrium distribution in
energies. This has to be taken into account and leads at least to the Fokker–Planck
approximation. As far as the variation of the energy in the elementary act of interac-
tion with a passive gas molecule is small in comparison with the characteristic width
of the equilibrium distribution one can restrict this description by the Fokker–Planck
approximation.
In Fokker–Planck approximation the kinetic equation can be written as

@n
@t
= B

@
@�

ne @
@�

f ;

where B is kinetic coe�cient. 18 It can be determined by consideration of the limit
situation where the last equation transforms into an equation only with the regular
term

@n
@t
= B

@
@�

[
2� +

@
@�

]
n → B

@
@�
2�n :

This form has to be reproduced by the standard analysis. We begin with the balance
equation

@n
@t
=W+n(� + ��)−W+n(�)→ W+��

@n
@�

;

where W+ is the rate of collisions of the given embryo with the molecules of the
passive gas, the regular variation �� is given by

�� =
cg∑
cj�j

�

18 It is supposed to be a smooth function of �.
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and cg is the molecule heat capacity of the passive gas. This leads to

B=W+ cg
2
∑

cj�j
:

Now the kinetic equation can be written in the following form:

@n
@t
=W+ cg

2
∑

cj�j

@
@�

ne @
@�

f :

One has to put the coe�cient of thermal accommodation �acc into W+ in order to take
into account the fact that thermal accommodation occurs with some probability.
The generalization of the previous equation on the mixture of passive gases leads to

@n
@t
=
∑
i′

W+
i′ �acc i′

cg i′

2
∑

cj�j

@
@�

ne @
@�

f ;

where indexes with prime denote di�erent passive gases.
One has to take into account the fact that the condensating substances also take part

in the cooling. With the probability (1 − �c)�acc the act of cooling takes place. The
molecules accumulated by embryos also have to be taken into account. As a result one
can get 19

@n
@t
=
∑
i′

W+
i′ �acc i′

cg i′

2
∑

cj�j

@
@�

ne @
@�

f

+
∑

i

W+
i (1− �c i)�acc i

ci
2
∑

cj�j

@
@�

ne @
@�

f

+
∑

i

W+
i �c i

ci
2
∑

cj�j

@
@�

ne @
@�

f :

It is quite obvious that now to get the general kinetic equation we have to add the
part associated with the condensating substance. So, it is necessary to formulate the
part under consideration in terms of function P. Here one has to ful�ll the same actions
and get

@P
@t
=
∑
i′

W+
i′ �acc i′

cg i′

2
∑

cj�j

(
@
@�

− 2�
)

@
@�

P

+
∑

i

W+
i (1− �c i)�acc i

ci
2
∑

cj�j

(
@
@�

− 2�
)

@
@�

P

+
∑

i

W+
i �c i

ci
2
∑

cj�j

(
@
@�

− 2�
)

@
@�

P :

19 The di�erence between the heat capacity in the vapor and liquid phases can be e�ectively included into
�acc i .
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As a result, for the general kinetic equation one can get

@P({�i}; �)
@t

=
∑
j

∞∑
l=1

(−�j)l

l!

(
@
@�

− 2�
)l

×
[
LjS1jP({�i}; �)− S2jW+

j

∞∑
m=1

�mj
m!

@m

@�m P({�i}; �)
]

−
∑
j

@
@�j

[
LjP({�i}; �)− S3jW+

j

∞∑
m=1

�mj
m!

@m

@�m P({�i}; �)
]

+
∑
j′

W+
j′ �acc j′

cg j′

2
∑

j cj�j

(
@
@�

− 2�
)

@
@�

P({�i}; �)

+
∑
i′

W+
i′ (1− �c i′)�acc i′

ci′
2
∑

j cj�j

(
@
@�

− 2�
)

@
@�

P({�i}; �)

+
∑
i′

W+
i′ �c i′

ci′
2
∑

j cj�j

(
@
@�

− 2�
)

@
@�

P({�i}; �) : (4)

Here indexes i′ and j mark the di�erent components of the condensating substances
and index j′ marks the di�erent components of the passive substances.
One can easily note that the number of components of the condensating mixture

does not act on the properties of passive gases. This is in contradiction with results
presented in Ref. [8] where the action of the passive gas is referred to the action of
every component of condensating substance and then the direct summation over the
condensation components is carried out. So, according to Ref. [8] one can speak about
the separate cooling of di�erent components (in kinetic sense, the droplet is being
cooled as a whole object). Here we speak about the common cooling of di�erent
components (in kinetic sense). The physical essence is another here. We believe in our
version of the thermal e�ects account.

3. Estimates of operators

Now we shall give the method to solve the last equation. The general scheme is well
known. At �rst, the extraction of the main operator with the well-known eigenfunctions
has to be presented. This main operator has to ensure the relaxation to the stationary
state and this e�ect allows to consider the relaxation period. Such a structure allows
to apply the Chapman–Enskog procedure.
An attempt to investigate the situation of the binary nonisothermal nucleation was

made in Ref. [8] but the initial kinetic equation was wrong. Contrary to Ref. [8] we
shall use the correct kinetic equation. Here this equation is already generalized for the
multicomponent case.
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Besides the new object of investigation the approach presented here has also some
new principal features.
One has to recall the speci�c feature of the relaxation stage description given in the

mentioned papers. When the main operator has only the formal priority then a standard
consideration of the relaxation stage requires a small value of some speci�c parameter.
This leads to the serious restriction of the approach used earlier. In the situations of
intensive droplets formation this parameter is not too small and the relaxation does not
take place. Then the initial condition for the Chapman–Enskog procedure is violated.
This does not formally allow one to apply this procedure.
We shall use another split on the r.h.s. of kinetic equation into the main operator

and the additional one. As a result, we come to procedure with two sets of the main
and additional operators. But still in such situation it will be possible to generalize
the Chapman–Enskog procedure and come to the �nal formulae. It will be possible to
get the relaxation to the stationary state without the restriction used in Ref. [8]. One
has to mention that the cited papers could not overcome the main nontrivial feature
of the nonisothermal condensation – the main operator extracted in these papers has
only formal priority based on the presence of factorials in denominators in the Taylor
decomposition terms. So, one has to ful�ll at least many steps in the Chapman–Enskog
procedure. Here, we shall present a method to take into account the tails of these series
and to come to the compact �nal results.
Now, it is worth mentioning the inclusion of the present analysis into the general

scheme.
One can note some speci�c features of the thermal e�ects in comparison with the

general situation of the non-Fokker–Planck evolution considered in Ref. [10]. Namely,
these features allow us to go further in comparison with Ref. [10] and to get the
compact �nal formulae.
These features are as follows:

• The temperature of the embryo can have an arbitrary value.
• Non-Fokker–Planck evolution occurs only along the temperature of the embryo.
• Non-Fokker–Planck evolution occurs under a constant value of �j.
The third feature is rather important. Really, as long as we have the Clapeyron–

Clausius relation we can reconstruct W−(T ). Then on the base of W+ (it is given by
the simple gas kinetics formula) and W− one can get the equilibrium distribution. The
knowledge of the equilibrium distribution gives on the base of the Boltzmann formula
the form of the free energy F of the embryo formation (the constant shift which
appeared from the normalizing factor of the equilibrium distribution is not important).
These constructions result in a rather simple form of the free energy. In the arbitrary
situation (see Ref. [10]) the form of the free energy can be complicated and this causes
the additional di�culties.
The mentioned simple form of the free energy corresponds to the simplicity of

transition from the function n to the function P de�ned by

n= exp (−�2)P :
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Certainly exp(−�2) represents here the equilibrium distribution and �2 appears due to
the square character of the free energy. This leads to the P relaxation to a constant.
To conserve such relaxation in the general more complicated situation one has to
choose in the argument of exponent instead of �2 another more complicated function
which reects the more complicated behavior of the free energy. As a result, the
eigenfunctions of the “main” operator will be unknown.
In the general situation instead of � in the combinations −2� + @=@� in the kinetic

equation appear high powers of �. This blocks the presented approach to get solution.
We are going to act in frames of the macroscopic description of the free embryo.

This leads to the big parameters

�ic/ 1

for all components which are marked by the index i. The index c corresponds to the
critical embryo.
The last inequality allows as it is shown in Ref. [10] to state that

• The Fokker–Planck approximation is valid to describe the evolution along �i.
• The square approximation for the free energy along �i in the near-critical region is
valid.
In Ref. [10] all speci�c situations appear only when the derivative of the free en-

ergy along the concentration of the solution inside the embryo provides another large
parameter. Certainly, the large values of this derivative are rather ordinary in nature
but one cannot consider them as the large parameter going to in�nity.
Really, the derivative along �i has a large value in comparison with the derivative

along the steepens descent line [10]. This appears as the base for the hierarchy in
the near-critical region [10]. But the value of this large parameter is not su�cient to
compensate the inuence of the large parameter �i (as long as all �i have one and the
same power we shall drop the index i in the estimates). Namely, the half-width ��
along � has the order �1=2c , the half-width along the steepest descent line has the order
�2=3c . But as long as �� is greater than 1 (it is not so great as in the one-component
theory but it is still great) we can see that the di�erential form of the kinetic equation
is valid.
The last result can be directly seen from the explicit expression for the free energy

of the embryos formation as the function of {�i}. In the capillary approximation this
expression can be written as

F ∼ −
∑
j

bj�j + a

(∑
j

vj�j

)2=3
:

Here vj are the molecule volumes in the liquid phase, bj are the excesses of the
chemical potentials, a is the renormalized surface tension. The surface of tension is
put so as to contain precisely the volume of the embryo. All vj are supposed to have
one and the same order, all �c are also supposed to have one and the same order.
One can easily note that the half-width �� ∼ �1=2 in the multicomponent theory

di�ers from the same value in the one-component theory �� ∼ �2=3. The reason is the
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interaction between components. This phenomenon is not in contradiction with the
general theory because the steepest descent line does not coincide with any �i and
the half-width along the steepest descent line coincides with the half-width along � in
the one-component theory. But it shows that the direct di�erentiation of F along �i
without the inuence of the other components being taken into account cannot lead
to a really small parameter. An account of the mentioned interaction is rather di�cult
and it is more convenient to go to variables

�i ∼ �i=
∑
j

�j

and

� ∼ a3=2
∑
j

�jvj :

Then the direction along � coincides with the steepest descent line and due to the
Gibbs–Duhem equation an account of the interaction is attained automatically.
In the set {�i}; � the form of the free energy is given by

F ∼ B� − �2=3 ;

where B is some function of {�i}. The characteristic scale of � can be put so as to
coincide with the scale of �i.
To justify the validity of the square approximation one has to get the second and

the third derivatives of the free energy. It is more convenient to use the last form of
F . Then

@2F
@�i@�j

∼ d2B
d�i d�j

�

and the half-width along �i is given by 20

��i ∼ �−1=2(B′′({�j}))−1=2 :
As long as

@3F
@�i@�j@�k

∼ d3B
d�i d�j d�k

� ;

the bene�t T3 of the third term in the Taylor decomposition is given by

T3 ∼ @3F
@�3i

(��i)3 ∼ B′′′({�j})
(B′′({�j}))3=2 �

−1=2 :

As long as the function B and its derivatives do not contain any large parameter
one can easily see that the action of the third term is small. That is why the square
approximation for the behavior of F along �i is valid. The behavior of F along � is
similar to the one-component case. The square approximation along � is, thus, valid.
As a result, the square approximation for F in the near-critical region can be used.

20 Prime marks a derivative over �j .
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These results explain why the Fokker–Planck approximation is adopted for the de-
scription of the evolution along �i. For the evolution along temperature the Fokker–
Planck approximation is not su�cient. The reason is the existence of another large
parameter. This parameter is �i.
Let us explain why 21 � can be regarded as the large parameter of the theory. When

the temperature decreases from the value of the second-order phase transition the value
of vv of the molecule volume in the vapor phase grows and the value vl falls. So, far
from the point of the second-order phase transition 22 one can come to

vv/vl :

The heat extracted in the phase transition can be presented as the di�erence of
entropies in two phases multiplied by temperature. Then one can use the standard
representation of the entropy as the logarithm of the states number. The number of
states 23 can be very approximately estimated as the volume occupied by the system. 24

Then the last strong inequality leads to a large value of �.
In reality, one cannot go very far from the second-order phase transition temperature

because the new phase transition (crystallization) occurs. Nevertheless, one has to say
that � is the large parameter of the theory.
Now we come to the direct solution of the kinetic equation. We can rearrange it in

the following form:

@P({�i}; �)
@t

= [D1 + D2 + D3 + D4]P({�i}; �) ; (5)

D4 =−
∑
j

@
@�j

Lj ;

D2 =−
∑
j

∞∑
l=1

(−�j)l

l!

(
@
@�

− 2�
)l

W+
j S2j

∞∑
m=1 (m 6=l)

�mj
m!

@m

@�m ;

D3 =
∑
j

∞∑
l=1

(−�j)l

l!

(
@
@�

− 2�
)l

LjS1j

+
∑
j

@
@�j

S3jW+
j

∞∑
m=1

�mj
m!

@m

@�m ;

D1 =
∑
j′

W+
j′ �acc j′

cg j′

2
∑

j cj�j

(
@
@�

− 2�
)

@
@�

21 The lower index will be omitted.
22 Namely, only in this situation some actual assumptions of the classical theory of nucleation are valid, for
example the uncompressibility of liquid phase.
23 One can use quasiclassical approach.
24 We can use very approximately the model of ideal gas.
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+
∑
i′

W+
i′ (1− �c i′)�acc i′

ci′
2
∑

j cj�j

(
@
@�

− 2�
)

@
@�

+
∑
i′

W+
i′ �c i′

ci′
2
∑

j cj�j

(
@
@�

− 2�
)

@
@�

−
∑
j

∞∑
l=1

(−�j)l

l!

(
@
@�

− 2�
)l

W+
j S2j

�lj
l!

@l

@�l : (6)

Now we shall estimate the actions of operators D1, D2, D3, D4. One can easily take
into account the fact that the di�erentiation along �i can be estimated as

@
@�i

P ∼ P
��i

and this estimate produces the small parameter 1=��i. One has to take also into ac-
count that as already noted the value ��i di�ers from the analogous value in the
one-component case and this e�ect can lead to the error made in Ref. [8]. The values
��i do not estimate the size of the near-critical region. (The standard de�nition of the
near-critical region is given by the inequality |F −Fc|61. The in�nite tails can be cut
o� to reduce the form of the near-critical region to a rectangular one.) To estimate the
size of the near-critical region one can take derivatives of the free energy along �, �i.
As a result, we come to the following convention: we use the notation 1=��i but keep
in mind that the real small parameter will be 1=��. Moreover, one cannot estimate
the size of the near-critical region by ��i as was done in Ref. [8] but must use the
half-widths along � and �i.
The value of the derivative @F=@�i also contains the small parameter 1=��i. So, the

action of Li can be estimated as

LiP ∼ P
��i

:

The di�erentiation along � does not produce any small parameter. The characteristic
value of � is 1.
Now we can calculate the powers of operators D1–D4. As a result, we see that

• Operator D4 is the smallest one. It has the order 1=(��i)2.
• Operator D3 is small. It has the order 1=��i.
• Operators D1 and D2 have one and the same order 1. Here operator D1 has the
formal priority because D2 has no terms without factorials in the denominators.
The main problem of the further analysis is that the main operator D1 +D2 ensures

relaxation to the state which gives zero ow of the embryos from the precritical to
the postcritical region. So, this state leads to the zero value of the nucleation rate. To
overcome this di�culty one can use the Chapman–Enskog procedure.
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4. Chapman–Enskog procedure

At �rst, we recall the standard version of the Chapman–Enskog procedure and then
we shall present the generalization to our situation and ful�ll calculations.
Consider the equation

@P
@t
=−(A+ B)P ; (7)

where operators A and B have the following properties:
• A self-adjoint operator A depends on variable x, operator B depends on x and y.
Both operators do not depend on time t.

• The operator B is supposed to be small in comparison with A. Later, we shall rescale
time so as to have ‖A‖ ∼ 1, ‖B‖.1. The value ‖B‖ will be the small parameter of
the theory.

• The eigenvalues and eigenfunctions of B are unknown. The eigenfunctions Ai and
eigenvalues ai of operator A are supposed to be known. They have the following
properties:

a0 = 0 ;

ai ¿�¿ 0; i 6= 0
with some positive small �. The eigenfunctions are supposed to be normalized.
One can introduce symbol O(‖B‖) which means that the given expression has the

order of ‖B‖ or less.
Initial conditions for (7) are supposed to be known. Then one can directly describe

the evolution during the �rst moments of time. Here one can neglect B. One has only
to solve the equation

@P
@t
=−AP : (8)

Due to the known eigenfunctions of A this solution is quite obvious

P =
∞∑
m=0

exp(−amt)pmAm ; (9)

where

pm = (P|t=0; Am) (10)

will be called the mode amplitudes (Am will be modes) and the symbol ( ; ) denotes
the scalar product. Here pm are initial mode amplitudes.
The �nal relaxation according to (9) is obvious

P → p0A0 : (11)

The characteristic time of relaxation is

trel = 1=a1 ; (12)

where a1 is the smallest eigenvalue of A (except the zero value).
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Now A(p0A0)=0 and operator A exhausts its power. One has to consider the action 25

of B.
The deviation of P from p0A0 can be caused only by the action of operator B. So,

in some sense it is small. Then we shall seek the solution in the following form:

P = p0A0 + � : (13)

For correction term � in accordance with the perturbation theory one can consider the
representation

�=
∞∑
i

�(i) ; (14)

where every term �(i) has the order ‖B‖i:
�(i) ∼ O(‖B‖i) :

Now, we are going to consider the time dependence of the amplitudes pm. One can
note that the action of A leads to the vanishing of pm for m 6= 0. The unique source
to �ll the given mode is to take into account the action of operator B which is small
but still can provide the transition from one mode to another. But B does not depend
on time. So, the intensities of transitions between modes do not depend on time also.
Thus, the unique source of time dependence is the time dependence of the zero mode
p0. Later, this dependence will be spread by B to all other modes.
As a result, we state that the time dependence of an arbitrary mode amplitude is

going through the time dependence of p0:

pm(t) = pm(p0(t)) ; (15)

@pm

@t
=

@pm

@p0

@p0
@t

: (16)

Certainly, the time dependence of p0 is not �xed and cannot be obtained imme-
diately. One has to recalculate it at every step of approximation. 26 The value �(i)

depends on time t through p0(t) in the ith approximation. At every new 27 �(i) one
has new p(i)m and new p(i)0 . So, one has a new time dependence.
The substitution of expansion

P = p0A0 +
∞∑
i=1

�(i) (17)

25 The physical reason to consider the further stages of evolution is that in the nucleation problem A0 ∼ const:
and the �nal state of relaxation does not provide any bene�t to the value of the nucleation rate (it lies in
the evident correspondence with the formula J ∼ exp(Fc)=�� of the one-dimensional theory where stands
the large parameter ��).
26 It is also possible to leave this dependence as some formal parameter and to calculate it when the “�nal”
approximation (i.e., the approximation with the necessary precision) is obtained.
27 The lower index denotes modes, the upper one denotes the number of approximations.
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into (7) gives

@p0
@t

A0 +
∞∑
i=1

@�(i)

@t
=−(A+ B)

(
p0A0 +

∞∑
i=1

�(i)
)

: (18)

Note that the ith term has order i, but the value with the order i will have bene�ts
from all terms with j¿i.
The r.h.s. and l.h.s. of the last equation are some functions and we suppose that

they can be decomposed into series over the small parameter ‖B‖. We shall denote
the term which has the order ‖B‖i by the superscript 〈i〉. Then one can write for the
r.h.s. of the previous equation(

(A+ B)

(
p0A0 +

∞∑
i=1

�(i)
))〈i〉

= A�(i) + B�(i−1); i ¿ 1 : (19)

The consideration of the l.h.s. is more complicated. At �rst we have to see the
expression for @p0=@t. Having projected Eq. (7) on A0 one can see that

@p0
@t
=−(A0; BP) : (20)

Hence, one can come to the estimate
@p0
@t

∼ O(‖B‖) :
One can rewrite the last relation using decomposition (17)

@p0
@t
=−

(
A0; B

(
p0A0 +

∞∑
i=1

�(i)
))

: (21)

Now it is evident that @p0=@t contains all powers of the small parameter and it has
the order O(‖B‖). Now it is worth determining the jth term in decomposition over
parameter ‖B‖. It is quite easy to do for @p0=@t. Namely,(

@p0
@t

)〈i〉
=−(A0; B�(i−1)) : (22)

Then one can ful�ll the same transformations for @�(i)=@t. One can present the fol-
lowing estimate:

@�(i)

@t
=

@�(i)

@p0

@p0
@t

∼ O(‖B‖i)O(‖B‖) ∼ O(‖B‖i+1) : (23)

So, one can reduce the in�nite sum to the �nite sum
 ∞∑

j=1

@�( j)

@t




〈i〉

→

 i−1∑

j=1

@�( j)

@t




〈i〉

: (24)

The next transformations are evident
 i−1∑

j=1

@�( j)

@t




〈i〉

=


 i−1∑

j=1

@�( j)

@p0

@p0
@t




〈i〉
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=
i−1∑
j=1

@�( j)

@p0

(
@p0
@t

)〈i−j〉

=−
i−1∑
j=1

@�( j)

@p0
(A0; B�(i−j−1)) ; (25)

where

�(0) = p0A0 :

Now we can substitute all results into the initial equation and get

− (A0; B�(i−1))A0 −
i−1∑
j=1

@�( j)

@p0
(A0; B�(i−j−1)) =−A�(i) − B�(i−1) : (26)

As long as the eigenfunctions of A are known one can use the last relation to
get �(i).

5. Relaxation

Consider now our situation. Certainly, one can choose operator D1 as the main one.
An operator

D0 =
(

@
@�

− 2�
)

@
@�

has the known set of eigenfunctions which are the Hermite polynomials Hj (j =
0; 1; 2; 3; 4; : : :). The scalar product is de�ned as

(	;�) =
1√
�

∫ ∞

−∞
dx exp(−x2)�(x)	(x)

which leads to

(Hj; Hi) = �ij2ii!

The eigenvalues of D0 are

�i =−2i; i = 0; 1; 2; : : : :

One has to mention two important relations(
@
@�

− 2�
)

Hi =−Hi+1 ;

@
@�

Hj = 2jHj−1 :

The �rst one gives the way to construct the set of Hermite polynomials. Both
these equations allow to introduce in Ref. [10] the representation of modes. We shall
call the operators on the r.h.s. of the two previous equations as the transition opera-
tors. The �rst one is the mode increase operator. The second one is the mode decrease
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operator. Then one can consider the operators of multiplication on � and the di�er-
entiation over � as the superposition of transition operators. Any additional operator
appears from the non-Fokker–Planck behavior and from the higher terms in the free
energy decomposition into the Taylor decomposition. Non-Fokker–Planck terms give
high derivatives. Free energy can be well approximated in the near-critical region by
polynomial and leads to additional multiplications on �. So, the additional term can
be regarded as the superposition of the mode increase operators and mode decrease
operators. This procedure resembles the formalism of the secondary quantization. It is
described in Ref. [10]. Below we shall use another approach.
It is clear that D1 can be represented as

D1 =
∞∑
l=1

d(1)l

(
@
@�

− 2�
)l @l

@�l

with coe�cients

d(1)l =−
∑
j

(−�j)l

l!
S2jW+

j

�lj
l!
; l= 2; 3; 4; : : : ;

d(1)1 =
∑
j′

W+
j′ �acc j′

cg j′

2
∑

j cj�j
+
∑
i′

W+
i′ (1− �c i′)�acc i′

ci′
2
∑

j cj�j

+
∑
i′

W+
i′ �c i′

ci′
2
∑

j cj�j
−
∑
j

(−�2j )W
+
j S2j :

Then the eigenfunctions of D1 will be the Hermite polynomials 28 and the eigenvalues
are given by

�j =
j∑

l=1

d(1)l (−2)l
j!

(j − l)!
�0 = 0 :

One can take D1 as the main operator in the Chapman–Enskog procedure. The
approximate form of kinetic equation will be the following one:

@P
@t
= D1P :

But already in the investigation of the stationary distribution establishing one will see
that the formal priority of D1 in comparison with D2 is not su�cient to ensure the
relaxation to the stationary state.
Operator D2 will be small in comparison with D1 in terms of some small parameter

(not in the formal sense described above) only when �j for all j are small parameters.
Then the main terms in operator D2 will be the terms with the smallest sum of indexes
l+ m.
The required condition of the smallness of D2 formulated in terms of the relaxation

times will be

prel ≡
| −∑j �

3
jW

+
j |

|�1| .1 :

28 In the main order S2j goes to 1.
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Analogous parameter has been required 29 to be small in Ref. [8]. Then the solution
at the relaxation stage can be written as the decomposition into the relaxation modes

P =
∞∑
l=0

p(0)l exp(−�lt)Hl ;

where

p(0)l = (2ll!)−1(Hl; P(t = 0))

are initial amplitudes. This decomposition ensures the relaxation to the stationary state
p(0)0 H0:

P → p(0)0 H0 ≡ Prel :

The time of relaxation trel is given by

trel D1 ∼ |�1| :
According to Ref. [8] restriction prel.1 practically excludes the nucleation under

the strong thermal e�ects. So, the situation considered in Ref. [8] is rather poor.
Now we shall introduce another split of operators.
One can note that the �nal state Prel corresponds to the equilibrium distribution over

�. So, it is the eigenfunction of the operator D1 + D2 with the zero eigenvalue

(D1 + D2)Prel = 0 :

This can be easily proven when we return to the form of the �nite di�erences and
reconstruct D1 and D2.
Certainly, it is di�cult to determine all eigenfunctions and eigenvalues of D1 +D2.

We need not know all relaxation modes but only the �nal one. It is Prel. Also, we have
to estimate the time of relaxation. One can prove that the relaxation time trel D1+D2 for
the equation

@P
@t
= (D1 + D2)P

is less than or equal to the previous relaxation time trel D1

trel D1+D26trel D1 :

Operator D2 “helps” the relaxation to Prel. The way to prove the last estimate is to
consider the blocks along the �-axis and estimate the action of D2 between blocks.
As long as D3, D4 have a small parameter in comparison with D1, no special condi-

tion is required. Now, we can consider D1 +D2 as the main operator at the relaxation
stage. The smallness of prel is not required now.

29 With an account of the mentioned error.
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6. Correction terms

When P is close to Prel which is the eigenfunction with the zero eigenvalue then
the operator D1 or D1 +D2 cannot be considered as the main one. One has to use the
Chapman–Enskog asymptotic decomposition. But to ful�ll this decomposition one has
to know all eigenfunctions of the main operator. So we cannot use D1 + D2 as the
main operator now.
One can easily note that to start the Chapman–Enskog procedure one has to know

only Prel. So, there are no problems with the rede�nition of the main operator after
the relaxation period.
We shall rede�ne the main operator after the end of the relaxation stage. Now the

main operator will be D1. One can see that “correction operator” D2 + D3 + D4 has
a complicated structure. Operators D3 and D4 have small parameters. Operator D2 is
small only in the formal sense. So, the natural modi�cation of the Chapman–Enskog
procedure is to consider two Chapman–Enskog procedures. One can include the whole
internal Chapman–Enskog procedure into every step of the external Chapman–Enskog
procedure. The initial procedure has the aim to “invert” the action of operator D2 and
the external procedure will “invert” the action of D3 + D4.
Every new approximation will contain the small parameter 1=�� ∼ �2=3 (or at least

��=� ∼ �−1=3) in the order of the number of external approximations. This order
decreases the order of ow calculated in the initial (zero) approximation. But one
has to stop the external procedure until the resulting order is greater than �0 = 1
because the continuous description along �i will be violated in this order. One has
to note that the evolution along �i is principally di�erent in comparison with evo-
lution along �. The domain along �i is concentrated only at the integer values (the
value of � is real). This di�erence leads to the speci�c lattice corrections described in
Ref. [10]. These corrections have very complicated structure, an account cannot be
ful�lled explicitly in the analytic way. As a result, we have to restrict ourselves by
the �rst correction and adopt that the account of the �rst correction in the exter-
nal procedure is already su�cient. The further corrections have the orders of the
lattice corrections. So, they cannot be considered separately without the lattice cor-
rection analysis. But in the internal procedure we have to calculate all
approximations.
Also, one has to note here the requirement to have no operators S1j, S2j, S3j in

the �nal results. Really, the presence of these operators corresponds to the elementary
shift taken into account. This is in contradiction with the absence of the lattice domain
along �i in our approximation.
The matter under discussion is the rate of nucleation and to determine this rate we

need only the embryos ows averaged over �. This operation corresponds to projection
on H0 ∼ const:
Now we can focus on establishing equations for @p0=@t. The last dependence is

extremely important because in the Chapman–Enskog procedure all dependence of ap-
proximations on time is going through dependence of p0 on time. To get @p0=@t one
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has to project kinetic equation

@P
@t
= [D1 + D2 + D3 + D4]P

on H0, i.e., to ful�ll the integration
∫∞
−∞ exp(−�2) : : : d�. The l.h.s. gives @p0=@t. Then

@p0
@t
= (H0; [D1 + D2 + D3 + D4]P) :

The r.h.s. will lead to a more complicated expression. One can consider

(H0; D1P) =

(
H0; D1

∑
i

piHi

)
=

(
H0;
∑

i

�ipiHi

)
= �0p0 = 0

as long as �0 = 0. One can also consider

(H0; D2P) =

(
H0; D2

∞∑
i=0

piHi

)
:

From an explicit form of D2 one can see that the last elementary operator in action of
D2 will be the mode increase operator (@=@�− 2�). So, if we present D2

∑∞
i=0 piHi as

D2
∞∑
i=0

piHi =
∞∑
i=0

qiHi

then q0 = 0. There is no projection on the zero mode. Then(
H0;

∞∑
i=1

qiHi

)
= 0

for arbitrary qi. Then

(H0; D2P) = 0 :

Consider (H0; D3P). Operator D3 can be split into two parts D3a and D3b de�ned as

D3a =
∑
j

∞∑
l=1

(−�j)l

l!

(
@
@�

− 2�
)l

LjS1j ;

D3b =
∑
j

@
@�j

W+
j S3j

∞∑
m=1

�mj
m!

@m

@�m ;

D3 = D3a + D3b :

Then

(H0; D3aP) = 0

and the reasons are the same as for D2. The action of D3b can be presented as

(H0; D3bP) =
∑
j

@
@�j

S3j

(
H0; W+

j

∞∑
m=1

�mj
m!

@m

@�m P

)
:
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The last operator D4 gives

(H0; D4P) =−
∑
j

@
@�j
(H0; LjP) :

As a result, one can get

@p0
@t
=−

∑
j

@
@�j

(
H0;

[
Lj −W+

j S3j
∞∑
m=1

�mj
m!

@m

@�m

]
P

)
:

The values on the r.h.s. of the last equation can be interpreted as the ows Jj along
the �j axis

Jj =

(
H0;

[
Lj −W+

j S3j
∞∑
m=1

�mj
m!

@m

@�m

]
P

)

which transfers the last equation in the standard form

@p0
@t
=−

∑
j

@
@�j

Jj : (27)

7. Calculations

Now we can turn to direct calculations. The distribution P can be presented in the
following form:

P = p0H0 +
∞∑
l=0

pl(p0)Hl ;

pl(p0) =
∞∑
m=1

p(m)l (p0) ;

where the lower index indicates the number of modes and the upper index in brackets
indicates the number of approximations. As already stated, we can ful�ll in the external
procedure only one step and it is not necessary to mark it. The upper index, thus,
corresponds to the internal approximations.
Now, we can rewrite expression for Jj in terms of announced decomposition. Then

Jj =

(
H0;

[
Lj −W+

j S3j
∞∑
m=1

�mj
m!

@m

@�m

][
p0H0 +

∞∑
l=0

pl(p0)Hl

])
:

Now we consider various terms of the last expression. Namely,

(H0; LjP) = Ljp0 :

Then we can consider(
H0; W+

j S3j
∞∑
m=1

�mj
m!

@m

@�m

[
p0H0 +

∞∑
l=0

pl(p0)Hl

])
:
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The term p0H0 does not lead to any inuence because in
∑∞

m=1(�
m
j =m!)@

m=@�m there
is at least one operator of the mode decrease. Then(

H0; W+
j S3j

∞∑
m=1

�mj
m!

@m

@�m

[
p0H0 +

∞∑
l=0

pl(p0)Hl

])

=

(
H0; W+

j S3j
∞∑
m=1

�mj
m!

@m

@�m

∞∑
l=0

pl(p0)Hl

)

=

(
H0; W+

j S3j
∞∑
i=1

∞∑
m=1

�mj
m!

@
@�mpi(p0)Hi

)
=W+

j S3j
∞∑
m=1

�mj pm(p0)2m :

The resulting expression for Jj will be the following:

Jj = Ljp0 −W+
j S3j

∞∑
m=1

�mj pm(p0)2m :

In the main order we can omit S3j. Certainly, the correction term in S3j has an order
greater than that of Lj but all non-zero modes can appear only from the zero one by
the action of the operator which contains Lj. So, we have to keep Lj and take away
S3j here. Then

Jj = Ljp0 −W+
j

∞∑
m=1

�mj pm(p0)2m :

Now we can calculate the set of corrections. The initial condition for the asymptotic
expansion will be the result of the relaxation stage, i.e. Prel. One can easily note that

D1Prel = 0 ;

D2Prel = 0 ;

D3bPrel = 0 ;

because the �rst elementary operator is the mode decrease operator. In D3a there are
only mode increase operators and then

D3aPrel =
∑
j

LjS1j
∞∑
l=1

(−�j)l

l!

(
@
@�

− 2�
)l

p0H0

=
∑
j

LjS1j
∞∑
l=1

(−�j)l

l!
(−1)lp0Hl =

∑
j

LjS1j
∞∑
l=1

(�j)l

l!
p0Hl :

The last operator contains the small parameter in the �rst order. In the main order one
can take S1j away.
Operator D4 has at least the small parameter in power 2. So, it is small in comparison

with D3a which has it in the �rst power. As long as operators D1, D2 have no action
we have to take into account D3 but we can neglect the action of D4.
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Now we shall consider (H0; [D2 + D3 + D4]Prel)H0. As long as Prel ∼ H0 we have
D2Prel=0, D3bPrel=0, the value D3aPrel is orthogonal to H0. The value D4Prel has small
parameter in the second power. So, one can neglect here (H0; [D2 + D3 + D4]Prel)H0.
In the zero approximation(

@p0
@t

)(0)
= 0 :

As a result, in the main order we have 30

p(1)l =
1

�ll!

∑
j

�ljLjp0 :

In the �rst approximation as long as D2Prel = 0 there is no internal procedure. Now,
we are going to calculate the second external approximation. The structure of �rst
approximation is rather simple because the zero approximation is localized only at the
zero mode. Now, the current approximation has all modes and operator D2 will lead
to a non-zero result. So, the operator D2 will be the main one and one can neglect 31

D3 and D4. In D2, thus, one can neglect S2j. But as long as D2 gives a non-zero result
there will be the internal procedure.
The time derivative can be also neglected. Really, due to (21)(

@p0
@t

)(1)
∼ −(H0; [D2 + D3 + D4]H0)

in the main order.
One can easily see that

(H0; D2H0) = 0 ;

(H0; D3bH0) = 0 ;

as long as the �rst operator in the action of D2 and D3b is the derivative over � which
gives zero in application to H0 ∼ const:
As long as D3a has the small parameter and D4 is the smallest one the result

(@p0=@t)(1) is small. As long as we calculate in the main order of small parameter
we can neglect (@p0=@t)(1).
In all approximations from the second one we can use (27) and see due to the

smallness of @=@�i the smallness of (@p0=@t)(i), i = 2; 3; 4; : : : :
We see that the Chapman–Enskog procedure is now reduced to the trivial equation

(except the zero mode)

p(i+1) =−D−1
1 D2p(i)

with the evident initial approximation. 32 In the main order one can take S2j away
from the operator D2. This form can be obtained from the simple analysis without
Chapman–Enskog formalism.

30 The �rst time Lj is used.
31 This is done for the �rst time.
32 In D1 and D2 there is no Lj . So, Lj is used only one time.
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The internal procedure does not have the Chapman–Enskog speci�cs because the
time derivatives have the small parameter and they are absent in the last equation.
Also, one can reformulate the Chapman–Enskog procedure in another manner: the

main operator will be D1+D2 and now we have to invert it by some standard iteration
approach.
We can present the last equation in the following form:

p(i+1)k =
∞∑
q=1

�kqp(i)q

as the matrix representation of the linear operator D−1
1 D2 in the basis Hi (without the

zero mode). All �qq can be put to zero.
One can note the following important features:

• Any operator acts until the current moment in the already ful�lled part of the external
Chapman–Enskog procedure only one time.

• Every operator has its own speci�c structure and cannot be reproduced by the actions
of other operators.
Both these features allow one to forget about S1j, S2j, S3j. If any operator had been

used more than one time then one would take these operators into account.
The absence of S1j, S2j, S3j is very important in the context of the lattice structure

of the domain in the {�i} plane. Only the absence of these operators allows one to
ignore this lattice structure.

8. Final expressions

Now we have to establish the expression for �kq. As long as D2 is the superposition
of the mode decrease operators and mode increase operators it will transfer Hi into
superposition of Hi. The action of D−1

1 on Hj (except zero mode) is evident – it is
multiplication Hj on �−1j .
How does D2 transfer Hq into Hk? At �rst, according to the de�nition of D2 the

mode decrease operators will act. The number l of the mode decrease operators will be
between l0 and q. Parameter l0 appeared from the evident requirement that we have to
fall lower than the kth level. So, l0 =1 if k ¿q and l0 =q− k+1 if q¿k. The result
of the action of the mode decrease operators will give the coe�cient 2lq!=(q − l)!.
Then to get Hk one has to apply k − (q− l) mode increase operators which will give
the coe�cient (−1)k−(q−l). As the result

�kq =
1
�k

∑
j

W+
j

q∑
l=l0

�k−q+l
j

(k − q+ l)!

�lj
l!
2l

q!
(q− l)!

:

Also, one can consider another representation of �kq. At �rst, we fall from the q
level to the l level and this action gives (�q−l

j =(q− l)!) (q!=l!)2q−l. Then we increase
the mode from the l level to the k level and this action gives �k−l

j =(k − l)!. The result
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will be

�kq =
1
�k

∑
j

W+
j

min{q;k}−1∑
l=0

�q−l
j

(q− l)!
q!
l!
2q−l �k−l

j

(k − l)!
:

Note that �kq does not depend on the number of approximations. This will lead to
some important consequences. The �rst one is the possibility to write equation between
pk :

pk =
∞∑
q=1

�kqpq + p(1)k

or

pk =
∞∑
q=1

�kqpq +
1

�kk!

∑
j

�k
j Ljp0 :

Due to the linearity of equations the decomposition of the initial approximation will
be reproduced in all approximations. Namely, we shall present p(1)l in the following
form:

p(1)l =
∑
j

p(1)lj ;

where

p(1)lj =
1

�ll!
�ljLjp0

and the second lower index indicates component in the initial approximation (later �kq

will be a mixture of di�erent components).
The linearity results in the possibility of decomposition

p(i)k =
∑
j

p(i)kj :

Index j has no correspondence here with the direct decomposition over components.
For p(i)kj the recurrent expression

p(i+1)kj =
∞∑
q=1

�kqp
(i)
qj

is valid.
The total amplitude pk can be also decomposed as

pk =
∑
j

pkj ;

where pkj are

pkj =
∞∑
i=1

p(i)kj :
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For pkj one can write

pkj =
∞∑
q=1

�kqpqj + p(1)kj :

One can also move operators Lj through �̂ ≡ {�kq}. This gives the set of relations.
For the �rst approximation one can write

p(1)l =
∑
j

Lja
(1)
lj p0 ;

where

a(1)lj = �lj
1

�ll!
:

The recurrent relations for a(i)lj will be

a(i+1)kj =
∞∑
q=1

�kqa
(i)
qj :

In terms of a(i)kj the value p(i)k can be easily expressed as

p(i)k =
∑
j

a(i)kj Ljp0:

Having introduced

akj =
∞∑
i=1

a(i)qj ;

one can get

akj =
∞∑
q=1

�kqaqj + a(1)kj :

In terms of akj the value pk can be easily expressed as

pk =
∑
j

akjLjp0 :

The given decompositions are rather attractive from the �rst point of view, but
actually one cannot simplify the problem with the help of these decompositions.
The equation for p0 will be the following one:

@p0
@t
=−

∑
j

@
@�j

∑
i

(
�ij −W+

j S3j
∞∑
m=1

�mj 2
mami

)
Lip0

and in the main order

@p0
@t
=−

∑
j

@
@�j

∑
i

(
�ij −W+

j

∞∑
m=1

�mj 2
mami

)
Lip0 ;
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where indexes i and j mark components. The last equation has the standard form
investigated in Ref. [6]. The part of Ref. [8] concerning the solution of the last equation
in the two-dimensional case is also acceptable as long as it reproduces [11] in detail. 33

Now, we shall present another method to calculate correction terms in the Chapman–
Enskog procedure.
One can easily note that recurrent equations for p(i)l and for p(i)l j will lead to

lim
i→∞

p(i)l j → const:l j(max)i ;

lim
i→∞

p(i)l → const:l(max)i ;

where max is the eigenvalue of �̂ ≡ {�pq} with the maximal absolute value. We
suppose that |max|¡ 1.
Then one can say that starting from some number mlim the tails of sums

∑
i p

(i)
l j,∑

i p
(i)
l resemble the tail of geometric progressions. Then one can easily calculate these

sums
∞∑

i=mlim

p(i)l j ∼
p(mlim)l j

1− max

and
∞∑

i=mlim

p(i)l ∼ p(mlim)l

1− max
:

The �rst mlim terms have to be calculated explicitly. The boundary mlim which depends

on j; l can be found as the characteristic boundary when �̂
i+1

=�̂
i
approaches some

constant independent of i. This procedure gives also the value of max.
Certainly, the most interesting situation is the strong manifestation of the thermal

e�ects. Here the thermal e�ects cannot be considered as some corrections but radically
change the character of the process.
Really, the main dependence of the nucleation rate is accumulated in exponent of the

free energy of the critical embryo. The giant renormalization due to the thermal e�ects
means that the temperature of the critical embryo essentially di�ers from the tempera-
ture of the vapor–gas media. The relative di�erence of the temperature expressed in the
units of � (in estimates we can forget about di�erent components) can attain several
units. It means that the characteristic value �0 of � attains several units.
One can easily note that to reproduce the real solution (i.e., to attain the values of

� in several units) we have to take into account a great number of modes. Really, the
Hermite polynomials Hn are the polynomials of power n. The characteristic region of
localization of the function Hn(�) exp(−�2) is [ ∼ −√

n;∼ √
n]. So, to describe the

situation correctly we have to take into account at least �20 modes. This quantity equals
the dimension of the matrix �̂ which becomes also great. This produces numerical
di�culties.

33 Except several misprints appeared in Ref. [8]. Also, the initial matrix (with dimension 2) is not diagonal
but this fact does not produce any di�culties.
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Consider the matrix �̂. Due to factorials in the denominators the values of the
elements with large indexes are going to zero. It takes place under the arbitrary �j.
The r.h.s. of the matrix equation, i.e., the known vector p(1)={p(0)i } also has vanishing
elements when i → ∞. The structure of the matrix �̂ is the following: the upper triangle
matrix has the elements with large values due to the large coe�cient which appeared
from the action of the mode decrease. The lower triangle matrix is “smaller” than the
upper one. Thus, the following method will be rather e�ective: 34 one can split matrix
�̂ into the upper triangle matrix (with big elements) and the lower triangle matrix (with
moderate elements). Then at every step of the iteration procedure the upper triangle
matrix will be inverted (it is easy to do). The zero mode (in fact it is the �rst line in
the matrix equation) will be calculated explicitly.
So, we have

�̂ = �̂+ + �̂− ;

where

�̂+ ij = 0 i¿ j ;

�̂+ ij = �̂ij i¡ j

and

�̂− ij = 0 i¡ j ;

�̂− ij = �̂ij i¿ j :

Then the equation

p= �̂p+ p(1)

can be rewritten as

p= �̂+p+ �̂−p+ p(1) :

Then an iteration procedure can be formulated as

p(i+1) = �̂+p(i+1) + �̂−p(i) + p(1)

with initial condition p(1).
One can easily note that the iteration solutions of the matrix equation take us back

to the initial formulation of the problem at the level of the recurrent relations. So, the
presented approach to calculate the maximal eigenvalue gets now a solid ground. It is
also e�ective because it allows to estimate the necessary number of modes taken into
account directly (by the smallness of the higher mode at every step).

34 With a special account of the Chapman–Enskog speci�c features.
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Fig. 1. Experimental and theoretical results for ethanol–hexaganol nucleation.

9. Numerical results and conclusions

To show the numerical e�ects of the error approach [8] we shall consider the same
situation as was done in Ref. [8]. As long as it has not been declared in Ref. [8] as to
which normalizing factor of the equilibrium distribution had been used to calculate the
stationary rate of nucleation we have to use the isothermal rate of nucleation published
in Ref. [8] (see Fig. 1 there) as some given data. 35 The detailed description of the
experimental conditions and data can be found in Refs. [8,12].
The condensation of the ethanol (�rst component) – hexaganol (second component)

is considered [8]. The nucleation rate logarithm over the mean activity z =
√

�21 + �22
is drawn for the several values of the activity fraction q= �1=(�1 + �2). In Fig. 1, the
points correspond to the results of Strey and Visanen [12]. The solid lines show the
isothermal rates of nucleation. Two dashed lines present the nonisothermal nucleation
rates for two di�erent values of the passive gas (argon) accommodation coe�cient
�accg. The lower curve corresponds to �accg=0:01, the upper corresponds to �accg=0:1
(for all activity fractions).
The values of q are written below the series of experimental points and above the

theoretical curves. For small values of q the isothermal and nonisothermal curves prac-
tically coincide, but this occurs only due to the large slope of the drawn dependencies.
Moreover, one can analytically show that the di�erence in J between isothermal and

35 The same qualitative picture will be with the arbitrary normalizing factor.
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Fig. 2. Di�erent theoretical predictions for q = 0:980.

nonisothermal approaches is growing with the growth of the nucleation rate and, thus,
for small q this di�erence is the greatest one.
We omit the comparison with the results of Lazaridiz and Drossinos [7] because their

nucleation rates are higher than the classical isothermal results. This is in contradiction
with the principle of stability. It is quite possible that Lazaridis and Drossinos used
other input data as parameters of their theory.
Figs. 2 and 3 show the di�erence between the nucleation rates logarithms calculated

by Djikaiev et al. [8] and by the formulae presented here. Our results are denoted
by dotted lines, the results of Djikaiev et al. by dashed lines, the nonisothermal rates
logarithms by solid lines. All curves are drawn for �accg=0:1. The greater the nucleation
rate the greater the manifestation of the thermal e�ects and the greater is the di�erence
between the nucleation rate logarithms calculated by Djikaiev et al. and our results.
That is why we take two situations with the lowest theoretical nucleation rates which
correspond to q = 0:980 (Fig. 2) and q = 0:929 (Fig. 3). Certainly, the di�erence for
ln J is not too large, but the correct account of the passive gas cooling changes J
several times in comparison with results of Djikaiev et al. Our results are closer to the
experimental data.
To show the qualitative di�erence we can assume that �j, W+

j n∞ j@F=@�j have equal
values for all components. Then all components cannot be separated and we have the
nonisothermal nucleation for one component but the passive gas is taken i0 times into
account in Ref. [8] (i0 is the number of condensating components). Also, we can
approximately assume that the main cooling of the embryo occurs due to the passive
gas. Then taking into account the fact that the renormalization of the stationary rate
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Fig. 3. Di�erent theoretical predictions for q = 0:929.

is proportional now to the quantity of the passive gas [2] we can see that the error
in J attains i0 times (two times in the binary condensation). This error is likely more
signi�cant than the di�erence between the Stau�er approach [13] and the steepest
descent method [14].
All necessary limit transitions of the presented theory (to the one-component theory,

to the nonisothermal theory) are observed and give the correct asymptotes to the already
described situations.
To �nish our description we can briey recall the new facts presented here in com-

parison with other publications. Certainly, the most advanced version of the theory was
presented by Djikaiev et al. [8], but even in comparison with this publication the new
features are the following ones:
• The theory is now presented for the multicomponent case.
• The shift terms in kinetic equation are obtained. The sense of these terms is clari�ed,
their negligible role is justi�ed. It is shown that their negligible role can be shown
only in frames of the initial steps of the Chapman–Enskog procedure. The connection
of the vanishing of the shift terms and the possibility to forget about the lattice
structure of the distribution domain is shown.

• The common cooling by the passive gas instead of the separate cooling is considered.
This leads to an essential numerical di�erence in the nucleation rate.

• The relaxation in the absence of the speci�c parameter required in Ref. [8] is based.
It allows to consider by the known Chapman–Enskog approach the situation of the
strong thermal e�ects.
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• The wrong parameter of decomposition presented in Ref. [8] is now corrected. This
clari�es the transition to the isothermal multicomponent theory.

• The new correct estimate for the size of the near-critical region is given.
The evident weak point of the presented theory is the absence of the surface tension

dependence on temperature. This phenomenon will be taken into account in the next
publication.
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A theoretical description of heterogeneous nucleation kinetics is presented. This description takes into
account the perturbation of the vapor phase initiated by the growing droplets. The form of the density profile
around the growing droplet is analyzed and some special approximations are given. Then the process of
nucleation in the whole system is described. As a result all the main characteristics of the process are deter-
mined analytically.

DOI: 10.1103/PhysRevE.63.056123 PACS number~s!: 05.70.Fh, 82.20.Db, 05.20.2y
a
f
n
io
e

re

re

th
th
le
u
th
im

f
a
h
te

t s
ti

e
o

ts
-

ac
s

is
il

iz
e

ca

h
al
he
re

al-
ac
io

nd

t an
la-
nts.

ap-
p-

not
r

bal

ion
e
the
form
ome
mu-
of

ec-
ty
em
eiss
re
c-

en-
nd

ance

r
t is
w
the

di-
ous
in
are
de-
I. INTRODUCTION

Among the numerous examples of first order phase tr
sitions the case of condensation stands out because o
relative simplicity. This case is well investigated experime
tally and is traditionally regarded as the base for applicat
of new theoretical methods. The classical theory of cond
sation~see, for example,@1#! gives solid ground for further
theoretical constructions. Numerous modifications and
considerations~see, for example,@2#! allow one to consider
that the case of condensation is well analyzed both theo
cally and experimentally.

One cannot state that all problems in the derivation of
stationary nucleation rate are completely solved, but
nucleation rate dependence on supersaturation is reliab
least in its general features. Certainly, there exist some
known factors involved in the smooth dependence on
parameters of external conditions, but they are not very
portant in the current consideration.

One has to stress that essentially all investigations so
were intended to determine the rate of nucleation and h
not presented the global picture of the phase transition. T
oretical descriptions of the global evolution appeared la
than the classical theory of nucleation and they were no
numerous as those intended to get the stationary nuclea
rate. One can extract many aspects of the global pictur
the phase transition. When there is a sufficient quantity
aerosol in the system~i.e., there are already existing drople
formed on impurities! the evolution description does not re
quire the process of droplet formation to be taken into
count. This radically simplifies the problem, and this ca
was investigated in@3#. The total number of droplets there
already known from external conditions. Here this value w
be the matter of investigation.

We shall determine the number of droplets and their s
spectrum by solving the complex nonlinear problem. B
cause of the difficulties of this problem, only some numeri
calculations have been presented earlier@4,5#. The scheme of
calculations presented in@5# allowed the authors to establis
in @4# some dimensionless combinations which essenti
simplify the numerical procedure used there and allow rat
complex numerical calculations. The sectional model p
sented in@6# simplifies the calculations once more and
lows both nucleation and coagulation to be taken into
count. Here we do not consider the process of coagulat
1063-651X/2001/63~5!/056123~18!/$20.00 63 0561
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assuming that the probability of this process is very low a
it can be observed only long after the end of nucleation.

We have to stress that here we are going to presen
analytical theory which does not require computer simu
tions except for some calculations of universal consta
This has to be done only once. The period of nucleation~i.e.,
the appearance of new droplets! is difficult to describe ana-
lytically and ordinarily one has to suggest some model
proximation to estimate the influence of the vapor consum
tion by the existing droplets. Sometimes this influence is
important and it is shown in@7# that this situation is rathe
widespread in laminar tube flows. In@7# the theory for this
case was given and the methods of describing the glo
evolution were presented completely.

An analytical method to describe most of the nucleat
process was presented in@8# on the basis of the balanc
equation for some characteristic time scales. The form of
size spectrum was postulated and the parameters of this
were associated with characteristic time scales. Then s
special equations to obtain these time scales were for
lated, which gives a way to get all the main characteristics
the nucleation process.

Here we are going to determine the form of the size sp
trum explicitly taking account of the profile of vapor densi
around every droplet. The great importance of the probl
of vapor exhaustion around the droplet was stressed by R
in @9#, where the stationary profiles around droplets we
obtained. Approximation of the stationary profiles was ne
essary in@9# to get the rate of droplet growth. It will be
shown that to describe the kinetics of nucleation it is ess
tial to use nonstationary profiles of the vapor density arou
the droplet instead of quasistationary ones. The appear
of contradiction between the approach in@9# and that used
below is explained by the fact that in@9# only distances nea
the droplet were considered. To get the rate of growth i
sufficient to consider only relatively small distances. Belo
we shall be interested in some large distances which have
scale of the mean distance between droplets.

To start our consideration one has to fix external con
tions. We shall analyze condensation after the instantane
creation of initial supersaturation, which is very often used
experiments. The theoretical investigations of this case
also rather numerous. Among them one can extract the
scriptions of metastable phase decay by Wakeshima@10#, by
Segal’ @11#, and by Kuni and Grinin@12#. The process of
©2001 The American Physical Society23-1
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V. KURASOV PHYSICAL REVIEW E 63 056123
condensation that occurs during a smooth variation of ex
nal conditions is considered in@13#. Nevertheless, all the
mentioned theoretical descriptions of a global picture of c
densation kinetics have ignored an important feature of
process, namely, the exhaustion of a metastable phase
the growing embryo of a new phase has not been taken p
erly into account. Certainly, this exhaustion is partially tak
into account in the expression for the rate of embryo grow
in the continuous model~i.e., in the diffusion regime of em
bryo growth!. This effect has been analyzed in both statio
ary and nonstationary aspects in many publications mainl
the field of mechanics of continuous media. But the prese
of a gap in the metastable phase density near a droplet
act on the rate of new droplet formation. This effect was
taken into account in all the mentioned previous theoret
descriptions of global evolution during a first order pha
transition. But, as shown in@14#, this gap can lead to larg
numerical effects in the description of the whole process

The reason that this effect has not been considered be
is rather trivial. Even under a spatially homogeneous c
sumption of the metastable phase the descriptions w
rather difficult to solve@13#. The condensation process h
usually been described in the free molecule regime of dro
growth where there will be no such gap. This was a seri
restriction of the theoretical description.

In some publications devoted to construction of a glo
picture of the phase transition~see, for example,@15#! the
regime of droplet growth was the diffusion regime. This r
quires consideration of the gap in the density near the gr
ing droplet but the vapor consumption was regarded as
mogeneous in space. Since this effect is very important
cannot present a reliable description without taking it in
account. Here we shall give a more realistic picture of
phase transition which takes this gap into account but allo
an analytical solution.

Qualitatively the picture of the condensation process
rather simple. A process of nucleation~i.e., formation of su-
percritical embryos of a liquid phase! leads to vapor exhaus
tion, which stops the process of nucleation, but the sup
critical embryos continue to consume the vapor phase.
the surplus material of the metastable phase will be accu
lated in the embryos of a new phase. One can say that
process of condensation is now completed.1

A global picture of homogeneous condensation with
plicit account of the density profiles was presented in@14#,
where very large numerical effects were observed, but o
narily the process of nucleation occurs on heterogene
centers.2 This fact radically complicates the theoretical d
scription due to the centers’ exhaustion. This exhaustion

1Further evolution includes the consumption of some relativ
small embryos by some relatively big ones. It will be seen later t
when all surplus material is consumed all droplets have appr
mately the same size, and we do not analyze this process he
description of the further evolution can be given with the help of
Ostwald ripening theory formulated by Lifshitz and Slezov.

2Also, it is simpler to observe the heterogeneous case experim
tally.
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essentially nonlinear character. For simplicity we shall
sume that there is only one type of heterogeneous center
the total number of centers is fixed in time. During the nuc
ation process some of the heterogeneous centers becom
centers of supercritical droplets that are growing irreversi
in time. But the nucleation process diminishes the numbe
free heterogeneous centers~those unoccupied by droplets!. In
some cases the total exhaustion of free heterogeneous ce
interrupts the nucleation; in some cases partial exhaustio
heterogeneous centers seriously diminishes the nuclea
rate. This effect has also to be taken into account in a th
retical description.

A simple analytical description of heterogeneous cond
sation will be presented here with a proper account of
problems mentioned above. As a result, all the main cha
teristics of the condensation process will be expres
through some parameters of the external conditions
through the substance parameters by explicit analytical
mulas. The error of the description presented will be e
mated.

The structure of the theory will be as follows. First w
shall analyze the density profile around a solitary droplet a
construct some approximations. This has much in comm
with the case of homogeneous condensation considere
@14# and will be considered briefly. Then we shall constru
some models for the kinetics of the process. We have
show that these models estimate the time evolution of
system during the nucleation period from above and fr
below. Since these models give similar results one can s
that an approximate description of the nucleation kinetics
given. The error of the description is thus estimated. Wh
the solution has been obtained we can compare it with
formulas given by the previous approach without dens
profiles and see the numerical effect of the gap near
growing droplets.

The small parameter of the theory will be the inver
number of molecules inside the critical embryo of a ne
phase. The small value of this parameter is not a restric
of our theory—it comes from the validity of the thermod
namic approach to calculating the free energy of the criti
embryo. There is no other reliable way to calculate the f
energy except the thermodynamic approach.3 To use the
thermodynamic approach it is necessary to have at lea
few dozen molecules inside the embryo.

Also, we shall require a barrier character of the nuc
ation. This means that every embryo has to overcome
activation barrier of a particular height to begin to grow
reversibly. This height is less than the critical energy for t
homogeneously~purely fluctuationally! formed embryo but
still attains several thermal units.4 Certainly, one can imagine
a situation when there is no activation barrier. Then all e
bryos immediately begin to grow irreversibly. The number

y
t
i-
. A
e

n-

3All microscopic models require very complex calculations th
cannot be fulfilled directly.

4All energylike values will be measured in thermal units.
3-2
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HETEROGENEOUS CONDENSATION IN DENSE MEDIA PHYSICAL REVIEW E63 056123
droplets ~i.e., the irreversibly growing embryos! will be
equal to the total number of centers and the kinetics of
process will be relatively simple.

We shall speak only about the density profiles around
droplet and ignore the heat extraction in the nucleat
process.5 In fact, the mathematical structure of the diffusio
equation resembles the structure of a heat transfer equa
So all constructions for the condensation heat extraction
be the same as for substance consumption. This effect
lead only to some renormalizations. That is why only a f
remarks will be made. Some detailed results can be foun
@6#.

We shall consider the situation of metastable phase de
This means that in the initial moment of time all the su
stance is in the vapor phase. All heterogeneous centers
free from droplets.

II. PROFILE AROUND THE SOLITARY DROPLET

Due to the external influence in the initial moment of tim
one can observe a homogeneous mother metastable p
with particle number densityn equal to some initial value
n0 . All heterogeneous centers are distributed rather homo
neously in space with the number densityh tot . A system of
unit volume is considered.

The process of condensation can begin only whenn0 is
greater than the molecule number densityn` in saturated
vapor over a plane liquid. The power of the vapor metas
bility is characterized by the value of the supersaturatioz
defined as

z5
n

n`
21 .

The initial value of the supersaturation is denoted byz0 .
Almost immediately there will be formed around eve

center an equilibrium embryo which hasne molecules. The
value ofne is relatively small6 and there is no need to con
sider the density profile around the equilibrium embryos.7

During the condensation process the number of free
erogeneous centersh decreases due to the exhaustion of
free heterogeneous centers,

h5h tot2N,

whereN is the number of supercritical embryos, which w
be called the droplets. Despite the simple form of the l
relation the effect is very complex becauseN depends on
time in a very complex manner.

5The validity of this assumption can be ensured by using a pas
gas.

6In comparison with the characteristic number of molecules ins
the droplet during the nucleation period.

7In fact the gap is rather small and will disappear rather fast. T
leads to a slight variation of the equilibrium embryo characterist
This variation will act on the gap in reverse, but the final relaxat
will be rather rapid.
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The effects of the density profile will be essential also
account of the heterogeneous centers’ exhaustion and
cannot directly apply the results of@13#. One has to deter-
mine the effect of the influence of the centers’ exhaust
even for the density profile of a solitary droplet.

We shall call the approach where the law of embr
growth is found from the continuous model but there is
account of the profile around the droplets the ‘‘additive a
proach’’ ~AA !. Then one can formulate the following evide
statement.

Statement 1. The duration of the nucleation period8 and
the characteristic sizes of the droplets at the end of the nu
ation period are greater than those calculated in the AA.

In fact, the existence of the density profile means that p
of the substance is going to be consumed from regions wh
there is no droplet formation. This material is consum
from the gap instead of from unexhausted regions as is s
posed in the AA.

Then having repeated all constructions9 from @13# one can
see the following.10

Statement 2. The characteristic size of the droplets at t
end of the nucleation period is many times greater than
size of the critical embryo. The main role in vapor consum
tion is played by the supercritical embryos.

Statement 3. The characteristic duration of the nucleatio
period is many times greater than the time of relaxation
the stationary state in the near-critical region. Thus one
use the stationary rate of nucleation as a measure of
intensity of droplet formation at every current moment
time.

Because of statement 2 one has to investigate the pr
around a growing droplet. The problem is whether one ha
consider the interference of profiles around different dro
lets. To solve this problem one has to use the small par
eter of the theory. From statement 3 the rate of nucleatio
equal to the stationary one. This can be taken from@1#,

I s5Zh exp~2DF !,

whereDF is the height of the activation barrier~in thermal
units!, h is the number of free heterogeneous centers~unoc-
cupied by the supercritical embryos!, andZ is the Zeldovic
factor. The Zeldovic factor is a smooth function of the s
persaturation that is given by

ve

e

is
.

8The period of nucleation is the period of relatively intense fo
mation of droplets. It can be proved that the end of this period
well defined due to the cutoff of the intensity of droplet formatio

9In @13# the AA was formulated for external conditions of dy
namic type. For the situation of decay the required hierarch
inequalities can be proved in the same way. Note that in@13# there
is no special reference to the types of condition when the requ
estimates are proved.

10A barrier character of the nucleation is required here. T
means that the magnitude of the activation barrier height has
same order as the free energy of the homogeneous critical emb
~it might be three on four times smaller!.
3-3
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Z5
W

p1/2DneDnc
,

where W is a kinetic factor,Dnc is the half-width of the
near-critical region, andDne is the width of the equilibrium
region. During the nucleation period the value ofZ can be
considered as as constant.

Due to its rather small size it is reasonable to use for
critical embryo the free molecule regime of substan
exchange.11 In this regime the expression for the nucleati
rate is well known. One has also to note that the criti
embryo is in equilibrium~but an unstable one! with the
metastable phase, which implies no profiles of vapor dens
and the regime of substance exchange has to be the
molecule one.

Under the free molecule regimeW can be calculated as

W53
z11

t
nc

2/3a ,

wherenc is the number of molecules inside the critical em
bryo, a is the condensation coefficient,

t;12@~36pv l
2!1/3n`vT#21

is the characteristic time,v l is the volume per one molecul
in the liquid phase, andvT is the mean thermal velocity of
molecule.

The value ofDnc is the half-width of the near-critica
region and it can be rewritten as

Dnc5 (
n<~nc1ne!/2

exp~2Fc1Fn!p21/2,

wheren is the number of molecules inside the embryo,Fn is
the free energy of the embryo ofn molecules, andFc is the
free energy of the critical embryo. In the continuous appro
mation it can be estimated as12

Dnc5U 2

d2F/dn2U
n5nc

1/2

.

The value ofDne can be estimated as

Dne5 (
n<~ne1nc!/2

exp~2Fn1Fe!

whereFe is the free energy of the equilibrium embryo. Bo
Dnc and Dne are rather smooth functions of the supersa
ration.

11Since the characteristic size of the droplet during the nuclea
is many times greater that the critical size it is quite reasonabl
use the diffusion regime of growth for the characteristic droplet

12Dne is usually smaller thanDnc and an explicit summation fo
Dnc is quite reasonable.
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One can see thatI s is a very sharp function of the supe
saturation. This means that a relatively small decrease of
supersaturation leads to an interruption of droplet formati

At least for z.z0/2 one can show thatd2z/dt2.0 and
there is no long tail of the size spectrum at small intensity
droplet formation. This means that an interruption of the
tensive droplet formation leads to an interruption of ne
droplet formation. So the relative decrease of supersatura
during the nucleation process is small. One can arrive at
following statement.

Statement 4. During the nucleation period the relativ
variation of supersaturation is small.

The last statement shows that there is no need to cons
the interference of profiles in order to change the rate
droplet growth~and only the rate of growth!.

On the basis of the expressions mentioned and the sm
ness of the relative decrease of supersaturation one can
the validity of the approximation

I s~z!5I s~z0!exp@DF~z0!2DF~z!#

for the nucleation period. Moreover, one can linearize
height of the activation barrier over the supersaturation
get

I s~z!5I s~z0!expS 2
dDF~z!

dz U
z5z0

~z2z0!D . ~1!

The validity of the last approximation depends on the p
ticular type of heterogeneous center but it is valid for t
majority of heterogeneous center types. For example,
validity can be directly proved for ions.

One can explicitly calculate the derivative in the la
expression,13

dDF

dz
52

1

z11
~nc2ne!.

The smooth character of the last expression shows the v
ity of Eq. ~1! once more.14

Then Eq.~1! can be rewritten as

I s~z!5I s~z0!expS G
z2z0

z0
D , ~2!

where

G52z0

dDF

dz U
z5z0

5
z0

z011
@nc~z0!2ne~z0!#.

The real value ofG is very large.15 Certainly, one can con-
sider the possibility of compensation betweennc and ne in

n
to

13Here we assume the vapor to be an ideal gas and suppos
possibility of presenting the free energy of critical and equilibriu
embryos as an analytical function of the inverse embryo radius

14A concrete value of the free energy derivative is not essenti
15Since the value ofnc in going to infinity here the value ofG is

also going to infinity.
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the expression forG. Then one has to mention that due to t
barrier character of nucleation at leastnc2ne>Dnc . Having
estimatedDnc as the homogeneous valueDnc;nc

2/3 one can
see thatG@1 in any case.

The small value ofG21 will be very important in further
constructions.

We see that the essential dependence on supersatur
occurs through the height of the activation barrier. This
lows one to give the interpretation of the stationary rate
nucleation as the probability for the given embryo to ov
come the activation barrier. After the interpretation ofI s as a
probability we can apply it to an arbitrary spatial point of
spatially inhomogeneous system. To use this interpreta
the natural requirement is a weak unhomogenity of a syst
namely, the volume of the regions where

z~r !2z~r 1A4Dts!

z~r !
!G21

is violated has to be relatively small. HereD is the diffusion
coefficient, andts is the time of relaxation in the near-critica
region, which can be estimated according to Zeldovic@1# as

ts;
Dnc

2

W
.

One can use instead ofts the timeDneZ
21, which can be

interpreted as the mean time to overcome the near-cri
region.

Both these estimates are valid. Actually we need th
only for those regions where the intensity of the droplet f
mation is not too small in comparison with the initial inte
sity. Certainly, the required property is observed in the
regions.

Now we have to turn to determining the rate of embr
growth. According to statement 2 above, the characteri
size of the droplets is rather large. Then it is more reason
to use the diffusion regime of droplet growth. At intermed
ate Knudsen numbers one has to use an interpolation law
the rate of embryo growth~for example, see@17,4#!. It will
be important that all expressions for the embryo growth le
to an avalanche of substance consumption.

The avalanche character of substance consumption m
that the quantity of substance accumulated by a droplet
creases strongly in time. The most evident manifestation
the avalanche consumption can be seen in the free mole
regime of substance consumption. The weakest effect ca
seen in the diffusion regime of substance consumption.
force of the iteration convergence in@13# is based on this
property. The property of avalanche consumption will be
tremely important in further constructions also. That is w
we take the diffusion regime, to have the worst situation a
to grasp errors in all possible cases.

In the diffusion regime of vapor consumption the law
growth for a droplet~i.e., for a supercritical embryo! can be
written in the following way:

dn

dt
5kzn1/3,
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where

k5~ 2
3 !21/34pn`DS v l

2p D 1/3

is some constant. The last expression is written in the
tionary approximation. The nonstationary effects have b
investigated in many publications in detail and here they
rather small~see, for example,@9#!.

One can see that the rate of droplet growth is proportio
to z. So the rate of growth can be changed only by a relat
variation ofz. Then according to statement 4 one can see
following.

Statement 5. The rate of droplet growth during the nucle
ation period can be approximated as a constant.

The last statement is extremely important because it
lows us to analyze the profile of the density initiated by
solitary droplet.16 Now we are going to consider this prob
lem.

The approximately constant value of the supersatura
allows us to integrate the law of growth and to get

n~ t !5gt3/2,

where

g5~4p!3/2S 3v l

4p D 1/2S 2zn`D

3 D 3/2

and t is the duration of irreversible growth for the give
droplet. Consider a spherical system of coordinates with
center in the center of the droplet. The diffusion equation
written as

]n

]t
5DDn

whereD is the Laplace operator. The diffusion coefficientD
is supposed to be approximately constant~there is a lot of a
passive gas and the density of a gas mixture is approxima
constant!.

The boundary conditions are

nur 5`5n~`!,

nur 5Rd
5n` ,

where Rd is the radius of the droplet. The valuesn` and
n(`) are known parameters. The variabler is the distance
from the center of the embryo.

The stationary approximation is suitable for the rate
droplet growth. The errors are analyzed in@17# and they are
small. But the stationary solution cannot give a reasona
result for the density far from the droplet. The stationa
solution is

16The interference of the density profiles will be analyzed late
3-5
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n~r !5n~`!2
Rd

r
@n~`!2n`# ~3!

and has a very long tail. This tail leads to the infinite value

G5E
0

`

4pr 2@n~`!2n~r !#dr,

which must be the integrated excess of the substance, w
must be in the droplet. This contradiction shows that it
absolutely impossible to use the stationary approximation
the density profile around the droplet. One has to introd
another approach.

One can see that if the first boundary condition is chan
to

nur 5`5n~`!~12G21!

then the rate of embryo growth will not be essentia
changed. But the leveln(`)(12G21) is the level when
nucleation stops. So one can see that during the nuclea
period there is no interaction between droplets throug
change of the growth rate. Certainly, two droplets can app
too close and act upon one another but the probability
such a coincidence is very small. That is why one can co
to the principle of separate growth of droplets during t
nucleation period.

Now one has to prove that at the distances (5 – 10Rd
from the droplet one can observe a quasistationary pro
One has to note that

v l /vv!1, ~4!

wherevv is the partial molecular volume in the vapor phas
This last ratio is very small~for example, it is 0.001 for
water in normal thermodynamic conditions!. But unlikeG21

one cannot consider it in all cases as zero. Now one
introduce a formal parameterl which attains some large va
ues

l @1

but satisfies the condition

l 2
v l

vv
!1. ~5!

According to Eq.~4! it is possible to do this.
In the regionr< lRd the stationary profile is establishe

after

th5
l 2Rd

2

4D
.

It is necessary to show that

s[
Rd~ t1th!2Rd~ t !

Rd~ t !
!1.

In fact,
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s'
dRd

dt

th

Rd

and

s; l 2
v l

vv
,

which is a small value according to Eq.~5!. So the stationary
form of the profile in the regionr ,Rdl is proved.

Since G@1 and at leastG@ l one can see that in th
region r , lRd there is no formation of new droplets. Thu
this region is not interesting for the theory and one can
serve only the regionr . lRd .

The previous notation is rather important; this prope
allows one to use the model with a point source. One
consider only distances greater thanlRd , but at these dis-
tances the droplet can be interpreted as a point sourc
vapor consumption. Certainly, the point approximation o
droplet cannot give an expression for the rate of drop
growth because the boundary condition atr 5Rd is absent.
But the rate of growth is already known and can be us
directly as a known function of time. Thus

dn

dt
5lt1/2,

where

l525/2pv l
1/2z3/2n`

3/2D3/2.

The action of a point source of vapor consumption can
described in a simple and suitable manner by the Green fu
tion formalism. The Green functionGr for the diffusion
equation can be written in the form

Gr5Q~ t !
exp~2r 2/4Dt !

~4pDt !3/2 .

Then one can get the density profile by a simple integrati

n~r !5n~`!2E
0

t lx1/2

@4pD~ t2x!#3/2expS 2
r 2

4D~ t2x! Ddx.

After obvious transformations one can come to

z02z

z0
5A2/pAv l /vv f ~b!, ~6!

where

b5
r

A4Dt

and

f ~b!5E
b

`S 1

b22
1

x2D 1/2

exp~2x2!dx.
3-6
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It is important that the profile dependence ont andr is now
via b.

The concrete form off (b) is drawn in Fig. 1 in dimen-
sionless units. One can get forf (b) an expression through
special functions:

f ~b!5 1
2 G~ 3

2 !exp~2b2!C~ 3
2 , 3

2 ;b2!.

HereG is the Gamma function andC is the confluent hyper-
geometric function.

One can get the asymptotes forf (b) at small and large
values ofb. At small values,

f ~b!;
Ap

2

1

b
, ~7!

which corresponds to the stationary solution~3!. At large
values ofb one arrives at

f ~b!5exp~2b2!
1

2b3 E
0

`

x1/2exp~2x!dx;
exp~2b2!

b3 .

~8!

One can see that this asymptote differs radically from
stationary solution, namely this tail behavior gives conv
gence of the integral forG. Certainly, the Green function
formalism ensures a precise value forG, which is introduced
here as an external object.

Now we are going to construct an approximation for t
nucleation rate around the growing droplet. One can see
according to Eq.~2! the behavior of the supersaturation
important when z02z<(2 – 3)z0 /G. When z02z
>(2 – 3)z0 /G the intensity of droplet formation is negligibl
small. From Eq.~1! one can see that

I s„z~r !…5I s~z0!exp@2GA2/pAv l /vv f ~b!#.

Then one can extract the positive parameter

s[G2
v l

vv

which will be important in further constructions.
BecauseG@1 one can easily see that

FIG. 1. The form off (b).
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s@1.

The last condition is not necessary for further constructio
but it will be rather important for manifestation of the profi
effects in the nucleation process. The last condition is a
the most doubtful one becausev l /vv!1 and one has the
combination of two large parameters with generally u
known result. It is necessary to stress that the condit
v l /vv!1 is not as strong asG2@1. In the framework of the
thermodynamic descriptionG@1 is the main condition re-
quired and v l /vv!1 is a supplementary condition tha
slightly simplifies the theory.

In the situation of homogeneous condensation one ha
hidden contradiction between the thermodynamic descrip
and the relatively intensive nucleation. Since in homog
neous condensationDF5Fc;nc

2/3 the limit n→` means
DF→` and the rate of nucleation goes to zero. So there
contradiction between the thermodynamic limit in the critic
embryo description and the observable rate of nucleation17

In the case of heterogeneous condensation there is
such contradiction when there are some active center
condensation. Then the height of the activation barrier has
direct connection with the number of molecules inside
critical embryo. For example, the half-width of the nea
critical region estimated from the homogeneous value
;n2/3 and goes to infinity whenn→`, but the free energy
decreases at the boundary of the near-critical region only
one thermal unit. So in a certain sense the case of heter
neous condensation is preferable for theoretical descript

As a compensation for this advantage one has to note
both statements 1 and 2 are based on a homogeneous
mate for the activation barrier height. These properties
be violated. But since these statements are based on
strong inequalities one can accept their validity.

Now one can analyze the profile of the intensity of drop
formation around the already formed droplet. This profile
the nucleation rate is a rather sharp function which ha
steplike behavior.

To show this property we shall introduce two character
tic values ofb ~bst andbfin! by the relations

f ~bst!5Ap/2Avv /v l

exp~2 1
2 !

G
,

f ~bfin!5Ap/2Avv /v l

exp~ 1
2 !

G
.

In the regionb.bst the rate of nucleation essentiall
coincides18 with the unperturbed valueI s(z0). In the region
z,zfin the rate of nucleation is negligible in comparison wi
the unperturbed value, i.e.,I s„z(r )…!I s(z0).

At some momentt the valuesbst and bfin are related to
the space distancesr st and r fin by the expressions

17This is not very small.
18One can easily see the monotonic character off (b).
3-7
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r st5bstA4Dt,

r fin5bfinA4Dt.

Whens@1 one can arrive at

f ~bst!!1,

f ~bfin!!1

and

bst@1,

bfin@1.

Then one can use the asymptote~8! and see that

ubst2bfinu
bst1bfin

5
1

4bst,fin
!1,

ur st2r finu
r st1r fin

5
1

4bst,fin
!1.

The real picture of nucleation occurs on the time scale.
a fixed space pointr one can introduce two characterist
times tst and tfin by the expressions

tst5
r 2

4bst
2D

,

tfin5
r 2

4bfin
2 D

.

Beforetst one cannot observe any deviation of the nucleat
rate from the unperturbed value. Aftertfin the rate of nucle-
ation is very small.

One can get for the relative deviation

d[
tfin2tst

tst,fin

the expression

d;
1

bst,fin
.

So the relative deviation is small. Even in the situation
smalls one can show with the help of asymptote~7! that the
value ofd is rather small.

The steplike behavior of the intensity profile allows one
introduce some characteristic parameterbeff and to consider
the region19

b,beff

19At s!1 the value ofbeff can be greater thanbst andbfin .
05612
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as the exhausted region where there is no longer nuclea
and the region

b.beff

as the region where the rate of nucleation is unperturbed20

One has to choosebeff carefully. The problem is the pos
sibility of existence of a long tail of the density profile. T
grasp the situation of small values ofs one has to introduce
beff in an integral manner.

One can introduce the excess of the nucleation rateDI s by
the formula

DI s5I sE
0

`F12expS 2
G„z02z~r !…

z0
D G4pr 2 dr,

whereI s is the unperturbed rate of nucleation. On the ba
of this expression one can get the excess ofN due to the
existence of the solitary profile. This value will be denot
DNsol and can be found as

DNsol5I sE
0

tE
0

`F12expS 2
G„z02z~r !…

z0
D G4pr 2 dr dt8.

Having used Eq.~6! one arrives at

DI s54p~4Dt !3/2I s

3E
0

`

$12exp@2GA2/pAv l /vv f ~b!#%b2 db .

The parameterGA2/pAv l /vv has a constant value.
The valueDNsol can be presented as

DNsol54p~4Dt !3/2I s

3E
0

tE
0

`

$12exp@2GA2/pAv l /vv f ~b!#%

3b2 db dt8.

The steplike approximation of the nucleation profile will lea
to

DI s
0~beff!54p~4Dt !3/2I sE

0

beff
x2 dx.

The valuebeff has to be determined from

DI s
0~beff!5DI s .

Certainly, the value ofbeff depends onGA2/pAv l /vv.
The value ofbeff leads to

r eff52beffD
1/2t1/2.

One can state that inside the volume

20In all casesbeff.bfin .
3-8
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Veff5
4
3 pr eff

3

there is no nucleation and outside this volume the rate
nucleation is unperturbed. Thus one can imagine that aro
every solitary droplet there is an exhausted region~ER!
where no nucleation is observed and around the ER the
the unexhausted region~UR! where the nucleation remain
unperturbed. The whole space now is divided into two
gions.

The volumeVeff grows in time in the following way:

Veff5
32

3
pbeff

3 D3/2t3/2.

In the free molecule regimeVeff will grow even faster.
For beff one can get the simple expression

beff
3 53E

0

`

$12exp@2GA2/pAv l /vv f ~b!#%b2 db

or

beff
3 53E

0

`

$12exp@2s1/2A2/p f ~b!#%b2db.

For DNsol one can obtain

DNsol5I s~z0!E
0

t

dt8Veff5I s~z0!E
0

t

dt8 4
3 pr eff

3 .

One can easily integrate the last expression and get

DNsol5I s~z0!
64

15
pbeff

3 D3/2t5/2.

One can see thatDNsol is growing in time rather rapidly.
That is, this property illustrates the feature of avalanche c
sumption during a first order phase transition as applied
heterogeneous nucleation.

For those situations wheres@1 one can get

beff'bst'bfin

andbeff is determined by the simple equation

exp~2beff
2 !5beff

3 Avv /v lAp/2
1

G
.

The last equation can easily be solved by iteration si
beff@1 and exp(2b2) is a very sharp function.

When the principle of separate growth was discus
some remarks were made. The reason given for the abs
of interaction between droplets was the low probability
appearing too close to one another due only to the small
of the space volume. Now one can see that the growing
also helps to exclude interaction. The essential deviation
supersaturation from the ideal can be seen in the regior
,Rdl . This means that the distance between the drop
with interference must be of the order 2Rdl . Then the time
distance between the moments of formation of these drop
must be shorter than
05612
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Dt init;S Rdl

beffD
1/2D 2

.

This time interval is many times shorter than the duration
the nucleation period.

Rather rapidly after the moment of formation every dro
let forms an ER of such a size that it guarantees that the
of growth of the given droplet cannot be perturbed by vap
consumption initiated by other droplets.

III. KINETIC MODELS OF GLOBAL EVOLUTION

Now one can construct the picture of nucleation in t
whole system. The main problem is to take into account
interference of the density profiles. Interference through
rate of growth is absent, but there is a simple overlapping
profiles. This overlapping leads to deviation of the to
nucleation rate over the volume from those calculated tak
account of the additive excess around every droplet.

The overlapping of ER’s~even when this approximat
formalism is used! is very complex and cannot be direct
taken into account in a precise manner. Instead of us
some long expressions that cannot be explicitly calcula
one can act in another manner. First some simple appr
mate models for the kinetics of the nucleation process will
formulated. These models estimate the nucleation chara
istics from below and from above and lead essentially
similar results. So it will be shown that the complex deta
of ER overlaps have no strong influence on the real cha
teristics of the phase transition.

First one can consider the common feature of all mod
This feature is concerned with the exhaustion of free hete
geneous centers.

The rate of nucleationI depends on timet and on spatial
point r ~the last behavior is the most complex!. So it is rea-
sonable to consider the mean~over space! value of I, denot-
ing it by ^I&. For ^I& one can write the expression

^I &5
Wfree

Wtot

h

h tot
I 0 , ~9!

whereI 0 is the unperturbed rate of nucleation. HereWfree is
the volume of the region where the rate of nucleation
unperturbed, i.e., the total UR of the whole system. T
valueWtot is the total volume of the system~it equals unity
and is written only to clarify the consideration!.

Then since

N5E
0

t

^I &~ t8!dt8

one can get

h5h tot2E
0

t

^I &~ t8!dt8.

In the differential form the last relation can be written as

dh

dt
52^I &
3-9
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and with the help of Eq.~9! it can be rewritten as

dh

dt
52

h

h tot

Wfree

Wtot
I 0 .

After integration of the last expression one arrives at

h5h tot expS 2E
0

t Wfree~ t8!

Wtot

I 0

h tot
dt8D . ~10!

One should note that the heterogeneous centers are
distributed homogeneously with respect to the ER~or UR!.
Only free heterogeneous centers are distributed hom
neously with respect to the ER. This fact has also to be ta
into account.

The problem is to determine the value ofWfree. In differ-
ent models it will be given in different forms.

A. The model without overlap

One can write

Wfree5Wtot2Wexh

whereWexh is the volume where there is no further formatio
of droplets. Very approximately one can present it as the s
of all ER’s around all already existing droplets,

Wexh'(
i

Veff

~the sum is taken over all already formed droplets!. Cer-
tainly, the last approximation is rigorous only when there
no overlap of the ER’s around different droplets.

Having used the expression forVeff one arrives at

Wexh5E
0

t

dt8^I &~ t8!
32

3
pbeff

3 D3/2~ t2t8!3/2. ~11!

After using the expression for̂I& one comes to the close
system of nucleation kinetics equations

Wfree5Wtot2E
0

t

dt8
h

h tot

Wfree

Wtot
I 0

32

3
pbeff

3 D3/2~ t2t8!3/2,

h5h tot expS 2E
0

t Wfree~ t8!

Wtot

I 0

h tot
dt8D[Ĥ~Wfree!. ~12!

Now we have to introduce the quasihomogeneous lim
When there is no essential exhaustion of the heterogen
centers a balance equation for them is not necessary. O
the balance equation for the substance molecules has t
considered. Equation~12! has the same form as in the hom
geneous case~after some proper renormalizations!. That is
why we shall call it the quasihomogeneous equation.

In the quasihomogeneous limit this system can be redu
to

Wfree5Wtot2E
0

t

dt8
Wfree

Wtot
I 0

32

3
pbeff

3 D3/2~ t2t8!3/2,
05612
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which can be rewritten after the obvious renormalizationt

→at, t8→at8 wherea5(I 0
32
3 pbeff

3 D3/2)2/5 in the universal
form

Wfree512E
0

t

dt8~ t2t8!3/2Wfree.

One should note that in the general case the system of nu
ation equations can be solved with the help of methods p
sented in@13#. First one can solve the quasihomogeneo
equation ~it is a Volterra equation21 with a rather simple
kernel which allows one to apply the Laplace transformat
to solve it!, and then on the base of the quasihomogene
equation one can find the final rather precise expression
ing Eq. ~10! as the formula forh.

Another variant is to solve numerically the univers
equation forWfree hom:

Wfree hom512E
0

t

dt8~ t2t8!3/2Wfree hom.

As a result one has the universal functionWfree hom. Then
one can findh as

h5h tot expS 2a21E
0

t Wfree hom~ t8!

Wtot

I 0

h tot
dt8D .

The last expression leads to the formula for^I&:

^I &5
Wfree hom

Wtot
expS 2a21E

0

t Wfree hom~ t8!

Wtot

I 0

h tot
dt8I 0D .

The justification for such an approach is analogous to@13#.
The physical reason is very simple: when there is no exha
tion of heterogeneous centers then the solution is found
cisely; when there is an essential exhaustion of centers t
is no need to knowWfree with high precision because th
converging force ofĤ is extremely high.

Now we shall take into account the effect of overlappin
This can be done rather approximately.

B. The model with chaotic overlap

The matter under discussion is the correct expression
Wfree, which cannot be found absolutely precisely. Now
reasonable expression forWfree will be presented. Certainly
this will lead to a more complex equation, which will b
more difficult to solve.

One can use the differential approach to write the expr
sion for Wfree. Having written the obvious relation

dWfree

dt
52

dWexh

dt
,

one has to invent an approximation fordWexh/dt. Here the
approximation

21The nonlinear generalization.
3-10
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dWexh

dt
'

d( iVeff

dt

Wfree

Wtot

will be used~the sum is taken over all droplets!. It corre-
sponds to the following approach: The probability of t
absence of overlap of the new parts of the ER around a g
droplet with other ER’s is proportional to the free volume
the system. This supposition seems to be rather reasona

The valuedS iVeff /dt can be rewritten as

d( iVeff

dt
5(

i

dVeff

dt
.

This can be easily expressed through^I& as

(
i

dVeff

dt
5

3

2 E0

t

dt8^I &~ t8!
32

3
pbeff

3 D3/2~ t2t8!1/2

~13!

due to Eq.~11!. Then

dWexh

dt
5

3

2 E0

t

^I &~ t8!
32

3
pbeff

3 D3/2~ t2t8!1/2dt8Wfree~ t !

and

dWfree

dt
52

3

2 E0

t

^I &~ t8!
32

3
pbeff

3 D3/2~ t2t8!1/2dt8Wfree~ t !.

Having used an expression for^I& one arrives at

dWfree

dt
52

3

2 E0

t Wfree

Wtot
I 0

h

h tot

32

3

3pbeff
3 D3/2~ t2t8!1/2dt8Wfree~ t !.

Together with Eq.~12! the last equation forms the close
system of nucleation equations in the second model.

The previous equation can be integrated, which gives

ln Wfree52E
0

t Wfree~ t8!

Wtot
I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!3/2dt8

1const.

Because of the initial conditions the value of the constan
equal to zero. Having introduced the functionF5
2 ln Wfree, one can get forF,h the following system of equa
tions:

F~ t !5E
0

t

exp@2F~ t8!#I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!3/2dt8,

h5h tot expS 2E
0

t

exp@2F~ t8!#
I 0

h tot
dt8D .

One can see that the system of condensation equatio
identical to the system of condensation equations in the A
It was completely analyzed in@13#. Certainly, the parameter
in the system will be different.
05612
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The last system can be rewritten after the obvious ren
malization as

F~ t !5E
0

t

exp@2F~ t8!#~ t2t8!3/2u~ t8!dt8[F̂~F,u!,

u~ t !5expS 2AE
0

t

exp@2F~ t8!#dt8D[û~F !,

whereu(t)5h(t)/h tot andA is some known parameter. Thi
system can be solved by iterations defined as

Fi 115F̂~Fi ,u i !,

u i 115 û~Fi !

with F050,u051. For Fi ,u i one can get the chains of in
equalities

F0,F2¯,F2i,¯,F,¯,F2i 11,¯,F3,F1 ,

u1,u3,¯,u2i 11,¯,u,¯,u2i,¯,u2,u0 .

Thus one can estimate errors inFi andu i .
One can also use other methods analogous to those

scribed in@13#.
The similarity of the condensation equations in the A

and in the second model is extremely important for the tr
sition toward the collective character of vapor consumpti
which is analyzed in@13#. The physical reason for the con
sidered model is the chaotic overlap of ER’s that is, t
chaotic overlap lies at the base of the approximation u
here. But due to the spherical form of every ER the over
is not absolutely chaotic. What can be done in such a si
tion? In the next model we shall show that the actual type
overlap is not very important.

To finish with the second model we shall show the sa
method of its solution as for the first model. One can a
formulate the quasihomogeneous equation as

Fhom~ t !5E
0

t

exp@2Fhom~ t8!#I 0

32

3
pbeff

3 D3/2~ t2t8!3/2dt8.

Thenh can be approximately found as

h5h tot expS 2E
0

t

exp@2Fhom~ t8!#
I 0

h tot
dt8D .

The quasihomogeneous equation can be renormalized. A
the renormalizationz→at,t8→at8 where

a5S I 0

32

3
pbeff

3 D3/2D 2/5

one can transform the quasihomogeneous equation into
universal form

ln Wfree hom~ t !52E
0

t

Wfree hom~ t8!~ t2t8!3/2dt8.
3-11
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C. The model with formation of droplets inside the ER

The third model will show that the role of the overlap
not so essential as might be imagined initially. Suppose
new droplets can also appear in the ER of the already e
ing droplets. Then instead of Eq.~13! one has to use

(
i

dVeff

dt
5

3

2 E0

t

dt8I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!1/2.

Then

dWexh

dt
5

3

2 E0

t h~ t8!

h tot
I 0

32

3
pbeff

3 D3/2~ t2t8!1/2dt8Wfree~ t !

and

dWfree

dt
52

3

2 E0

t

I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!1/2dt8Wfree~ t !.

Together with Eq.~12! the last equation forms the close
system of nucleation equations in the third model.

The material balance equation of the system can be i
grated to give

ln Wfree52E
0

t

I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!3/2dt81const.

From the initial conditions the constant in the last equation
equal to zero. Having introduced the functionF52 ln Wfree
one can get forF,h the following system of equations:

F~ t !5E
0

t

I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!3/2dt8,

h5h tot expS 2E
0

t

exp@2F~ t8!#
I 0

h tot
dt8D .

This system corresponds to the first iteration in the solut
of the second model by the method of iterations describe
@13#. These iterations are also mentioned above. Forh the
whole set of iterations has been taken~see details in@13#!.

One can slightly modify the model and suppose that in
expression forh one can use the same approximation for^I&
as in the equation forWfree. Then the last system of equa
tions will precisely correspond to the first iteration in th
iteration solution. One need not analyze these models in
tail following @13# but just note that all these solutions a
very similar.

Now one has to explain why the third model is rath
accurate. One can do it only with the help of results obtain
in @16#. There was noted that when the power of the ker
(t2t8) is rather large the solution of the quasihomogene
equation depends weakly on the actual value of the powe
is also important that when the power of (t2t8) is extremely
high the ER of the given~first! droplet formed inside the ER
of another~second! droplet cannot go outside the ER of th
~second! droplet. The third model is absolutely adequate
this situation. The same feature can be seen directly from
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results of the iteration procedure. Combining these two
sults, one can see that the second model is close to the
iteration ~i.e., to the modified third model! in the situation
with large power in the kernel where the third model is su
able.

Now it is possible to explain why the overlap is not s
important as might be imagined. Since the power of the k
nel is large and one can observe avalanche consumptio
the vapor phase, one can see the following qualitative p
ture. ~1! During the whole period of nucleation the total E
is small and there is no problem of overlap.~2! At the end of
the nucleation period the total ER will occupy the essen
part of the volume and a few moments later it occupies
the volume of the system. This process is rather rapid
stops the nucleation. This picture shows that there is
strong influence of the overlap on the nucleation proc
~except for the final moments of the nucleation period!. But
in the final moments only a few droplets can be formed, s
is not very important to know the overlap in the final m
ments of the nucleation period.

The nucleation description is now complete. One can
both the second and the third models to get the nuclea
description. How to solve these equations is also descri
here. Now we can turn our attention to a more accur
method which does not give an analytical expression for
size distribution of droplets but gives more precise univer
results for all essential characteristics of the nucleation
riod.

D. The universal solution

The main idea of the theory presented in@13# was to
consider the quasihomogeneous equation, to get a unive
solution, and then on the basis of this solution to calcul
the number of free heterogeneous centers. As a result
can get an expression for^I& and can calculate the total num
ber of droplets appearing during the nucleation process.

Here we follow the same idea, but develop it further. It
not necessary to formulate the universal quasihomogene
equation. Instead of the universal equation one can formu
a universal model.

The model will be the following.
~i! The rate of nucleation̂I& can be found from

^I &5I 0

Wfree

Wtot

h

h tot
.

~ii ! With intensity I 0 the droplet appears at an arbitra
point of the system.

~iii ! The valueWfree can be found by exclusion of all ER’
around the already existing droplets.

~iv! If the point is occupied by the ER of any droplet the
the new droplet cannot be formed.

~v! The sizer eff of the ER grows in time according to

r eff52beffD
1/2t1/2.

~vi! The initial conditions are the absence of droplets a
the random distribution of centers.
3-12
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With the proper renormalization of timet and sizer one
can cancel all coefficients. Then this process will be a u
versal one and as a result the value ofWfree is a universal
function of time. Then one can directly apply Eq.~12! and
get the number of free heterogeneous centers~after the
proper renormalization!.22 This number is the main result o
the approximate separation principle. All other qua
integrals of the further evolution can be obtained in the sa
manner.

The modification for dynamic conditions@13# requires us-
ing instead ofI 0 the valueI 0 exp(ct) with some parameterc
determined by external conditions and changing the lo
limit 0 of integration to2` @13#. The main constructions o
the theory will be exactly the same but the forms of t
characteristic curves will be radically changed.

IV. NUMERICAL RESULTS

Numerical simulation plays at least two important rol
here. The first is the standard comparison with the appr
mate models to observe their quality. The second is m
specific and is concerned with some universal dependen
in the nucleation kinetics.

In the additive approach to the nucleation kinetics it w
shown that an adequate approach can be presented o
basis of the quasihomogeneous solution@13#. Despite the
dynamic conditions considered in@13# this is true in the situ-
ation of metastable phase decay also. Recall the reason
such an approach. The formal reason is the careful ana
of the iteration procedure proposed in@13#. The final result
for the total number of droplets appearing in the nucleat
process is given by the second iteration~see the iterations o
typea in @13#! for the relative number of free heterogeneo
centers. This iteration is based only on the first iteration
the supersaturation. There the value of the supersaturati
calculated without taking account of the heterogeneous c
ters’ exhaustion. So one can see that the final result ca
obtained on the basis of supersaturation in the quasihom
neous approximation. This approximation can be more
phisticated than the first iteration, that is, it was used in@13#
where the precise quasihomogeneous universal solution
chosen as the basis for the final results.

The physical reason for such behavior is rather simp
The main role in vapor consumption is played by droplets
relatively large sizes. We have already remarked on this f
Moreover, due to the avalanche character of the vapor c
sumption the main role is played by the relatively large dro
lets that are formed in the first moments of time of the nuc
ation period. When the effect of center exhaustion is alre
essential in the first moments of the nucleation period23 then
at the end of the nucleation period all centers will already
exhausted. The result is evident—all centers will be the c

22This will complete the quasihomogeneous approach method
23More precisely one can define these ‘‘first moments of time’’

2/5 of the nucleation period duration~under the free molecule re
gime it is 1/4 of the nucleation period duration!. The reason for
such concrete values can be seen from the iteration procedure
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ters of droplets. Because of the high force of convergenc
this situation this result can be obtained without any prec
information about the behavior of supersaturation~even in-
cluding the quasihomogeneous case!. In the opposite case
when the exhaustion of heterogeneous centers during the
moments of the nucleation period is not essential one can
the quasihomogeneous behavior of supersaturation.

This property can be viewed as an approximate separa
of the heterogeneous and homogeneous problems. It is b
only on the avalanche consumption of the metastable ph
So there are no objections to seeing this effect also with
density profiles considered here. Thus it is rather import
to get the solution in the quasihomogeneous situation an
clarify whether it can be presented in a universal form.

The universal form of the quasihomogeneous solution
be easily seen in the situation with density profiles also.
the AA there was no specific space scale because the
sumption took place homogeneously at all space points
the system. Here in the situation with density profiles ther
an elementary space scale and one can choose the space
to ensure that the linear size of the ER around the drople
growing24 as t1/2 without any additional coefficients. Th
time scale has to be chosen so that in the initial free volu
~equal to the total volume of the system! one can see the
appearance of one droplet in the unit of time. Since the fu
tional dependencies of the nucleation rate and of the ra
of the ER on the time and on the space variables are
identical one can make such a renormalization without a
problems. Thus we see that here the pseudohomogen
case allows a universal description.

The process of exhaustion of the heterogeneous cen
destroys this universality and one has to act as in@13#.25 The
total number of droplets has to be approximately calcula
as

Ntotal5h totF12expS 2
Nhom

h tot
D G , ~14!

whereNhom is the number of droplets appearing in the qua
homogeneous situation~with the same parameters!. This for-
mula can also be used for all approximate models descr
earlier.

For the numerical simulation it was convenient to co
sider a cubic box of side 10 units. The rate of ER growth
chosen as

dR

dt
5100t1/2

whereR is the radius of the ER. The rate of nucleation
chosen to have one attempt at new droplet formation in
system duringdt50.002. The spatial position of this attem
is determined by a random procedure. It may lead to a p
tion in one of the ER’s and then no droplet will be formed.

s

24Certainly the power has to be conserved.
25Here we use a slightly simpler and more approximate metho
3-13
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the opposite situation when the point indicated is outside
ER’s of all droplets already existing there will be formatio
of a new droplet.

One has to stress that the random procedure ordina
used in computer simulations has one specific negative
ture. In the standard numerical procedures the next ran
coordinate is calculated on the basis of the previous ones
if the current coordinate lies near the center of an alre
existing ER then the next coordinate will also be near
center of another ER. These correlations lead to the nece
to consider a large system. In the system under considera
the number of droplets appearing in the quasihomogene
situation will be near 500. Nevertheless the mean squ
fluctuation will be about 20.

The correlations mentioned are not the only source
fluctuations.26 Careful consideration shows that the error
troduced by the substitution of zero boundary conditions
periodic ones has the same power as the mean square
This can be seen directly by numerical simulation. It is e
plained by the obvious fact that the characteristic overlap
profiles is about the mean profile size. We shall call t
feature the property of ‘‘moderate overlap.’’ This fact can
proved analytically.

The mean value of the total droplet number is equal
504.8~under zero boundary conditions!. This value has to be
put into the previous formula.

The avalanche character of vapor consumption is ill
trated by Figs. 2–4. Three different moments of timet
50.5, 1, and 1.5 are chosen as characteristic values.
space cross section of the system is drawn. The dashe
gions correspond to the ER’s of the droplets already exist
The black regions correspond to the overlap of ER’s.27

Now the effects of exhaustion of the heterogeneous c
ters will be considered. The number of heterogeneous cen
in this system is arbitrary. Certainly the effects of their e
haustion will be important when the number of centers

26To prevent these correlations one has to use some special
dom procedures.

27For technical reasons, this occurs only when the distance
tween the neighboring centers is odd.

FIG. 2. The cross section of the system att50.5 for the quasi-
homogeneous situation.
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small ~in comparison withNhom5504.8!. Pictures forh tot
550 are drawn in Figs. 5–7 fort51.5, 3, and 6. One can se
that the number of ER’s is smaller than in the quasihomo
neous case. The size of the ER’s when the free volum
almost exhausted is larger than in the quasihomogene
case. The time necessary to cover the whole volume w
ER’s is greater than in the quasihomogeneous case.
does not mean that the duration of the nucleation perio
longer ~simply, all centers will be exhausted and this mea
the end of nucleation!. Moreover, the duration of the nucle
ation period in the situation with a relatively small number
heterogeneous centers will be shorter than in the quasiho
geneous case.

One can also see that the avalanche character of the v
consumption in the whole system~not by a solitary droplet!
here will be smoother than in the quasihomogeneous c
Certainly, in the quasihomogeneous case the appearanc
some new ER’s helps to consume the vapor phase in
avalanche manner. But in the situation with a small num
of centers there is no need to consider the process care
because the exhaustion of centers leads to the obvious r
of condensation—the number of droplets equals the num
of centers.

It is evident that the main object of our interest will be th
quasihomogeneous case. The relative rate of nucleatio
this case is shown in Fig. 8. Here the rate of nucleation
averaged over 100dt[0.2 and over 16 attempts. So the ra
of nucleation here is a rather smooth function.

The relative rate of nucleation is compared in Fig. 8 w
the models described above. The rate of nucleation defi
the spectrum of sizes when the role of the size of the emb
is played by some characteristic that has a rate of gro
independent of the size. For the diffusion regime this ch
acteristic is the number of molecules to the power2

3.
One can see in Fig. 8 three different curves and so

solitary points. The solitary points correspond to the nume
cal simulation of the quasihomogeneous case and the t
curves correspond to the three models in the quasihom
neous case.

The shortest spectrum is for the first model. This line
doubled. This occurs because the ideal variant of the
model is also drawn. This ideal variant corresponds

an-

e-

FIG. 3. The cross section of the system att51 for the quasiho-
mogeneous situation.
3-14
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Wfree/Wtotal[1 in the subintegral function. The coincidenc
of the two lines means that the main role in the first mode
played by the relatively large droplets that were formed
Wfree5Wtotal.

The longest spectrum corresponds to the second mo
This curve is very close to the intermediate curve wh
corresponds to the third model. The approximate coincide
of the second and third models shows that both of them
valid and the role of the relatively large droplets here is
main one. One also sees that even the first model is not
far from the real solution. This allows us to present rigoro
estimates for the nucleation rate.

Now we going to present rigorous analytical estima
from below and from above for the evolution during th
nucleation period. Certainly the first model is an estimate
the real process from below. It gives a number of dropl
about 20% less than the numerical simulation. An estim
for the nucleation rate from above can be obtained in
following way. From the first model it follows that untilt
50.52 ~this case is essentially drawn in Fig. 2! the rate of
nucleation is near the ideal value and the deviation is
than 15%. So one can say that the period 0,t,0.52 corre-
sponds to the absence of overlap~the first model is the esti
mate from above!. Thus one can consider the process wh
the total volume is exhausted only by the ER’s of the dro
lets appearing at 0,t,0.52 in a random manner. The distr

FIG. 4. The cross section of the system att51.5 for the quasi-
homogeneous system.

FIG. 5. The cross section of the system att51.5 for h tot550.
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bution of the centers of the ER’s of such droplets is a
random. This model certainly gives an estimate from abo
for the nucleation process. A simple calculation shows t
the total number of droplets is only 25% greater than
result of the estimate from above. As a conclusion one
state that two suitable estimates from below and above
obtained.

The proximity of the last estimate to the real solutio
justifies the supposition that the main role in vapor consum
tion belongs to the droplets of relatively large sizes appe
ing when the system is essentially free of ER’s. This sup
sition can also be justified in an analytical manner.

One can see that the second and third models are ra
close to the real solution but do not coincide with it. The
are at least two reasons for the deviation. The first is
presence of strong correlations in a real system—if two E
overlap in some moment of time then the power of the ov
lap can only grow in time. It does not have a random ch
acter as stated in the second and third models.

This effect can be taken into account in a rather sim
manner. It is sufficient to consider two spheres and calcu
the power of the overlap as a function of distance and time~it
is a simple geometrical problem!. Unfortunately the answe
can be written only in a very complicated form. If we hav
two ER’s with radii R1 and R2 with a distancel between
their centers andl .max(R1,R2), then the volume of overlap
is

FIG. 6. The cross section of the system att53 for h tot550.

FIG. 7. The cross section of the system att56 for h tot550.
3-15
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Vover5
2pR1

3

3
~122 cosw11cos3 w1!

1
2pR2

3

3
~122 cosw21cos3 w2!,

where

cosw15
2R2

21R1
21 l 2

2R1l
,

cosw25
2R1

21R2
21 l 2

2R2l
.

Certainly, this result cannot lead to a simple form of t
balance equation. It will be difficult to solve it analytically

The second reason for the deviation is the moderate o
lap problem. This property means that actually there is
interaction through overlapping in an ensemble of seve
droplets. Earlier this property was extracted@18# in terms of
a special effective length of the ER. Now we see that t
property is rather general. The way to solve this probl
proposed in@18# is very complicated and leads to some u
certain relations.

FIG. 8. Comparison of different models in the quasihomo
neous situation.

FIG. 9. Relative error of the quasihomogeneous approach in
first model.
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How can one overcome all these problems? In fact, o
has no need to do it analytically. A simple numerical sim
lation takes into account all these effects and gives a uni
sal solution. Really we need only one number—the to
number of droplets that have formed. This can be given
the numerical simulation. Then one can forget about all
mentioned difficulties.

Now one can analyze the heterogeneous case explicitl
suitable approximation is given by Eq.~14!. One has to sub-
stitute instead ofNhom the number of droplets given by th
corresponding model.

The relative error of approximation~14! is drawn in Fig. 9
for the first model, in Fig. 10 for the second model, and
Fig. 11 for the third model. It is rather small for all model
For the third model it is practically negligible. This is be
cause the third model is based on the approximation of c
otic overlap.

One can perform the same analysis for the numer
simulation. In Fig. 12 the relative error of~14! for numerical
simulation is drawn. Here in Eq.~14! the value Niom
5504.8 from the numerical simulation is used. The resul
compared with a computer simulation of heterogeneous c
densation. This simulation is rather simple. One can take
procedure for the quasihomogeneous case but place the
ter of the new droplet with probabilityh/h tot . Every time
this point is outside the ER we reduceh ash→h21.

One can see that the relative error is very small. We
not use an average over many attempts~this is the reason
why there is no smooth curve! to see that the error of Eq
~14! has the scale of the mean square error of the nume
simulation.28 So there is no need to use a more sophistica
approach.

The solution of the problem is now completed. Genera
zation for conditions of dynamic type is absolutely ana
gous to@14#. The convergence due to avalanche consump
is weaker and one has to use instead of the approxima
~14! a more sophisticated procedure described in@13#. The
universal constants used in@13# have to be calculated by
numerical simulation with the density profiles taken into a
count. Generalization to the arbitrary regime of drop

28Here there is a system with 500 droplets.

-

e

FIG. 10. Relative error of the quasihomogeneous approac
the second model.
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growth can be done as in@14#. The generalization is based o
the similarity of the functional forms obtained here and
the AA. This similarity lies at the base of the universali
property formulated in@16,18#.

One can see that the theory of condensation with profi
taken into account presents a picture that is quite differ
from the AA. Nevertheless, in many situations the result
experiment coincides with the result of the AA. One has
explain this coincidence although it is a rather formal one
any experiment it is more convenient to have a small sys
and to get many droplets. The rate of nucleation has to
taken as a rather high one. So the supersaturation is relat
high and the parameters21 is not a real small parameter o
the theory.29 Thus as shown in@18# the AA gives the correct
qualitative result despite the wrong basis of considerat
The reason lies in the fact that at smalls most of the material
is in the tail of the profile. The tail of the profile is rather th
and can be taken into account by the AA. The correct
term for the AA at smalls can also be found in@18#.

An important feature to mention is the movement of t
embryo boundaries. This problem has been widely discus
in the determination of the rate of regular growth for sup
critical embryos. In different systems the effect of the boun
ary movement on the rate of growth is different. We no
that in the theory presented here the rate of the emb
growth is an external value which is supposed to be know30

Another problem is to take adequate account of the ef
of boundary movement in the method of constructing
ER. If part of the volume is occupied by the liquid phase
the given embryo, one cannot use the Green function o
empty space in an absolutely precise manner. In the first
of this paper we already showed that the effect is small. H
we shall present abstract arguments for this conclusion.

29It is not necessary for the consideration presented here, but i
to be small for a thermodynamic description of the critical embr

30It is really known for essentially all systems.

FIG. 11. Relative error of the quasihomogeneous approac
the third model.
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To use the thermodynamic approach the initial power
the mother phase metastability has to be relatively sm
Together with the Maxwell rule this leads to the followin
final result for the phase transition: Only a relatively sm
part of the system volume is occupied by the new pha
This is not in contradiction with the property that the who
volume is occupied by ER’s. The final state of the system
an essentially saturated mother phase and a small vol
~distributed over the whole system! occupied by a new
phase. As a result one can see that the process of subs
consumption~extraction! leads to saturation in a volum
relatively large in comparison with the volume of the ne
embryo phase. The mother phase cannot be undersatu
~then the embryos would disappear!. Since even the mothe
phase has to be spread over almost all the volume of
system, the mean distance between two neighboring emb
of the new phase is many times greater than the mean siz
the embryo. Thus one can state that the embryo produce
effective perturbation over relatively large distances in co
parison with the size of the embryo. To have an interrupt
~a relative interruption in comparison with the ideal nuc
ation rate! of the new phase formation, one needs a ve
small reduction of the power of metastability.31 This reduc-
tion can be attained only at distances which are very larg
comparison with the embryo linear size.32 Thus one can use
the point source approximation as was done in the first p
of this paper and forget about the boundary movement.33 The
negligible character of the boundary movement is n
proved for all possible systems.

The heat extraction and account of all other intensive
rameters of the description can be performed as in@6#.

as
.

31The relative reduction has to beG21 whereG@1 is the scale of
the number of molecules in the critical embryo.

32Because the profile is sharper than in the stationary solution
33The effect of the boundary movement on the embryo grow

rate is taken into account as an external parameter.

FIG. 12. Relative error of the quasihomogeneous approac
the universal simulation.

in
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Heterogeneous condensation on the centers

with continuous activity in dynamic conditions

V.Kurasov

Victor.Kurasov@pobox.spbu.ru

Abstract

A system with a metastable phase and a pseudo continuous set of
the heterogeneous centers is considered. An analytical theory for ki-
netics of the process of condensation in such a system is constructed.
The free energy of formation of the critical embryo is assumed to be
known in the capillary (macroscopic) approach as well as the solvata-
tion energy of the embryo. The theory is based on the quasistationary
approximation for the nucleation rate which has been justified analyt-
ically. An effective iteration procedure is presented. The iterationa
are calculated analytically. The approximate universal form of the
spectrum is established.
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1 Introduction

The theory considered here completes the program of construction of the
theory of the aerosol formation announced in [14]. It will be based on the
capillary approximation of the height of the activation barrier. This approxi-
mation lies in the base of the classical theory of the homogeneous nucleation.
All necessary bibliographic remarks can be found in [14].

Speaking about the activity of the heterogeneous centers we mean that
the different activity initiates the different height of the activation barrier
∆F , i.e. the difference between the free energy of the critical embryo Fc and
the free energy of solvatation G. The set of the different activities of the
heterogeneous centers can be so dense that we can regard it as the pseudo
continuous one. In the case of the ”solid nucleus of condensation with the
weak interaction” the continuous size of the nucleus ensures the continuous
set of ∆F .

The ordinary external conditions for the phase transition have the smooth
character in time. The external action on the system leads to formation
of the droplets of the new phase. The process of condensation violates the
thermodynamic parameters of the system. When the external action on these
parameters has the smooth behavior in time we shall say that condensation
occurs under the dynamic conditions.

Nevertheless the theory of the heterogeneous condensation in the dynamic
conditions has been constructed only for one type of the heterogeneous cen-
ters. So, the task to construct the kinetic theory for the system with a
continuous set of the heterogeneous centers is rather essential. It will be
completely fulfilled here.

We shall use the physical assumptions analogous to [14] which are neces-
sary to construct the mathematical model:

• the thermodynamic description of the critical embryo,

• the random homogeneous space distribution of the heterogeneous cen-
ters,

• the free-molecular regime of the droplets growth,

• the homogeneous external conditions for the temperature and for the
pressure,

2



• rather a high activation barrier.

As far as the most interesting characteristics of this process are the numbers
of the heterogeneously formed droplets on the centers with a different activity
we shall estimate the accuracy of the theory by the error of the obtained
solutions for these values1. The unit volume is considered. All energy-like
values are measured in the thermal units.

The publication has the following structure:

• In the first part the system of the equations of condensation is con-
structed.

• In the second part the explicit calculation of the iterations is presented.

• In the third part the conception of the universal spectrum is developed.

• In the last part some realistic spectrum of activities is considered and
the principle of the self-consistency of the spectrum of the activities is
presented.

We shall define the activity of the heterogeneous center as some parameter
w which is proportional to the height of the activation barrier

∆F (w) = ∆F |w=0 −λw (1)

with some positive coefficient λ. Note that the choice of the initial point
w = 0 is rather arbitrary now. We suppose ∆F (w) ≫ 1 for all essential
types of the heterogeneous centers2.

The total number of the heterogeneous centers with the given activity w
will be marked by ηtot(w). Naturally ηtot(w) is rather a smooth function of
w. We shall suppose that ηtot in the essential region is near some constant
value or it can be well approximated by the polinom which power isn’t too
high. This value is constant in time.

The density of the molecules in the equilibrium vapor is marked by n∞,
the density of the molecules in the real vapor is marked by n. The power of
the metastability will be characterized by the value of the supersaturation

ζ =
n − n∞

n∞

1But not for the total number of the droplets.
2When this condition is violated the kinetics of the process can be described by the

trivial modification of the theory presented below.
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We shall define the super-critical embryos as the ”droplets”. Every droplet
is described by the number of the molecules ν , or by the linear size

ρ = ν1/3

Due to the free-molecular regime of the droplets growth we have

dρ

dt
= ζατ−1

where α is the condensation coefficient and τ is some characteristic time
between the collisions in the saturated vapor obtained from the gas kinetic
theory.

Let us introduce the size z according to

z =
∫ t

t∗
ζατ−1dt′ (2)

Here t∗ is some characteristic moment of time which belongs to the period of
the intensive formation of the droplets. The choice of t∗ is rather arbitrary.
One can use for example the choice described in [8]. Until the beginning of
the coalescence [3],[4] which isn’t considered here equation (2) ensures the
growth of z in time and can be inverted

t(z) =
∫ z

0
τα−1 dx

ζ(x)
+ t∗ (3)

Hence, all values dependent on time become the values dependent on z and
the relative size

x = z − ρ

can be introduced. During the whole evolution the droplet has one and the
same value of the variable x. Considering t(x) as the moment when the
droplet with the given x has been formed (as a droplet) we can consider all
functions of time as the functions of x . Hence, we can see that the kinetic
equation is reduced to the fact that every droplet keeps the constant value
of x. To reconstruct the picture of the evolution one must establish the
dependencies t(z) and ζ(x).

The values at the moment t∗ will be marked by the lower index ”*”.
The positions of the region of the intensive formation of the droplets are
essentially different. But one can introduce t∗ as the moment corresponding
to the maximum af the supersaturation.

4



2 The system of the equations of condensa-

tion

We shall mark by the argument ∞ the total values of the magnitudes formed
during the whole condensation process.

Introduce the value of
ζideal =

ntot

n∞

− 1

where ntot is the total number of the molecules in the system.
We must take into account the reduction of ζideal to some value Φ due to

the consumption of the vapor molecules in the process of solvatation [9] [10]
[11]. Moreover, according to [11] the ideal supersaturation can be changed
by the external supersaturation. In any case we shall assume this value as
the known one and mark it by Φ. In some rough approximation ζideal ≈ Φ.

We shall mark by ηtot the total number of the heterogeneous centers of
all types:

ηtot =
∫

dwηtot(w) (4)

where ηtot(w) is the total number of the heterogeneous centers of the given
type (the density of the total value of the heterogeneous centers).

The following statements are valid in the further consideration:

• (1) The main role in the vapor consumption during the evolution is
played by the super-critical embryos, i.e. by the droplets.

• (2) The quasistationary approximation for the nucleation rate is valid
during the period of the essential formation of the droplets for those
sorts of the heterogeneous centers which aren’t completely exhausted
in this process.

The justification of the second statement3 uses the estimate for times tsi
of the relaxation to the stationary state in the near-critical region which can
be found in [1], [5] (for the investigation of the heterogeneous barrier the
consideration is the same one).

3The second statement isn’t valid for those sorts of the heterogeneous centers which are
going to be completely exhausted. But there the result is obvious. Note that the periods
of the intensive formation of the droplets on the centers with the different activities don’t
coincide.
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Let fs be the stationary value of the distribution of the sizes of the hetero-
geneously formed droplets measured in the units of n∞. It can be presented
in the following form

fs = fζ(ζ(x), w)η(x, w) (5)

where η(x, w) is the density on activities of the number of the heterogeneous
centers which are free from the super-critical embryos and fζ is given by the
following formula [6]

fζ =
W+

c exp(−∆F (ζ, w))τ

π1/2∆eν∆cνζαn∞

(6)

where W+ is the number of the molecules in the vapor which interact with the
droplet in the unit of time, ∆eν is the width of the equilibrium distribution

∆eν =
ν=(νc+νe)/2∑

ν=1

exp(−F (ν) + G)

and ∆cν is the halfwidth of the near-critical region

∆cν =
21/2

| (∂2F
∂ν2 )ν=νc

|1/2

Index ”c” marks the values for the critical embryo and ”e” - the values for
the equilibrium embryo. Certainly, ∆cν and ∆eν are some smooth functions
of w and we shall neglect this dependence.

We shall mark by n∞g(w) the density of the distribution on activities
of the total number of the molecules of the condensated substance in the
heterogeneous droplets formed on the centers of the activity w. To simplify
the formulas we shall use

θ(w) = η(w)/ηtot(w)

We obtain for gi, θi the following equations

g(z, w) =
∫ z

−∞

(z − x)3fζ(ζ(x), w)η(w)dx (7)

θ(z, w) = exp(−n∞

∫ z

−∞

fζ(ζ(x), w)dx) (8)
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As far as we measure the accuracy of the theory in the terms of the error
in the droplets number we define these values as the following ones:

N(z, w) = ηtot(w)(1 − θ(z, w)) (9)

The total number of the droplets is

N tot =
∫

ηtot(w)(1 − θ(z, w))dw =
∫

N(z, w)dw (10)

For the majority of the types of the heterogeneous centers the following
approximations of the nucleation rates are valid during the period of the
essential formation of the droplets4

fζ(ζ(x), w) = fζ(Φ∗, w) |w=0 exp(Γ
(ζ − Φ∗)

Φ∗

) exp(wλ) ≡ fζ ∗ exp(Γ
(ζ − Φ∗)

Φ∗

) exp(wλ)

(11)
where

Γ = −Φ∗

d∆F (ζ)

dζ
|ζ=Φ∗

|w=0 (12)

fζ ∗ = fζ(Φ∗, w) |w=0

and ∆F is the height of the heterogeneous activation barrier5. The validity of
these approximations can be justified for the heterogeneous embryos with the
interaction between the center and the molecules of the condensated phase
weaker or equal than the reciprocal to the space distance. So, we can imagine
this as a hard sphere with a weak interaction on which the embryo is formed.

The dependence of Γ on w is rather weak. So we can put

Γ(w) = Γ |w=0 (13)

for any essential part of the spectrum of the activities. The applicability
of the last approximation is based on the following qualitative model. It

4Note that the position of the regions of the intensive formation of the droplets on some
sort essentially depends on the activity of the centers. the following approximation isn’t
valid for the regions of the intensive formation on the active centers. But for these centers
the result is evident - all centers are going to become the centers of the droplets.

5The validity of these approximations may fail in the situations of the extremely long
spectrums (see later). But the square form of the behavior of the supersaturation near
the maximum will be attained earlier.
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is known that Γ is approximately Φ∗(νc − νe)/(Φ∗ + 1). When the super-
saturation is sligtly changed then the value of νe doesn’t undergo some big
variations and the variation of Γ occurs mainly due to the variation of νc. The
behavior of the value νc resembles the analogous behavior in the homogeneous
case. As a result we can justify not only the approximation concerning the
dependence on the supersaturation, but also the dependence on the activity.

A natural question about the essential part of the spectrum appears here.
The process of condensation on the centers with some relatively high activ-
ity occurs earlier than the supersaturation attains maximum. These centers
form the droplets which can be included in the value of the external super-
saturation in the manner of [11] [16]. For these centers the number of the
formed droplets coincides approximately with the number of the heteroge-
neous centers - all centers are now the centers of the droplets.

The action of this part of the spectrum on the further evolution can be
treated in the terms of the external supersaturation Ω (see [11]). The non-
trivial statement that the process of formation of the droplets on the centers
with the intermediate activity occurs near the maximum of the supersatu-
ration lies in the base of such a method of description. This fact can be
analytically proved.

The centers with some relatively low activity remain practically unex-
hausted (when the spectrum ηtot has no singularities they can not play any
important role in condensation). The singularities can be described in this
region in a manner from [11] [16]. So only some centers with the intermediate
activity are essential near the maximum of the supersaturation. In the scale
of the activities this region corresponds to the variation of w by the value of
the order of λ−1.

Now we shall formulate the system of the balance equations for the func-
tions g(x, w), θ(x, w) and

G(x) =
∫

dwg(x, w)

where the integral is taken over the whole spectrum of the heterogeneous
centers. In principle we can write that the region of integration goes from −∞
up to ∞ but in fact this integration must be carried out in the region which
covers the essential region of the spectrum6. In this region it is necessary to

6The extraction of this region is quite analogous to the case of the decay on the spectrum
of activities.
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have relatively smooth behavior of ηtot. This value must be approximately
constant

ηtot ≈ const

or must be well approximated by the polinom on the activities:

ηtot = Pn(w)

We assume the total number of the heterogeneous centers to be constant
in time.

Using the conservation laws for the heterogeneous centers and for the
molecules of the condensing substance we get for g, θ the following equations

g(z, w) = f∗

∫ z

−∞

(z − x)3 exp(−Γ
ζ − Φ∗

Φ∗

)θdx exp(wλ) (14)

G(z) =
∫

dwg(z, w) (15)

θ(z, w) = exp(−f∗ exp(λw)n∞

ηtot

∫ z

−∞

exp(−Γ
ζ − Φ∗

Φ∗

)dx) (16)

Φ = ζ + G(z) (17)

where f∗ = fζ ∗ηtot

These equations form the closed system of the equations for condensation
kinetics. This system will be the subject of our investigation.

We shall consider this system of equations during the period when the
centers with the intermediate activity are going to become the centers of the
droplets. We shall call this period as the period of the intensive formation of
the droplets (PIFD).

We assume that the ordinary [8] linearization of the ideal supersaturation
is valid during PIFD7

Φ(x) = Φ∗ +
Φ∗

Γ
cx (18)

7One can analytically show that the duration if PIFD is rather short. Namely

Φ(z) − Φ∗

Φ∗

≤ 1

Γ
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with some positive parameter c.
After the substitution of this linearization into the system of the conden-

sation equations this system transfers to

g(z, w) = f∗

∫ z

−∞

(z − x)3 exp(cx − Γ

Φ∗

G(x))θ(x, w)dx exp(wλ) (19)

G(z) =
∫

dwg(z, w) (20)

θ(z, w) = exp(−f∗ exp(λw)n∞

ηtot

∫ z

−∞

exp(cx − Γ

Φ∗

G(x))dx) (21)

The spectrum of sizes can be found as the following one

f(x, w) = f∗ exp(λw) exp(−Γ
ζ − Φ∗

Φ∗

)θ(x, w) (22)

and when the linearization is taken into account:

f(x, w) = f∗ exp(λw) exp(cx − Γ

Φ∗

G(x))θ(x, w) (23)

3 Iteration procedure

Such systems as the already obtained one can be solved by the iteration
procedure. It can be constructed by the following way: For the initial ap-
proximations we choose:

g0(z, w) = 0 θ0(z, w) = 1 (24)

The recurrent procedure is defined according to

gi+1(z, w) = f∗

∫ z

−∞

(z − x)3 exp(cx − Γ

Φ∗

Gi(x))θi(x, w)dx exp(wλ) (25)

Gi(z) =
∫

dwgi(z, w) (26)

θi+1(z, w) = exp(−f∗ exp(λw)n∞

ηtot

∫ z

−∞

exp(cx − Γ

Φ∗

Gi(x))dx) (27)

The chains of inequalities analogous to [7] guarantees the convergence of
the iterations and some estimates analogous to [7] can be established here.
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The direct calculation of the iterations gives

g1(z, w) = f∗
6 exp(cz)

c4
exp(λw) (28)

θ1(x, w) = exp(−fζ ∗n∞ exp(λw)
exp(cx)

c
) (29)

G1(x) = fζ ∗

6 exp(cx)

c4

∫
dw exp(λw)ηtot (30)

The last integral causes some problems with convergence. When ηtot = const
it can not be calculated. At least there are two possibilities to overcome this
difficulty.

The first possibility is a more formal one. Certainly, in every system
ηtot(w) = 0 when w is greater than some maximum value wmax. So, formally
the integral exists and it is equal to some constant. This constant is generally
unknown, but one can act in the manner like it was done with the supersat-
uration in [8]. In [8] the value of Φ∗ was not the matter of consideration in
the iteration method, but was included in the set of the undefined parame-
ters. After the final form of the size spectrum was established an equation on
parameters was studied. The form of the spectrum can play a role of some
ansatz with several parameters. The same procedure can be inserted here.
The reason is that we can observe the separation of the functions containing
w from the terms containing the other parameters of the condensation pro-
cess. This fact remains valid also in the second iteration which is rather a
good approximation for the final solution as it can be analytically proved on
the base of the analysis of the iteration procedure.

The second possibility seems to be more physical one because it allows
to combine the current problem with the problem of the correct definition
of the region of rather active and exhausted centers. Really we have not
separated the region included into the external supersaturation from the
region which isn’t included into the external supersaturation. Note, that in
the dynamic conditions the spectrum of sizes of the droplets formed on some
fixed sort of the heterogeneous centers has well defined boundaries. The sizes
(and the times of formation) of the droplets which are essential in the vapor
consumption can be also well localized. Namely, the spectrum is essentially
situated in the region

− 1

c
≤ z ≤ 1

c
(31)
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and the region of the droplets essential for the vapor consumption during
PIFD is essentially covered by the interval8

− 8

c
≤ z ≤ 0 (32)

As a result one can state that for z ∼ −a/c where a ∼ 8 one can get the
start of PIFD for the centers which are in the process of nucleation near the
maximum of the supersaturation.

Note that the moment t∗ can be taken as a moment of the maximum of
the supersaturation. Really, when the maximum of intensity of formation (or
the moment of formation of the half of the droplets) lies far from maximum
of the supersaturation, then the result of nucleation of this sort of centers
is rather obvious: the supersaturation is equal to the ideal (or external)
supersaturation

ζ = Φ

the total number of the droplets is equal to the total number of the hetero-
geneous centers

Ntot = ηtot

and the moment of formation of the spectrum on the centers of some fixed
sort which can be considered as a monodisperse one can be found from

θ(z, w) = 1/2

which is equivalent to

fζ ∗ exp(λw)n∞ exp(cz) = c ln 2

where the first two terms can be changed by some slightly other amplitude of
the spectrum and the parameter c can be reconsidered as far as the derivative
can vary.

The simplest regularization by the cut-off is the following one. We must
substitute the value of ηtot by the value ηinit calculated as

ηinit = ηtotθ(x = −a, w)

8See the analysis of the second figure from [16].
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after the calculation of θ(−a, w) which can be calculated on the base of the
ideal supersaturation, i.e. in the first iteration. As far as

θ1(−a, w) = exp(−fζ ∗n∞ exp(λw)
exp(−ca)

c
)

the value of f∗ must be changed by

f∗ = fζ ∗ηtot(w) exp(−fζ ∗n∞ exp(λw)
exp(−ca)

c
)

4 Calculation of the iterations

Let us calculate the iterations. Then the expression for G will be the following

G1 = fζ ∗

∫
∞

−∞

ηtot(w) exp(λw) exp(−A exp(λw))dw
6 exp(cz)

c4

where

A = fζ ∗n∞

exp(−ca)

c
When ηtot = const the integral can be taken which leads to

G1 = fζ ∗ηtot
1

λA

6 exp(cz)

c4

Note that the integral can be taken in the final limits which allows to take into
account only the finite region of activities as far as an approximation of the
total number of heterogeneous centers by the composition of the Heavisaid’s
functions.

When ηtot is approximated by the polinom it is easy to note that each
monom in the integral leads to some elementary functions with some uni-
versal constants. This fact can be seen from the simple translation of the
variable in ∫

∞

−∞

wm exp(λw) exp(−A exp(λw))dw

to the variable
λw + ln(A)

Here the integration must be fulfilled in the infinite limits. These integrals
can be expressed through Ψ-function and its derivatives when the argument
is put to 1.
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The second approximation for θ leads to the following result:

θ2(z, w) = exp(−fζ ∗n∞ exp(λw)
∫ z

−∞

exp(cx − B exp(cx))dx)

where

B =
Γ

Φ∗

fζ ∗

6ηtot

c4

1

λA

Note that the integral can be taken here also in the finite limits. After the
integration we get

θ2(z, w) = exp(−fζ ∗n∞ exp(λw)
1

cB
(1 − exp(−B exp(cz))))

Note that η(w) = ηinit(w)θ(z, w).
Particularly, for the final values one can get

θ2(∞, w) = exp(−fζ ∗n∞ exp(λw)
1

cB
) (33)

This value of B is obtained in the approximation η = const. For the fur-
ther consideration only the analytical structure of B is important. Namely, in
any case (and also in the case ηtot(w) = Pn(w)) we have for G the expression
with the following analytical structure

G1 ∼ const(z, w) exp(cz)

So, B is some constant and this fact ensures the possibility of the further
calculation of the iterations.

The next step is the calculation of the total number of the droplets ap-
peared in the considered period which can be done by the simple integration

N tot =
∫

∞

−∞

dwNtot(w)

Note that instead of

N tot =
∫

∞

−∞

dwηtot(w)(1 − θ2(∞, w))

which can not be integrated we must take

N tot =
∫

∞

−∞

dwηinit(w)(1 − θ2(∞, w))
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which gives the integral with no problems of convergence. To calculate the
last integral note that

θ2(−a, w) = exp(−fζ ∗ exp(λw)n∞

∫
−a

−∞

exp(cx − Γ

Φ∗

G)dx)

Consider now the case ηtot = const. After the evident renormalization of
the variables of integration the integral can be reduced to

∫
∞

−∞
exp(− exp(x))(1−

exp(−H exp(x)))dx where H is some constant. This value can be approxi-
mately calculated by the following procedure. Decompose the internal expo-
nents and get

∫
∞

−∞

exp(− exp(x))(1 − exp(−H exp(x)))dx =

∫
∞

−∞

1∑
∞

i=0
exp(ix)

i!

(1 − 1∑
∞

i=0
exp(ix)Hi

i!

)dx = (34)

∫
∞

0

∑
∞

i=0
yiHi+1

(i+1)!∑
∞

i=0
yi

i!

∑
∞

i=0
yiHi

i!

dy

Note, that it is necessary to left the serial in the denominator.
The necessary accuracy will be ensured by the first three terms in the

decompositions of

∫
∞

0

∑
∞

i=0
yiHi+1

(i+1)!∑
∞

i=0
yi

i!

∑
∞

i=0
yiHi

i!

dy ≈
∫

∞

0

∑2
i=0

yiHi+1

(i+1)!∑3
i=0

yi

i!

∑3
i=0

yiHi

i!

dy

Then an integral from the rational function can be simply calculated (also
in the finite limits).

Now the integrals

Ij ≡
∫

∞

0
lnj y

∑
∞

i=0
yiHi+1

(i+1)!∑
∞

i=0
yi

i!

∑
∞

i=0
yiHi

i!

dy ≈
∫

∞

0
lnj y

∑n−1
i=0

yiHi+1

(i+1)!∑n
i=0

yi

i!

∑n
i=0

yiHi

i!

dy

will be calculated. These integrals appear when the polynomial approxima-
tion for ηtot is accepted.

Consider the function

f(y) = lni+1 y

∑n−1
i=0

yiHi+1

(i+1)!∑n
i=0

yi

i!

∑n
i=0

yiHi

i!
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as the function of a complex variable. Integrate this function along the closed
path Ω constructed in the following manner: the big circumference with an
infinite radius; two straight lines ]y + i0,∞ + i0[, ]y − i0,∞− i0[; the little
circumference with a zero radius. The integrals along the circumferences are
going to the zero. The integrals along the straight lines give:

∫
[lnj+1 y − (ln y + 2πi)j+1]

∑n−1
i=0

yiHi+1

(i+1)!∑n
i=0

yi

i!

∑n
i=0

yiHi

i!

dy

which can be reduced to Ij and
∑

k<j ekIk with some known coefficients. On
the other hand this integral can be reduced to

∑
res(lnj+1 y

∑n−1
i=0

yiHi+1

(i+1)!∑n
i=0

yi

i!

∑n
i=0

yiHi

i!

)

inside Ω. As the result we have the recurrent procedure which allows us to
calculate all Ij.

Now let us see how the corrections due to the cut-off can be introduced
in the value of g(z, w). In the first approximation we have:

g1(z, w) =
6f∗
c4

exp(λw)(exp(cz) − exp(−ca))

The value of G1 in the approximation ηtot = const is given by

G1 = fζ ∗

6ηtot

c4

1

Aλ
(exp(cz) − exp(−ca))

Note that it can be calculated for the finite band of the spectrum of the
activities. The calculation under the polinomial approximation for ηtot can
be done in the same manner.

Instead of the pre-exponential factor one can put some other function.
The separation of this expression into two factors depended on w and on z
is obvious.

For θ2 we get:

θ2(z, w) = exp(−fζ ∗n∞ exp(λw)
∫ z

−∞

exp(cx − B(exp(cx) − exp(−ca)))dx)
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and after the simple calculation:

θ2(z, w) = exp(−fζ ∗n∞ exp(λw) exp(B exp(−ca))
1

cB
(1− exp(−B exp(cz))))

The final value is the following:

θ2(z,∞) = exp(−fζ ∗n∞ exp(λw) exp(B exp(−ca))
1

cB
)

It differs from (33) only by the remormalisation of the amplitude thanks to
exp(B exp(−ca)).

The value of N tot is calculated in the same manner.
Note that one can change −∞ to −a and repeat all calculations in the

same manner.
The analytical estimates show that the second iteration gives rather a

good approximation for the process. The reason is quite similar to [8]. Really,
one can simply integrate all estimates from [8] to justify the validity of the
obtained expressions.

Another important remark must be given. One can see that all obtained
values have the separation of the expressions (or arguments of exponents) in
two terms: the first one depended on w and the second one depended on z.
This reduction can not be observed in all high iterations. It is responsible
for the absence of the cross influence of exhaustion of the heterogeneous
centers with the different activity in the first iterations. The similar property
is absent in the situation of decay [14], [15]. Here such a cross influence
can be neglected because the equation on the parameters of condensation
balances the time of formation with the characteristic intensity of formation
and leads to the fact that the characteristic width of the size spectrum is
always approximately equal to 1

c
. The probability to form the droplet on the

center is always determined only by the supersaturation and by the value of
activity (and not by the total number of centers of the given sort).

5 Universal solution

Now the problem of the construction of the universal solution will be con-
sidered. The idea of the universal solution [2] lies in the fact that after for-
mation of the spectrum of the droplets the further evolution of the process
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depends only from the first three (and zero) momentums of the distribution
function. So if one can choose some variables in which the solution (the dis-
tribution function) is the universal function (undepended on the parameters
of the problem) then the expressions for the momentums have rather a sim-
ple analytical structure combining some parameters of the problem with the
universal constants.

For the process of the homogeneous condensation the universal solution
was obtained in [2]. For the process of the heterogeneous condensation the
universal solution is absent, but some pseudo universal solution can be con-
sidered as the base for the further iterations [7].

We shall rewrite the system of the condensation equations in the terms
of ζ and Φ

Φ∗ +
Φ∗

Γ
cz = ζ + G

G =
∫

dwg(w)

g(w) = f∗

∫ z

−∞

(z − x)3 exp(
Γ

Φ∗

(ζ − Φ∗))θ(w, x)dx exp(λw)

θ(w) = exp(−fζ ∗n∞ exp(λw)
∫ z

−∞

exp(
Γ

Φ∗

(ζ − Φ∗))dx)

Introduce the function

δ =
Γ

Φ∗

(ζ − Φ∗)

Then after the substitutions
λw → w

px → x

Γ

Φ∗

G → G

Γ

Φ∗λ
g → g

one can get
c

p
z = δ + G

G =
∫

dwg(w)
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g(w) =
f∗Γ

λΦ∗p4

∫ z

−∞

(z − x)3 exp(δ)θ(w, x)dx exp(w)

θ(w) = exp(−fζ ∗

n∞

p
exp(w)

∫ z

−∞

exp(δ)dx)

Let us choose p as
f∗Γ

λΦ∗p4
= 1

and now there are no parameters in the expression for g. If the moment of
t∗ is chosen as the moment when the supersaturation attains the maximum,
then

c

p
=

∫
dw3

∫ z

−∞

(z − x)2 exp(δ)θ(w, x)dx exp(w)

Then

fζ ∗

n∞

p
=

f
3/4
∗ n∞λ1/4Φ

1/4
∗

ηtotΓ1/4

An ordinary and natural condition to establish the zero point of activity
can be written as the following one:

θ(w = 0, z = ∞) =
1

2

which gives

f∗
n∞

p
=

ln 2∫
∞

−∞
exp(δ(x))dx

and there are no parameters in the last equation.
As the result there are no parameters in the system of the condensation

equations and the solution has the universal form. It can be analytically
proved that it is a unique solution. All consequences now coincides with
analogous conclusions from [2]

Note that there is a property of a very smooth dependence of the number
of droplets on the f∗. So we can get the equation on the parameters of the
process in some rough approximation (see the iteration procedure) and then
use the universal law.

The last model has the evident disadvantage. The equation for G demon-
strates no convergence. Really, we can substitute the expression for g into
the expression for G and fulfil the integration over w. Then we come to

G = A00

∫ z

−∞

(z − x)3 exp(δ(x))∫ x
−∞

exp(δ(x′))dx′
dx
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where

A00 =
f∗Γ

λΦ∗p3n∞fζ ∗

The evident necessary asympote G → 0 when z → −∞ leads to δ(z) → c
p
z

when z → −∞. Then the exponents can be cancelled and the subintegral
expression has the asymptote (z−x)3 which doesn’t ensure the convergence.
Then we need some regularizations. The most evident one is to notice that
after the process of any appearing of the droplets the constant value of η
transforms into

ηnew = ηold exp(−Q exp(w))

where Q is some constant.
We shall use this value as the initial one and after the analogous trans-

formations we can come to

G =
f∗Γ

λΦ∗p4

∫ z

−∞

(z − x)3 exp(δ(x)

Q + f∗n∞

p

∫
−∞

z exp(δ(x′))dx′
dx

The coefficient f∗n∞

p
can be made equal to some constant (may be 1) due to

the choice of the scale of activities. This choice states some concrete value
of Q (which has the same dependence on the choice as f∗n∞

p
has). The limit

Q → 0 corresponds to the already observed situation. Now we have more
general equation taking into account the power of the previous deformation
of the activity spectrum. Evidently the solution depends on the parameter Q
and isn‘t universal. We see the further inclusion of the distribution into some
more general set of the solutions for the various powers of the deformations
of the spectrums by the previous nucleation.

Due to the problems of convergence for Q = 0 we must describe the form
of the spectrum explicitly. We are going to show that the size spectrum has
the universal character.

When Q is going to zero the region where Q is unessential starts at zl

corresponding to
∫ zl

−∞

exp(δ(x))dx ∼ (p/c) exp(czl/p) ≈ Q

and becomes larger. The asymptote (z − x)3 of the subintegral expression
is attained from zl till some z with no respect to Q. So, the asymptotic
region becomes larger. Certainly, we can integrate the asymptote explicitly
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and come to (z − zl)
4/4. Only due to the linear size this asymptote provides

the main quantity of the substance in the droplets. As a result we have the
following expression for the behavior of fζ

fζ ∼ exp(z − α(z − zl)
4)

where the scale of z is chosen to put c/p = 1 and α is some constant. The
value of α can be determined from the requirement that max fζ ∗ (the max-
imum of the supersaturation) is attained at z = 0. Then

α = −z−3
l /4

The expression for fζ ∗ can be presented in the following form

fζ ∗ ∼ exp(−αz4
l ) exp(−(z/∆)2) exp(−4αz3|zl|) exp(−αz4)

where ∆ is the characteristic halfwidth

∆ = (2|zl|/3)1/2

One can see that at the characteristic scale z ≈ ∆ the arguments of the
third and the forth exponents have the characteristic values z

−1/2
l and z−1

l

respectively. Thus, these terms can be neglected and the form of fζ ∗ is the
gaussian one:

fζ ∗ ∼ exp(−(z/∆)2)

and it has no parameters after the evident rescaling9 z → z/∆. So, we see
that the universal gaussian form of exp(δ) ensures the universal expression
for θ

θ = exp(− exp(w)
ln 2√

π

∫ z

−∞

exp(−x2)dx)

This universal form will be attained earlier then Q = 0 (where the property
of convergence disappears) and has the true physical sense.

Figure 1 shows the forms of the size spectrums in some different situations
presented in the normalized coordinates. The curves ”a”, ”b”, ”c”, ”d” are
the solutions of the following equation

z = A1

∫ z

−∞

(z − x)3 exp(δ(x))

Q +
∫ x
−∞

exp(δ(x′))dx′
dx

9This rescaling excludes the unphysical parameter zl.
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for the different values of Q ( ”a” : Q = 10 ”b” : Q = 1 ”c” : Q = 0.001
”d” : Q = 0.0001 ). The curve ”a” practically coincides with ”b”, the curve
”c” practically coincides with ”d” for all x. The curve ”e” is the spectrum of
the gaussian type exp(−x2). The curve ”f” is the universal form of the first
iteration exp(x−exp(x)) after the renormalization in order to have the same
position of the maximum of the curve and to conserve the integral over the
spectrum. This curve practically coincides with ”a”, ”b” but only for the
negative values of the argument.

One can prove that for all possible values of Q the spectrum lies between
the first iteration and the Gaussian spectrum. It can be seen that the differ-
ence between the first iteration and the Gaussian curve is rather small (less
than 0.2) and lies in the frames of the accuracy of the modern experiment10.
Note that the value of A1 must be chosen to ensure the position of the max-
imum of the supersaturation near max δ = 0. For Q → 0 the quantity of
the substance in the droplets isn’t small due to the known power asymptote
and one have to remove the choice of t∗ from the previous condition that
the max δ is attained at z = 0 to the new condition max δ = 0. In the
concrete calculations one needn’t to fulfil this condition precisely but only in
a very approximate way as far as the form of the spectrum doesn’t change
essentially for the different choice of the max δ near zero. This property can
be shown analytically and is illustrated by Figure 2.

Figure 2 demonstrates the weak dependence of the form of spectrum on
the choice of the base point for the linearizations, i.e. the choice of t∗. This
property is important for the justification of the conception of the universal
spectrum and can be proved analytically. This property is also necessary for
the simplification of the numerical calculations. For Q = 10 the two values
of A1 have been chosen. This corresponds to the different manners of the
choice of t∗ or the choice of max δ. Two curves for δ for different A1 are
shown in the part ”a” of this illustration. The upper curve corresponds to
A1 = 0.5, the lower curve - to A1 = 1. In the part ”b” the size spectrums
for these situations are drawn in the normalized coordinates. They coincide
and one can see only one curve drawn in the part ”b”.

Note that the limit Q → 0 is analogous to the situation of the ”wide spec-
trum” considered in [15]. Here we have some additional difficulties. These

10This ensures the weak sensitivity to the choice of the parameter a. It is necessary to
the self-consistency of the presented theory.
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difficulties appear from the asymptote (z−x)3 for the subintegral expression.
As a result the relative quantity of the substance in the droplets is greater
than Γ−1, the spectrum is going to be formed during the period with duration
essentially longer than c−1τ/ζ , the quasistationary approximation isn’t valid
during all the period of the droplets formation. So, one has to reconsider the
approximations which form the base of the concrete constructions.

The simplification goes from the asymptote (z − x)3. Really, this asymp-
tote doesn’t depend on the concrete form of the free energy and the deriva-
tives of the free energy. So, the quasistationarity and exponential approxima-
tion (11) aren’t so essential (they are going to fail namely at this asymptote).
The big quantity of the substance in the droplets require to reconsider the
condition of the choice of t∗ as it is done above. The essential duration of
the period of the droplets formation may lead to some new approximations
and, thus, change the form of the asymptote (z −x)3. But the consideration
of the process remains quite analogous to the already fulfilled one. One of
such examples is given in the next section.

The opposite situation corresponds to the validity of the iteration pro-
cedure with the ideal supersaturation taken as the external one11. Note
that the final results for θ and for the spectrum are obtained (in the sec-
ond approximation) on the base of the supersaturation calculated without
the appropriate account of the exhaustion of the centers, i.e. in the pseu-
dohomogeneous situation. The same situation occurs when we study the
condensation on the separate sort of the heterogeneous centers [8], [7]. This
analogy leads to the three important consequences. To establish the first
one note that the ”pseudohomogeneous” base for the final results evidently
has some universiality. In [7] the universiality can be broken by the change
of the regime of the consumption of the vapor by the droplets. The result
of [8] is more approximate, but it is based on the form of the first iteration
which can not be depended on the regime of the vapor consumption. So, the
universiality here is more general. The analogy of the forms of the ”pseudo-
homogeneous” spectrums allows to give the definition of the relative activity
also to the centers in the the process of condensation on the centers of the
separate sort. The point w = 0 corresponds to θfinal = 1/2. The value of w

11Certainly, with the corresponding choice of the renormalization of θinit and the choice
of the ”external” supersaturation the iteration procedure remains valid in all cases with
the linear ”external” supersaturation.
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can be reconstructed from θfinal as

w = ln(
ln θfinal

ln(1/2)
)

The invariant ln θ/ exp(w) can be also observed for an arbitrary z. Hence, the
condensation occurs in a hierarchical manner12. Then one can consider the
distribution f(x, w) over the two variables x and w obtained in the process of
condensation on the heterogeneous centers with the spectrum of activities as
the formal generalization of the distribution in the process of condensation on
the heterogeneous centers of the separate sort. Now the distribution has the
universal functions as the base. This base doesn’t depend on the process of
the exhaustion of the heterogeneous centers. The dependence on w is rather
explicit

f(x, w) ∼ exp(δ(x)) exp(−w
∫ x

−∞

exp(δ(x′))dx′
ln 2∫

∞

−∞
exp(δ(x′))dx′

)

The factor exp(δ) is the universal base for this distribution. That’s why we
prefer to present it in Figure 1 and to call it simply the spectrum. The
last expression is precisely valid for δ calculated on the base of the precise
solution. As for approximations for δ one can take δ from the pseudoho-
mogeneous situation in two manners (from [8] and from [7]). The first one
corresponds to the first iteration and doesn’t depend on the regime of the
vapor consumption. The second one is more precise but depends on the
regime of the vapor consumption. Note that the last expression contains
an unessential approximation because it is based on the pseudohomogeneous
situation. The negligible character of correction can be seen simple from
the result of the iteration procedure in the situation with one sort of the
heterogeneous centers. Hence, one can state the natural inclusion of the spe-
cific condensation on a sort of the heterogeneous centers into the practically
universal distribution appeared from the process of the condensation on the
heterogeneous centers with the spectrum of activities.

The second consequence is connected with the fact that now we know the
ansatz necessary for the realization of the first opportunity (alternative to

12Certainly, the shift and the zero roint w = 0 depend on the parameters of the process
including ηtot.

24



the regularization of θ). One can use the form of δ obtained in the pseudoho-
mogeneous situation in the first iteration or from the universal homogeneous
precise solution.

The third consequence can be noticed in frames of the modified method
of the steepens descent [16]. Really, the form of the external supersaturation
can be essentially nonlinear13. Then we have to use the modified method of
the steepens descent. The generalization is evident. Due to the negligible
effect of the account of the exhaustion of the heterogeneous centers in all
steps except the final formulas which can be seen from the iteration method
(in the nonlinear case all analogous estimates can be given) we can simply
integrate (summarize) the amplitudes of the distribution14 over the activity,
then get the result for the psudohomogeneous situation and then apply the
final formulas for the number of the heterogeneous centers on the base of the
supersaturation.

One can analytically show for Q ≥ 1 that the differences in the forms of
the spectrums between the real solution and the first iteration, between the
real solution and the pseudohomogeneous universal precise solution decrease
when Q increases. Also one can prove that for Q ≥ 1 the difference between
the external supersaturation and the real supersaturation at some arbitrary
moment of time decreases15 when Q increases. So, the results of Figure 1 show
that the required limit corresponding to the practically universal spectrum
is attained already when Q ≥ 1.

One can analytically show that the form of the spectrum lies between
the gaussian iteration and the first iteration (or between the gaussian form
and the universal precise pseudohomogeneous solution). We can see from
Figure 1 that the difference in the form of the spectrum is rather small for all
situations. This can lead us toward the general approximate universiality. So,
the analogy with the ideas of the universiality in the previous considerations
is now stated.

Certainly, in the case of the condensation on the separate sort of the
heterogeneous centers the spectrum (as θ exp(δ)) isn’t universal. But the

13In a very specific global form of the activity spectrum ηtot. One can prove that in any
case one can restrict the expression for the external supersaturation during the period of
the intensive formation of the droplets on the centers with the intermediate activity by
the constant, linear and square terms.

14The characteristic values of the distribution at t∗.
15And also at t∗.
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difference between the forms of the spectrum isn’t so important. One can
show analytically that the form16 of the spectrum changes continiously from
the case of the relatively small number of the heterogeneous centers up to
the pseudohomogeneous case and lies between these two limit cases. Really,
when the relative number of the heterogeneous centers is small the first it-
eration exp(x − exp(x)) gives the precise expression for the spectrum. In
the pseudohomogeneous case the same first iteration is the base for the re-
sult which lies prctically near the precise solution (this is the base point for
the effectiveness of the iteration method [8]). So, the form of the spectrum
doesn’t essentially variate. It can be also treated as as some universal form.
Hence, this case also allows the universal description. Namely this is the base
for the applicability of the iteration procedures from [8], [7].

6 Advantages of the model

The results of the iteration procedure can give not only the description of
the process of the heterogeneous condensation but also the information about
the form of the activity spectrum. From the first point of view this question
appears to be an external one to the process of condensation.

Experimental results [13] show that the spectrums of the activities are
rather smooth and have the form

ϕ(v) ∼ v−(1+s)

where s is some small positive parameter. Here v has the sense of the activity
introduced in a slightly another manner. Namely, the free energy can be
approximately written as the function of v in the leading term as

F = − ln(ζ + 1)ρ3 + constρ2 + constv ln ν + const

which leads to the approximate applicability of the linearization of ∆F =
Fc − G = F (ρc) − F (ρe) as function of w together with the identification of
v as w − w0 with some characteristic value of the parameter w0. Then ηtot

can be presented as

ηtot(w) = ηtot(w0)(w − w0)
−(1+s) (35)

16After renormalization and as the function of a rescaled variable.
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The positive value of s ensures the convergence of the total number of the
heterogeneous centers17

ηtot =
∫

∞

w
ηtot(w)dw

Define the class of the ”long tail spectrums” (LTS) as the spectrums with
extremely long tails in the active region. This spectrum shows an example
of such a spectrum. Here we shall develop the theory for condensation on
such spectrums.

To present the most simple variant we shall assume that for fζ∗ an ap-
proximation of the known form is adopted

fζ∗ = fζ∗∗ exp(
Γ

ζ∗∗
(ζ∗ − ζ∗∗)) (36)

with some constant value of the known parameter Γ. Here ζ∗ can be treated
as a value corresponding to the moment when some sort of the heterogeneous
centers is exhausted and ζ∗∗ is the base for approximations. Require that

θ(z = 0, w) = 1/2

which leads to
Γ

ζ∗∗
(ζ∗ − ζ∗∗) + λw = − ln[

fζ∗∗n∞

c ln 2
]

The last approximation is valid when the relative variation of ζ is small. In
such a region we can put c in the r.h.s. of the last equation to some constant
value and get for the size spectrum

| f(z) |=| ηtot(w |w= const−cz

λ

) | c

λ

where the dependence ln c is assumed to be unessential. Then one can see
that in the case of (35) the convergence of the integral for G can be attained
only if s > 3 (note that c → const ∼ dΦ

dx
when w → ∞). This result

shows that LTS can not be effectively spread. More rigorously speaking,
the contradiction can be overcome by noticing that this effect is only due to
approximation (36). Certainly, G is restricted by the value ηtotz

3
max where

17The infinite tail must be cut off at the centers which must be already exhausted in
the previous processes.
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zmax is the coordinate of the droplets which are imaginary formed when the
supersaturation attains some slightly positive value. Nevertheless in such a
situation all global features of the free energy appear which doesn’t allow
to get any effective method to all types of the heterogeneous centers. The
leading idea will be that some of heterogeneous centers had been exhausted
in the previous processes of condensation occurred earlier. Then the balance
equation will be the following

dΦ

dx
= c

Φ

Γ
+ 3

∫ z

−d
(z − x)2f(x)dx

where d is some boundary parameter of size spectrum initiated by boundary
of activity spectrum. This equation can be solved. In the case of ηtot ∼ const
we have

dΦ

dx
= c

ζ∗∗
Γ

+ 3
∫ z

−d
(z − x)2c(x)dx

const

λ
(37)

Note that here c ζ∗∗
Γ

is the derivative of the real (not the ideal) supersaturation
on x. Having differentiated this equation three times18 we get the ordinary
linear differential equation with some constant coefficients, which has the
known solution.

Now a new principle of the self-consistency of the activity spectrum will
be elaborated. We have noticed that active centers have been exhausted in
the previous processes of condensation. But the description of the previous
processes of condensation is quite analogous to the description of the given
process. As the result we have for spectrum of the heterogeneous centers

θ = exp(−const exp(λw)
∫ z

−∞

exp(−Γ
ζ − Φ∗

Φ∗

)dx)

with the analytical structure

θ(z → ∞) = exp(−const exp(λw)) (38)

But this structure is already known - it is the structure of the final and the
start results for θ in the already investigated process. So, our start form was
absolutely correct19. Also it is very important that the structures before and

18Now we are going to get the equation for the unknown function c(x) so we have to
keep the derivatives of c(x)

19One can repeat all calculations with the new value of parameters initiated by the
previous process of consumption of the heterogeneous centers.
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after the process coincide in their analytical form. This statement will be
called as the principle of the self-consistency of the spectrum of the activities.

Hence, our initial conditions satisfies this principle. The process of con-
densation conserves the analytical form of the spectrum of the activities and
the result of the process can be regarded as some shift in the scale of activities.
Only some parameters are changed. We needn’t to repeat the calculations
as far as they are absolutely the same ones.

However, in (37) when d ≫ 1 we needn’t to know the details of the cut-off
of the spectrum and can use the cut-off by the Heavisaid’s function.

The last point of discussion is the possibility of the linearization of the
external supersaturation. One can analytically prove the following statement:

• In the description of condensation on the centers of the intermediate
activity the two manners of description cover all possible situations20.
These manners of description are the following:

1). The supersaturation is absolutely determined by the consumption
of the vapor by the droplets formed on the centers with high activity.

2). The linearization of the external supersaturation is possible dur-
ing the period of formation of the droplets on the centers with the
intermediate activity.

The first manner of description is obviously trivial. The second is com-
pletely described here. Note that in the case when the spectrum has some
pseudo singularities the last statement isn’t valid and the special description
is necessary. This description can be attained by the combination of the
methods presented in [16] with this theory.

7 Concluding remarks

Now the theory of aerosol formation is completed. As a base for some concrete
results the classical theory of nucleation was chosen. Meanwhile the validity
of this theory remains the matter of discussion21. Note that this theory is

20The natural requirement for the activity spectrum is that the activity spectrum must
be a smooth function with the cut-off (or without the cut-off) like (38).

21Note that formally we can put the discrepancy between the predictions of the classical
theory and the real rate of nucleation into the values of the microscopic corrections.
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necessary only to calculate the amplitude of the distribution. In the situation
of the dynamic conditions the manner of the choice of t∗ leads to the algebraic
equation of the following form:

f∗ = Smooth known function(Φ∗; explicit external parameters)

So, the microscopic corrections to the free energy aren’t important for the
process of condensation under the dynamic conditions. In the situation of
the metastable phase decay the amplitude value of the spectrum is rather
artificial. It is given explicitly by the initial supersaturation and one can not
exclude the sharp dependence on the microscopic corrections to the free en-
ergy. Here any other concrete formula can be used instead of the expression
from the classical theory for the nucleation rate in the stationary approxima-
tion. Note that the form of the spectrum doesn’t essentially depends on the
value of the amplitude. That’s why we don’t pay any serious attention to
the solution of the algebraic equations on the parametrs of the process and
to the calculation of the concrete numerical results. We have concentrated
our attention on the universal depencies which form the base for the common
knowledge in the field of the first order phase transitions. Namely the univer-
siality is the main result of our investigation. Note that the universiality also
takes place in the process of the condensation under the dynamic conditions.

The theory presented in these four publications can be easily reformu-
lated when we assume that the rate of appearance of the critical embryos is
proportional to

F1 exp(F2)

where F1 and F2 are the smooth functions of the supersaturation and F2 has
the big absolute values. Evidently all reasonable recipes for the rate of nu-
cleation satisfyes the last ansatz. We kept the classical stationary flow only
due to the tradition. The range of applicability of the presented theory is
wider than the case of condensation. The possibility of the linearization of
the ideal power of metastability during the period of the intensive formation
of the super-critical embryos seems to be quite natural. The sharp increasing
of the intensity of the metastable phase consumption by the separate super-
critical embryo is also a natural requirement. This theory is based only upon
these assumptions. All positions used in the construction of the mathemati-
cal model (exept the absence of coalescence) can be missed22 by the obvious

22The thermal effects can be taken into account in the manner analogous to [8].
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generalization conserving the mathematical structure. The requirement of
the homogeneous character of the external action and of the nucleus distri-
bution can be attained by the consideration of an arbitrary hydrodynamic
element. As the result one can conclude that the general theory for the ki-
netics of formation of the dispersed embryos of a new phase on the dispersed
unpurities in a metastable phase is constructed.

References

[1] Zeldovitch, J.B., Journ. Exper. and Theor.Phys. (USSR) vol.24, p.749
(1942)

[2] Kurasov, V.B. Description of homogeneous and heterogeneous nucle-
ation in dynamic conditions, Deponed in VINITI number 5147-B,
1.06.89, 50 p.

[3] Lifshitz, I.M. and Slyozov, V.V., Journal of Exper.Phys. (USSR) vol.35,
p.479 (1958)

[4] Lifshitz, I.M. and Slyozov, V.V. J.Phys.Chem.Solids vol.19, p.35 (1961)

[5] Kuni, F.M.and Grinin, A.P., Colloid.J. (USSR) vol.46, p.23 (1984)

[6] Kuni, F.M., Colloid.J. (USSR) vol.46, p.674 (1984)

[7] V.Kurasov, Phys.Rev. E, vol.49, p.3948 (1994).

[8] Grinin, A.P., Kuni, F.M., Kurasov, V.B., Heterogeneous nucleation in
vapor flow, In Gadiak (ed.): Mechanics of unhomogeneous systems,
Novosibirsk, (1985), p.86

[9] Kurasov, V., VINITI (Russia) 2594-B95, 28 p.

[10] Kurasov, V., VINITI (Russia) 2589-B95, 23 p.

[11] Kurasov, V., VINITI (Russia) 2591-B95, 21p.

[12] Kurasov V., VINITI (Russia) 2593-B95, 25p.

[13] Twomey, S., Geofis. pura e appl., vol. 43, number 2, p.243 (1959)

31



[14] Kurasov V, Kinetics of aerosol formation. 1. Decay of metastable phase
on several types of heterogeneous centers (to be published)

[15] Kurasov V, Kinetics of aerosol formation. 2. Decay of metastable phase
on heterogeneous centers with continious activity (to be published)

[16] Kurasov V, Kinetics of aerosol formation.3. Heterogeneous condensation
on several types of centers in dynamic conditions (to be published)

32



f=a=b,c=d,e f,a=b,c=d,e

.......................
...........

.........
......
.....
.....
....
...
...
...
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
....
........................

...
..
.
...
..
.................................................................................................................

............
.........

......
......
.....
....
....
...
...
...
...
..
...
..
..
..
..
...
...
..
..
...
..
...
...
...
....
...............................

...
.......................................................................................................................................................

..................
............

.........
........
.....
......
.....
.....
....
....
...
....
...
...
...
...
...
...
...
...
...
...
...
...
....
...
.....
.....
......
........................................................................................................................................................................................................

...................
.............

.........
........
.......
......
.....
.....
.....
....
....
....
...
....
...
...
....
...
...
...
...
....
...
....
....
....
.....
......
.......
.............................................................................................................................

........................................................
..........

......
......
.....
...
...
...
...
...
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
....
.......................................................................................................................................................................................

...............
...........

.........
......
......
.....
....
....
....
...
....
...
...
...
...
...
...
..
...
...
...
...
...
....
....
.....
.......................................

................................................................. -

0 1

Figure 1

Form of spectrum under the different powers of deformation.
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FORM OF THE SPECTRA OF NUCLEUS DIMENSIONS IN

FIRST-ORDER PHASE TRANSITIONS

V. B. Kurasov∗

We study a generalization of the analytic theory of first-order phase transitions to the cases of arbitrary

droplet growth, of nonisothermal processes, and of heterogeneous centers in the system. We show that

in all these cases, the spectra of droplet dimensions are similar. The same forms of the spectra are also

obtained for the stationary condensation process in a spatially inhomogeneous system.

Keywords: first-order phase transition, kinetics, condensation, nucleation, universality

1. Introduction

1.1. Choice of the critical nucleus description. The process of the phase transition from a super-
saturated vapor to the state of liquid droplets is considered as a model of the first-order phase transition.
The theoretical description of this process is based on classical nucleation theory [1]–[4]. The main result
of the theory is the expression for the stationary nucleation rate, which is inversely proportional in the
leading term to the exponential of the free energy of the critical nucleus. Meanwhile, the free energy of
the critical nucleus, which plays the role of an external parameter in classical nucleation theory, has not
been studied sufficiently well. Numerous papers present different values of this quantity. We note that the
concept of how to calculate the free energy was revised significantly in [5]–[9]. We also note that all the
proposed modifications of classical nucleation theory could not bring the theory into complete agreement
with the experiments in which the nucleation rate is determined.

The development of the theoretical description shows that there is no clear picture even in the problem
of fixing the nucleus mass center. Although there is significant progress in understanding the thermodynamic
value of the free energy [10], the configuration integrals were calculated directly in recent publications [11]–
[14]. Under this approach, the value of the free energy is determined by the model parameters of the
Hamiltonian. If the theory of simple liquids is used to calculate the free energy in the framework of density
functional theory [15], then the parameters of the liquid state model give a specific value of the free energy
of the critical nucleus. In this case, the free energy and hence the nucleation rate turn out to be extremely
complicated functions of the model parameters of the substance.

The number of the parameters introduced also increases because of the microscopic corrections stip-
ulated by the curvature of the nucleus surface. The modern theory of curved surfaces [16] cannot give
plausible results for the nucleation rate without introducing rather many external parameters determined
by the substance.

Nevertheless, one property of the free energy of the critical nucleus can be established with certainty
and, moreover, analytically. This free energy is a sufficiently smooth function of the thermodynamic pa-
rameters of the system and of the degree of metastability of the condensing substance.
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The exact solution of the kinetic equation with known kinetic coefficients can also give significant
corrections [17] to the preexponential term in the nucleation rate. But these corrections are sufficiently
small compared with the inaccuracy in determining the free energy. Therefore, the main problems arise in
calculating the free energy.

The main aspects of classical nucleation theory are so natural that the qualitative conclusions of this
theory are beyond doubt. This theory well predicts the dependence of the nucleus formation rate on the
degree of metastability and on the natural thermodynamic parameters, although the discrepancy between
the theory and experiments increases for rather small dimensions of the critical nuclei (because the so-called
capillary approximation can no longer be used). Therefore, a reasonable universal alternative to classical
nucleation theory has never been proposed.

Nevertheless, to determine the preexponential factor in the expression for the nucleus formation rate
(or the logarithmic correction to the free energy) with sufficiently good relative accuracy is impossible today.
But we can state that this factor is a relatively slow function of the thermodynamic parameters describing
the system.

We note that this property can be explained in the framework of ensemble theory in statistical mechan-
ics. The relative difference between the thermodynamic quantities calculated in the framework of different
thermodynamic ensembles is rather small. For example, the difference between the additive thermodynamic
quantities calculated in the canonical and in the large canonical ensemble is of the order of log ν/ν, where ν

is the number of particles in the system1 (in this case, the nucleus of critical dimensions is taken to be such a
system). There is a many-fold difference between the nucleation rates. To prescribe exactly how to calculate
the free energy of the critical nucleus, it is necessary to choose the description variables (or to choose the
special volume of the arising nucleus [11]–[14]), i.e., to choose a statistical ensemble. The last publications
in both the classical approach [11]–[14] and the density functional theory [18] can be interpreted precisely
in the framework of the problem of choosing an ensemble. Unfortunately, there is no obvious method for
choosing the correct ensemble in the modern state of the theory. In what follows, we use the fact that the
preexponential factor in the expression for the nucleation rate depends on the thermodynamic parameters
of the description rather weakly.

1.2. Kinetic problems. In this paper, we attempt to overcome these difficulties in the framework of
studying the kinetic problems of the global evolution of a system under the phase transition. The theory
constructed to describe the stationary nucleation rate permits studying the global picture of the phase
transition. At the beginning, the results of this study were at most qualitative [19] and were intended
to ensure the proper experimental conditions. Later, some realistic models of global evolution appeared.
Among them, we note the kinetics of the homogeneous decay of the metastable phase [20] and the kinetics
of the homogeneous phase transition under smooth external conditions [21], [22].

It was discovered in [22] that all the characteristics of the global picture of the phase transition weakly
depend on the microscopic corrections to the free energy of the critical nucleus. This result opens new per-
spectives for classical nucleation theory. Earlier, the main efforts were in studying the stationary nucleation
rate, which was the desired quantity in the experiment. Because the free energy is usually of the order of
several tens of units, even relatively small errors in the value of the free energy lead to significant errors
in determining the nucleation rate. The main result in [22] is that there is a strong equalizing feedback,
which yields a weak dependence of the phase transition characteristics on the microscopic corrections to

1A partial compensation between the volume and surface contributions to the free energy can be observed. As a result,
this thermodynamic quantity is proportional to ν2/3 (but not to ν), where ν is the number of molecules in the critical nucleus.

Some traces of this compensation are also observed in the difference between the corresponding minimum work for nucleus
formation in different ensembles. But this difference nevertheless remains proportional to log ν.
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the work of formation, i.e., on relatively small corrections to the free energy. The same conclusion concerns
the problem of choosing an ensemble. This property was established only for the collective absorption of
substance from the metastable phase. The collective absorption means that each droplet absorbs substance
from a volume containing sufficiently many other droplets. Precisely this simplification permits analyzing
such a nonlinear problem analytically [23].

Variations in the vapor absorption conditions were analyzed formally in [24], [25] using a simple change
of the droplet growth rate. What actually happens is that the revision of the substance absorption conditions
must be accompanied with a study of the form of the vapor density profile in the vicinity of the growing
droplet. There is no density profile only in the case of purely free-molecule absorption of substance [26]
(precisely these conditions were studied in [21], [22]).

An analysis of the form of the spectra of droplet dimensions raised the question whether there exist
variables in which the solution can be represented as a function independent of the external conditions and
the characteristics of the substance. In [27], such variables were found in the homogeneous condensation
case. The specific form of the balance equation [27] shows that the choice of such variables is rather simple.
This property is extremely important for understanding the nature of the phase transition, but this property
was established in [27] only for the case of the collective vapor absorption.

The case of heterogeneous condensation on heterogeneous centers of the same type does not admit any
choice of such variables [28]. It seems that in such a situation, the spectra being of the same form is of no
use. But the results obtained in [27] show how the similarity of the forms of the dimension spectra in the
homogeneous case can be used to study the case of heterogeneous nucleation at heterogeneous centers of
the same type.

The next stage in generalizing the kinetic picture to arbitrary conditions of substance absorption was
to take the vapor density profiles arising around the droplets into account [26]. It is natural to assume that
a growing nucleus of the new phase first depletes the ambient metastable phase in the immediate vicinity of
its boundary. In the diffusion process, the density is being equalized, but the constantly increasing intensity
of the metastable phase consumption does not allow the final equalization. Hence, considering the density
profile of the metastable phase is essential. Earlier, this process was studied only in the case where the
density profiles of the metastable phase were absent.

One of the properties used to justify the theory in the case of density profiles was a sharp increase in
the vapor absorption intensity with time. The same fact underlies an approximate coincidence of the main
characteristics of the process calculated using the first iteration and the exact solution. This characteristic
feature is very important in our study.

In [26], the process kinetics was constructed only for the special homogeneous condensation case. This
brings up the problem of generalizing the constructions developed in [26] to the case of arbitrary first-order
phase transitions. As a result, the possibility of repeating such methods permits showing that the forms of
the spectra of the nucleus dimensions are similar in very different situations. In this connection, the goal
of this paper is to show that the similarity of the forms of the dimension spectra is a general characteristic
feature of first-order phase transitions.

In Sec. 2, the theory of density profiles [26] is generalized to the case of nonisothermal condensation
effects. In Sec. 3, we show that the forms of the spectra are similar under different conditions of absorption
of the metastable phase. The dependences obtained are generalized to the heterogeneous condensation case
in Sec. 4 and to the case of stationary condensation in a spatially inhomogeneous system in Sec. 5.

In this paper, we study a system of unit volume with homogeneous external conditions (except for
Sec. 5). All the quantities having the dimensions of energy are expressed in natural thermal units. The
accuracy of the theory is estimated using the relative error in the total number of droplets, which is the
most important characteristics of the condensation process.
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1.3. Density profiles of the metastable phase in the homogeneous nucleation kinetics. In
what follows, we draw analogies to the approach used in [26]. It is therefore expedient to discuss the main
points of the theoretical description of the homogeneous transition kinetics given in [26].

First, we construct the density profile of the metastable phase around a solitary growing nucleus of the
new phase. The influence of the other nuclei is ignored. We prove that the other nuclei cannot significantly
affect the growth rate for the nucleus under study. Then its growth rate turns out to be a known variable.
In [26], the nucleus is interpreted as a point source of substance absorption with a prescribed intensity. In
this case, the density profile can be easily obtained based on the Green’s function formalism. The form
of the density profile thus obtained has the remarkable property that the entire ambient volume can be
divided into the domain where the nucleus formation intensity is not perturbed by the nucleus under study
and the domain where the nucleus formation intensity is negligibly small (the depleted domain). The laws
for the variation of the dimensions of these domains were obtained in [26]. It turns out that the dimensions
of the depleted domain increase with time at a rapidly increasing rate. This permits saying that variations
in the metastable phase absorption are of the avalanche type and permits formulating kinetic models of the
global evolution of the entire ensemble of nuclei.

The problem (posed in [26]) of describing the evolution of an ensemble of growing droplets and of
determining the intensity of constant formation of new droplets is rather too complicated to be stated as
a solution of some closed equation (the method proposed in [27] in the case of collective absorption of the
metastable substance). Instead of this, several models were introduced in [26] in which either the physical
effects decreasing the substance consumption or the effects increasing this consumption were not taken into
account. These models give similar estimates of the upper and lower bounds for the total amount of the
new phase nuclei already formed. The approximate coincidence of the results given by these models shows
that the description of the process is rather good. The true result is thus obtained with a sufficiently high
relative accuracy.

The last stage in the construction of the theory must be an analysis of the formal passage to the
collective consumption of the metastable phase by the nuclei. In [26], the required passage is rather simple
in this case because the functional forms of the equations in one of the models coincide with the integral
balance equation obtained for the collective consumption of the metastable phase. It remains only to verify
the variations in the numerical values of the parameters in these equations.

To generalize this approach to the general case, we need to follow the above program. Taking all the
steps of this program, we obtain the above result about the similarity of the spectra of the nucleus dimensions
or, equivalently, of the distribution functions of the new phase nuclei with respect to the dimensions. By
the dimension of an nucleus, we mean its spatial characteristics whose rate of growth is independent of the
value of this dimension. In this case, the distribution function of the nuclei with respect to this dimension
moves in time as a whole along the dimension axis. Precisely in this case, we can speak about the form of
the spectra of the nucleus dimensions as about some characteristics that does not change with time.

2. Thermal effects in condensation

A first-order phase transition is inevitably accompanied by a release (or an absorption) of the condensa-
tion heat in the transition of each molecule from the initial to the new phase. Nonisothermal condensation
effects are therefore typical of first-order phase transitions. Naturally, in some cases, there is so much
passive substance in the system that the thermal effects do not manifest themselves at all.

To include the nonisothermal condensation effects in the kinetic picture of the process described in [26],
we must first determine the stationary nucleation rate. We assume that a near-critical nucleus acts under
the free-molecule conditions of substance exchange. Then in the framework of classical nucleation theory,
the nucleation rate Is can be found using the renormalizations presented in [29] and [30], which we discuss
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later.
It is convenient to describe the degree of metastability by the supersaturation ζ, which is the ratio of

the vapor molecule density n to the saturated vapor molecule density n∞. For the stationary nucleation
rate, we have the renormalization

Is =
I0

1 − k
, (1)

where I0 is the nucleation rate with the thermal effects neglected, the parameter k is determined by

k =
αβ2

c(1 + p)
, (2)

β is the average condensation heat of a single molecule in the units of kBT , T is the absolute temperature
(we can assume here that T is equal to the temperature T0 of the medium), and c is the molecular heat
capacity. The parameter p is determined as

p =
(

m

mg

)1/2
ngcg
nc

, (3)

where ng and cg are the concentration and the molecular heat capacity of the passive gas and m and
mg are the masses of a condensing substance molecule and of a passive gas molecule. Special forms of
renormalizations are inessential; in what follows, only their smooth character is important.

It is now necessary to find the relation between the supersaturation and the ideal saturation at any
arbitrary instant of the nucleation stage, i.e., of the stage at which nuclei of the new phase arise. By the
supersaturation ζ in a system, we mean the ratio of the density of molecules in the metastable phase to
the density of molecules in the phase that are in phase equilibrium at the same temperature. By the ideal
supersaturation Φ, we mean the value of ζ that would exist in the system without taking nuclei of the new
phase into account. In [26], homogeneous condensation was studied using the approximation

Is(ζ) = Is(Φ∗) exp
(

Γ
ζ − Φ∗

Φ∗

)
, (4)

where Φ∗ is the ideal supersaturation at an instant t∗ belonging to the stage of new phase nuclei creation.
This approximation is based on the properties (see the introduction) of the following smooth dependence:
the preexponential factor of the equilibrium distribution and the free energy of the critical nucleus are
functions of the thermodynamic parameters of the system and of the degree of metastability of the original
phase. This approximation is therefore sufficiently general. The parameter Γ is approximately equal to the
number of molecules in the critical nucleus of the new phase and is a large value (under the conditions for
applicability of the capillary approximation). The form of this approximation also holds for the renormal-
izations mentioned above because they are sufficiently smooth. The parameter Γ remains a large value.
The relative variation in the supersaturation ζ at the nucleation stage is then sufficiently small. Now the
supersaturation is also caused by a variation in the vapor molecule density n and by a variation in the
temperature T , which results in a variation in the saturated vapor molecule density n∞ according to the
Clapeyron–Clausius equation

n∞(T ) = n∞(T0) exp
(
β
T − T0

T0

)
. (5)

It is easy to show that variations in n and n∞ cannot be compensated in the expression for the supersatu-
ration. These variations are therefore also relatively small. This permits writing the approximate form of
the supersaturation variation as

∆ζ =
∆n

n∞
+

∆T

n∞

βn

T0
, (6)
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where the variations are deviations from some values indicated by the subscript 0. It is convenient to take
the characteristics of the medium to be these values. Also in this case, the other droplets therefore do not
significantly affect the growth rate for this particular droplet at the nucleation stage.

Renormalization (1) is valid under the “purely free-molecule conditions of substance exchange” [26],
which, in this case, are indicated by the condition ∆ζ < ζ/Γ imposed on the boundary of the incipient
droplet. The left-hand side of this condition is the decrease in the supersaturation because of the vapor
absorption and heat condensation. By an incipient droplet, we mean an nucleus whose linear dimension is
two to three times larger than the critical nucleus. This regime is natural for the near-critical nuclei.2

The existence of nonisothermal condensation effects means that a temperature profile arises around a
growing nucleus of the new phase. To find the temperature profile, along with the diffusion equation

∂n

∂t
= Df∆n, (7)

where Df is the diffusion coefficient, we consider the heat equation

∂T

∂t
= Dt∆T, (8)

where Dt is the thermal conductivity.
In the context of the constructions in [26], it is necessary to use the law describing the growth rate of a

supercritical nucleus of the new phase, i.e., the time variation in the number ν of molecules in the nucleus
of the new phase. A sufficiently precise expression for dν/dt was obtained in [29]. In this case, the relative
deviation of the temperature is determined by the relation

β

k

∆T

T0
= 1 − exp

(
dF

dν
+ β

∆T

T0

)
. (9)

We see that for a supercritical nucleus, the derivative of the free energy F of the nucleus formation at a
fixed temperature is now independent of ν,

dF

dν
→ − log(ζ + 1). (10)

Then the renormalization factor in the growth law becomes independent of ν, and we obtain the old func-
tional dependence established in the nonisothermal situation [26], but with somewhat different parameters.
As a consequence, all the facts given in the section Statements in [26] remain valid.

The next step is to construct the Green’s function formalism for the diffusion and heat equations.
Because the vapor molecule absorption rate is assumed known, the heat release amount βkBTν is also
known as well as the heat release rate. The problems of heat conduction and diffusion are now separated.

In [26], the sharp (time-dependent) profile of the nucleus formation intensity was obtained as a function
of time at a given spatial point (except the points belonging to the domain whose relative volume is suffi-
ciently small). This means that the nucleation rate based on this profile can be approximately represented
as a function proportional to the Heaviside function of a shifted argument. This property cannot disappear
because of a variation in the numerical values of the coefficients in the expressions for the temperature

2The main problem is that the conditions for the critical nucleus are not in equilibrium. The nucleus temperature is
different than that of the medium. In this case, it is possible to study only an analytic continuation of the free energy. This

procedure is justified because the nucleus is quasi-isolated, but, of course, this is an approximate procedure. Precisely this
fact explains why, in contrast to [29], only weak nonisothermal effects were studied in [30].
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profile (the boundary conditions are also absolutely similar), and the nucleation rate based on this profile is
proportional to a step function. The profiles of the nucleus formation intensity based only on the substance
depletion or only on the medium heating are therefore proportional to step functions.

According to approximation (4) for the nucleus formation intensity, precisely the supersaturation profile
is interesting. It follows from (6) that the profile of ζ can be approximately represented as the superposition
of the profiles of n and of T . We thus obtain the superposition of sharp profiles, and the nucleation profile
is a step function. The functional dependence of this profile on ν and on time remains the same, but the
characteristic constants vary. The subsequent considerations in [26] are based only on this property. All
other constructions are absolutely similar.

In [26], the continuous passage to the collective vapor consumption is specified by the functional forms
of the equations for the collective vapor consumption and for the existence of the density profiles being the
same. We have the same situation here. In the integrands, the functions specified by the growth conditions
are also the same. Even if they did not coincide, the desired property could be found based on the first
iteration, which is already sufficiently precise and is free from the crossed influence of the depletion initiated
by different conditions of the substance absorption. This coincidence simplifies the desired approach, which
becomes quite similar to the situation studied in [26].

A generalization of the model to nonisothermal effects is based only on the obvious features of the
description in the continuous model. The same picture is also observed for all other variables (affecting the
nucleation rate) in the description of the nucleus. The role of the parameter T can be played by another
thermodynamic parameter.3 Of course, it is necessary to verify the validity of approximation (4) with a
large and approximately constant value of the parameter Γ.

In what follows, including the nonisothermal effects in the general procedure, we can therefore speak
only about the substance absorption and foresee the possibility of this generalization.

3. Universal spectrum of dimensions

The dynamic conditions are distinguished by the smooth-in-time behavior of the ideal supersaturation,
i.e., by the supersaturation that would be formed in a system in which droplets neither originate nor grow.
The ideal supersaturation is independent of the vapor absorption and heat release and is determined only
by the external conditions. It is natural to assume that the ideal supersaturation is a smooth function
of time. Under the dynamic external conditions with the collective consumption of the metastable phase
substance, the evolution equation can be written (in the framework of one of the models proposed in [26])
in the form

cz − ϕ(z) = A

∫ z

−∞
K(z − x)eϕ(x) dx (11)

with the parameters c and A, the unknown function ϕ(x), and the known function K. The function K is
derived from the growth laws given in [26]. It is known that this equation can be solved by the iteration
method and that the rate of convergence of the iterations depends on the rate of the relative increase in the
function K [28]. We hence study the relative increase in K in our situation. In [26], this problem was solved
under the diffusion conditions for the substance absorption. This yields some known function K, denoted
by Kdiff . By completely similar constructions on the basis of the free-molecule conditions of growth, we
obtain another expression for K, denoted by Kfree. In an arbitrary situation, the relative increase in K(z)

3We note that an analysis of the construction of the expression for the stationary rate of nonisothermal nucleation shows
that any other thermodynamic variable can be used instead of the temperature. The only requirement is that the Clapeyron–

Clausius equation be satisfied approximately and, moreover, for very small deviations of the nucleus characteristics from the
medium characteristics.
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is bounded by two limit cases, namely, by the relative increase in Kfree(z) and by the relative increase in
Kdiff(z). Naturally, this property appears only after the equation is made “dimensionless” [26].

In the case of the power-law growth

dν

dt
∼ να, (12)

the function K has the form

K(y) ∼ (y)(1−α)−1
. (13)

Then the evolution equation can be made completely “dimensionless.” By a simple scale transformation,
we eliminate all the parameters except c in this equation. Choosing t∗ as the instant at which the super-
saturation attains its maximum (z = 0) [21], we obtain the equation

c ∼ 1
1 − α

∫ 0

−∞
(z − x)(1−α)−1−1eϕ(x) dx. (14)

The solution ϕ(z) is independent of the parameters determined by a specific substance and the external con-
ditions. The dimension spectrum f(x) is proportional to e−ϕ(x) and is also independent of the parameters.
Naturally, the dependence on α remains, and we begin to study this dependence.

We can mention a simpler possibility for describing the process, which is based on the first iteration in
the iteration method for solving integral equation (11) (this description method corresponds to one possible
model):

ϕi+1(z) = cz −A

∫ z

−∞
K(z − x)eϕi(x) dx, i = 0, 1, 2, . . . , ϕ0 = cz. (15)

Moreover, the iterations of the dimension spectrum fi(x) are described as fi ∼ eϕi(x), and the number
Ni(z) of droplets is obtained by integrating fi from −∞ to z. The first iteration has the form

ϕ1(z) = cz −A

∫ z

−∞
K(z − x)ecx dx. (16)

The functional in the right-hand side of the evolution equation is monotonic. We hence have N2i+1(z) <

N(z) < N2i(z). We can estimate the accuracy of the iterations because

d
(∣∣Ni(∞) −Ni+1(∞)

∣∣N−1
i (∞)

)
dα

< 0. (17)

A similar estimate also occurs under the general conditions of growth of the new phase particles. Indeed,
if we introduce the characteristic radius Rk of a droplet and the free path length Rfree in a pair (the latter
is divided by the condensation coefficient), then we easily obtain

d
(∣∣Ni(∞) −Ni+1(∞)

∣∣N−1
i (∞)

)
d(RkR

−1
free)

< 0. (18)

Some special calculations under the diffusion conditions4 imply the estimate

N1(∞) −N2(∞)
N2 (∞)

≤ 0.19. (19)

4By these conditions, we mean conditions with some renormalization related to the choice of t∗ according to [28], which
also permits taking the heterogeneous case into account.
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We can see that the first iteration gives a sufficiently precise result under all conditions.
The first iteration can be written as

ϕ1 ∼ cz − eczA1, A1 = A

∫ 0

−∞
K(y)ecy dy (20)

for any choice of the function K. The constant A1 is determined by the fact that the parameter t∗
corresponds to the supersaturation maximum and to the amplitude value of the spectrum:

dϕ1

dz

∣∣∣∣
z=0

= c−A1ce
cz|z=0 = 0. (21)

It follows from (21) that

A1 = 1 (22)

under all the vapor absorption conditions. The dimension spectra for all the vapor absorption conditions
therefore have the form

ϕ ∼ ex−ex

, (23)

and this is a universal function of the natural variable cx.
We now discuss the earlier approaches. In [23], the value of t∗ was chosen separately for each iteration.

Different iterations were thus assigned different choices of t∗, which led to certain difficulties in comparing
the iterations as was necessary for obtaining estimates of the accuracy. In [23], attempts to obtain a
final estimate for the accuracy failed because the approximations constructed there were displaced and
hence the estimate of their upper and lower bounds, obtained according to [28], could not be used. In
the present paper, the choice of t∗ is the same for all iterations.5 The value of t∗ can be determined after
the last (“exact”) iteration is calculated. In other words, the form of the dimension spectra is determined
up to the same displacement of z and x. This displacement can be determined after the last (“exact”)
iteration is calculated. In the first iteration, we obtain the universal form of the spectrum. This result is
sufficiently close to the exact solution of the integral equation (we can obtain a common estimate under
all the vapor absorption conditions if we take into account that the diffusion conditions for droplet growth
are the worst for the convergence of the iterations). In [23], it was assumed that an expression similar to
the second iteration describes the process with sufficient accuracy. As a result, the possible universality of
the spectrum was lost. Moreover, in the paper cited above, only purely free-molecule conditions of vapor
absorption (in the terminology of [26]) were studied.

4. Heterogeneous condensation

The heterogeneous condensation at centers of the same type does not allow any choice of variables in
which the solution is independent of the external conditions and the substance characteristics [27]. At the
same time, it is possible to satisfy a similar requirement for the centers with continuous activity in the case
of power-law droplet growth.

In [27], only the collective regime of the metastable phase absorption was studied. In what follows, we
obtain the evolution equations in the general case. The study of the profile of the vapor density around a
solitary droplet formed at a heterogeneous center is completely similar to the study of the vapor density
around a droplet formed homogeneously [26]. Hence, we can again divide the entire volume into the domain

5The value of t∗ and all the values at an instant t∗ must be considered external parameters in the iteration procedure.
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where the nucleus formation rate is practically equal to the ideal rate (i.e., obtained in the absence of droplet
formation) and the domain where the nucleation rate is negligibly small.

The heterogeneous centers are homogeneously distributed in the system, but they are distributed
inhomogeneously with respect to the depletion domains [26] around the supercritical nuclei. At the center
of each depleted domain, there is a heterogeneous center. All other centers are distributed approximately
homogeneously. Moreover, it is necessary to take into account that the rate of decrease in the degree of
metastability is strongly time dependent, similar to the dependence used to justify the evolution models
in [26]. The nucleus formation intensity is proportional to the number η of free heterogeneous centers and
to the volume W where the nucleation rate is practically unaffected by the vapor absorption by the existing
droplets. To the integral terms in all three models [26], it is necessary to add the number η of the free
heterogeneous centers determined as

η(t) = η(−∞) exp
(
−D

∫ t

−∞
Is(Φ∗) exp

(
Γ
Φ∗

ct

)
(1 −W ) dt

)
(24)

for the first model, as

η(t) = η(−∞) exp
(
−D

∫ t

−∞
Is(Φ∗) exp

(
Γ
Φ∗

ct

)
W dt

)
(25)

for the second model, and as

η(t) = η(−∞) exp
(
−D

∫ t

−∞
Is(Φ∗) exp

(
Γ
Φ∗

ct

)
dt

)
(26)

for the third model. Here, D denotes the known constant depending on the characteristics of the condensing
substance. These equations correspond to the depletion of the heterogeneous centers whose total number
is assumed to be fixed, which is quite natural for a relatively short-term nucleation stage.

For the condensation at the centers of the same type under diffusion conditions, it is necessary to close
the system of equations with the following relations for the first, second, and third models [26] respectively:

W ∼
∫ t

−∞
cv(t− t′)3/2Is(Φ∗) exp

(
Γ
Φ∗

ct′
)

(1 −W )η(t′) dt′, (27)

logW ∼
∫ t

−∞
cv(t− t′)3/2Is(Φ∗) exp

(
Γ
Φ∗

ct′
)
W (t′)η(t′) dt′, (28)

logW ∼
∫ t

−∞
cv(t− t′)3/2Is(Φ∗) exp

(
Γ
Φ∗

ct′
)
η(t′) dt′, (29)

where cv is a constant.
A generalization to the general conditions for nucleus growth can be obtained by replacing cv(t− t′)3/2

with a certain function K(t − t′), which can be constructed as follows. Integrating dν/dt, we find ν(t)
(and t(ν)). This dependence permits selecting a variable y characterizing the droplet, which depends on
ν and whose rate of growth is constant. The variable y for the droplets formed at t = t∗ is denoted by z,
and the variable x is defined as x = z − y. The form of the function K is determined by the dependence
of ν on y. The droplets with the coordinate x were formed at t(x). The droplets formed at t∗ have the
characteristics z at the instant t. Then the correspondence t(z) is established, and the coordinates z and x

become equivalent. The variables z and x play the same role as the variables t and t′.
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These models can be compared sufficiently simply. The procedure is similar to that in the homogeneous
condensation case [26] with only one difference. The third model now corresponds to the final solution of
the second model with the first iteration for W rather than to the first iteration for the second model.

The iteration procedure for the second model with two parameters D and E (the parameter E is similar
to the parameter A1 already considered) can be written as

logWi+1 = E

∫ t

−∞
K(t− t′)Is(Φ∗) exp

(
Γ
Φ∗

ct′
)
Wi(t′)ηi(t′) dt′, (30)

ηi+1(t) = η(−∞) exp
(
−D

∫ t

−∞
Is(Φ∗) exp

(
Γ
Φ∗

ct

)
Wi dt

)
, (31)

η0 = η(−∞), W0 ∼ 1. (32)

An analysis of this procedure shows that as D → 0, it is included in the corresponding iteration scheme for
homogeneous condensation. We can see that the derivative satisfies the inequality

d
(∣∣N2(∞) −N3(∞)

∣∣N−1
3 (∞)

)
dD

< 0 (33)

or is sufficiently small in absolute value, which estimates the error of the iteration procedure just as in the
homogeneous case. We note that an extremely weak violation of inequality (33) is possible, which does not
result in significant effects. The first iteration has the form

− logW1 ∼ exp
(

Γ
Φ∗

ct

)
R, (34)

η1 = η(−∞) exp
(
−DIs(Φ∗)

Φ∗
Γc

exp
(

Γ
Φ∗

ct

))
, (35)

where the parameter

R = E

∫ 0

−∞
K(−t′)Is(Φ∗) exp

(
Γ
Φ∗

ct′
)

dt′η(−∞) (36)

is constant.
The dimension spectrum f(x) in the first approximation is given by the formula

f1 = W1η1Is(Φ∗) exp
(

Γ
Φ∗

lx

)
∼

∼ η(−∞) exp
(

Γ
Φ∗

lx−Q exp
(

Γ
Φ∗

lx

)
+ R exp

(
Γ
Φ∗

lx

))
, (37)

where the parameters l and Q are determined by the expressions

l =
dΦ
dz

∣∣∣∣
t=t∗

, (38)

Q = DIs(Φ∗)
Φ∗
Γc

. (39)

This iteration approximation takes the depletion of the heterogeneous centers into account only in the
renormalization, which distinguishes relation (37) from the similar relation in the homogeneous case.
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In the heterogeneous case, it is impossible to treat t∗ as the instant of the supersaturation maximum
because the depletion of the heterogeneous centers can result in droplet formation without any decrease in
the supersaturation. In this case, t∗ is taken to be the time when half the entire amount of droplets has
already formed.

If we use the modified expression

fi = Wi−1ηiIs(Φ∗) exp
(

Γ
Φ∗

lx

)
, i = 2, (40)

for f , then there are no difficulties in calculating the number of droplets. Because ηi can be found analyti-
cally, it is also possible to calculate

∫
fi dx analytically,

∫ t0

−∞
Wi(t)Is(Φ∗) exp

(
Γ
Φ∗

ct

)
exp

[
−DIs

∫ t

−∞
exp

(
Γ
Φ∗

ct′
)
Wi(t′) dt′

]
dt ∼

∼ 1
D

[
1 − exp

[
−D

∫ t0

−∞
Is(Φ∗) exp

(
Γ
Φ∗

ct′
)
Wi(t′) dt′

]]
, (41)

which corresponds to the balance equation for heterogeneous centers. Then the integral of the dimension
spectrum can be written as ∫ t0

−∞
f(t) dt ∼ η(−∞) − η(t0). (42)

In the second approximation, the dimension spectrum is given by the formula

f2(t) = W1η2Is(Φ∗) exp
(

Γ
Φ∗

ct

)
. (43)

After the renormalization Γct/Φ∗ → t, we obtain

f2 ∼ Is(Φ∗)ete−Ret

η(−∞) exp
[
−D

R

Φ∗Is(Φ∗)
Γc

[
1 − e−Ret]]

. (44)

The displacement y = t + logR implies

f2 ∼ Is(Φ∗)
R

η(−∞)eye−ey

exp
[
−∆[1 − eey

]
]
, (45)

where

∆ ≡ D

R

Φ∗Is(Φ∗)
Γc

. (46)

It seems possible to take the instant of the maximum nucleation intensity (but not of the supersaturation
maximum) to be t∗ and to thus obtain a relation for ∆. In this case, the value of ∆ would be expressed only
in terms of numerical constants, and the form of the spectrum f2 would be independent of the process pa-
rameters. But the displacement introduced in passing to y does not allow any further displacement required
by the choice of t∗, and it is therefore impossible to obtain the universal spectrum of dimensions. Once
again, this fact is illustrated by the expression for the total number of droplets in the second approximation

Ntot 2 ∼
∫ ∞

−∞
f2(t) dt ∼ η(−∞)

[
1 − exp

[
−DIs(Φ∗)

Φ∗
Γc

1
R

]]
, (47)
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which contains a dependence on the parameters.
We now study the nucleation process for the continuous spectrum of heterogeneous center activity. It

is possible to describe the heterogeneous center activity by the parameter w contained in the expression for
the probability of droplet formation at a heterogeneous center,

Is = I+e
w exp

(
Γ
Φ∗

ct

)
η(w, t), (48)

where I+ is the base amplitude of the spectra. The variable η(w,−∞) plays the role of the density of the
distribution of the total number of heterogeneous centers with respect to activity. We assume that in the
range of activities important for the nucleation, this variable depends on w rather weakly.

The evolution equation in the second model under the diffusion conditions becomes

−dW

dt
∼ 3

2

∫
dw I+e

w

∫ t

−∞
cv(t− t′)1/2W (t′) exp

(
Γ
Φ∗

ct′
)
η(w, t′) dt′ W (t). (49)

Integrating this equation together with the equation for η, we obtain the system of equations

F =
∫

dwPew

∫ t

−∞
(t− t′)3/2et′−F θw dt, (50)

θw = exp
[
−Bew

∫ t

−∞
et′−F dt′

]
, (51)

where

B = I+
Φ∗
Γc

, P =
(

Φ∗
Γc

)5/3

η(w,−∞)I+cv, (52)

for the functions F = − logW and θw = η(w, t)/η(w,−∞) depending on the variables w and t → tΓc/Φ∗.
We first choose the reference point for t and w. Because the number of heterogeneous centers is

unbounded, we can take t∗ to be the instant of the supersaturation maximum. The reference point for
w is chosen from the condition θ(w = 0,∞) = 1/2. Under this choice, we obtain the expressions for the
constants P and B:

P =
[ ∫

dw ew 3
2

∫ 0

−∞
(−t′)1/2et′−F (t′)θw(t′) dt′

]−1

, (53)

B = log 2
[∫ 0

−∞
et′−F (t′) dt′

]−1

. (54)

Obviously, the variables P and B become independent, and the system does not contain parameters. The
solution also does not contain parameters. The droplet distribution as a function of the variables t and w

has the form

f ∼ et−F (t)θw(t) (55)

and depends on the substance absorption conditions.
These relations are similar to the relations obtained as a result of formally generalizing the growth law

in the model of the collective substance absorption. This fact ensures a natural inclusion and a continuous
passage to the solutions obtained under the purely free-molecule conditions of substance absorption [26].

885



We also note that the regularization is dimensionless in the study of the condensation in the case of
the continuous spectrum of heterogeneous centers. Indeed, it is possible to take θw1(t = −t00) as the initial
value (t00 ∼ 5 is not a parameter; it is only the universal dimension of truncation). We then have

θw1(−t00) = e−Bewe−t00
. (56)

Taking this initial condition into account, we obtain

F =
∫

dw Pewe−Bewe−t00

∫ t

−t00

(t− t′)3/2et′−F (t′)θw(t′) dt′, (57)

θ = exp
[
−Bew

∫ t

−t00

et′−F (t′) dt′
]

(58)

with the same parameters. For P and B, we have other expressions, namely,

B = log 2
[∫ 0

−t00

et′−F (t′) dt′
]−1

, (59)

P =
[ ∫

dw ewe−Bewe−t00 3
2

∫ t

−t00

(t− t′)3/2et′−F (t′)θw(t′) dt′
]−1

. (60)

We stress that the value of the regularization parameter t00 ∼ 5 already appears after the renormalization
and the displacement of t toward the instant of the maximum supersaturation. This analysis can be used
under all the droplet growth conditions.

All the dependences obtained are exact under the natural assumption that νc → ∞ (here νc is the
number of molecules in the critical nucleus). They do not contain any parameters of the substance and of
the external conditions. We can therefore say that the spectra of droplet dimensions have identical forms.
But they still depend on the substance absorption conditions. We now derive an approximate form of the
dimension spectra for the new phase nuclei that is the same under all conditions.

We now construct the system of equations under arbitrary nucleus growth conditions. For this, we
replace cv(t−t′)3/2 with K(t−t′). The rate of increase in the function K with time turns out to be bounded
below by the diffusion conditions and bounded above by the free-molecule conditions. These estimates can
be obtained by analyzing the Boltzmann equation.

The system of condensation equations has the form

F =
∫

dwA0e
w

∫ t

−∞
K(t− t′)et′−F (t′)θw(t′) dt′, (61)

θw = exp
[
−Bew

∫ t

−∞
et′−F (t′) dt′

]
, (62)

where

A0 =
Φ∗
Γc

η(−∞)I+ (63)

and the factor arising after the renormalization is included in K. The iteration procedure is determined by
the relations

Fi+1 =
∫

dwA0e
w

∫ t

−∞
K(t− t′)et′−Fi(t

′)θwi(t′) dt′, (64)

θw i+1 = exp
[
−Bew

∫ t

−∞
et′−Fi(t

′) dt′
]
, (65)

F0 = 1, θw1 = 1. (66)
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In reality, to calculate the iterations, it is expedient to regularize the total relative number θw tot of
heterogeneous centers,

θw tot = e−Qew

, (67)

where

Q ∼ Be−t00 . (68)

We then have

F1 = Set (69)

with the constant parameter

S =
∫

dwA0e
−A1ew

ew

∫ ∞

0

K(ρ)e−ρ dρ

and

θw2 = exp
[
−Bew 1

S

(
e−Set00 − e−Set)]

. (70)

The parameter S contains some information about the droplet growth conditions. Under a special choice
of t = 0 and w = 0 in the second approximation, we have

S = 1, B =
log 2

e−e−t00 − e−1
. (71)

In this case, the expression for the spectrum of droplet dimensions, which has the form

f(w, t) ∼ A0e
wet−Set

exp
[
−Bew

∫ t

−∞ (−t00)

et′−Set′

dt′
]
, (72)

does not contain any parameters,

f

max(t) f
∼ ewet−et

exp
[
− log 2
q − e−1

ew
(
q − e−et)]

, (73)

where q = 1 or q = e−e−t00 .
Some estimates of the accuracy of the second iteration can be obtained similarly to those already

considered. This analogy is based on the absence of crossed effects of center depletion in the second iteration
approximation. It follows from estimate (19) that the crossed depletion effects are sufficiently weak. It can
then be seen that the dimension spectra are also similar in the case of heterogeneous condensation.

A similar argument can also be used to study the condensation at heterogeneous centers of the same
type. Indeed, it follows from (19) that the second iteration is already sufficiently precise. But the number
of droplets in the second iteration is just an integral of the dimension spectra in the first approximation,
which, as shown above, is independent of the parameters. This property can be established for each w.

It is possible to show that for the variables in which the equations are dimensionless in the homoge-
neous case, the form of the dimension spectrum varies from the first iteration to the exact solution in the
homogeneous case as the portion of centers depleted in the condensation process increases. In an arbitrary
situation, the form of the dimension spectrum is bounded above and below by the exact solution in the
homogeneous case and by the first iteration, which are sufficiently close to each other. This permits speak-
ing about a relative similarity of the spectra for different values of the degree of depletion of heterogeneous
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centers.6 Therefore, the spectra in the process of condensation at heterogeneous centers of the same type
are also similar and independent of the conditions of the substance absorption by droplets.

We return to the condensation at heterogeneous centers with an activity spectrum. We now know
that all the functions fw(x) ≡ f(w, x) (as functions of x) have approximately the same form. This form
varies continuously from the form of the first iteration for w � 1 to the form of the exact solution (if it
is possible to speak about the exact solution) for w 	 1, i.e., the form of the function fw (as a function
of x) is always bounded by the exact solution and the first iteration, which means that this form remains
practically the same. Starting from the form of the spectrum in the first approximation f ∼ f∗e

cx−ecx

, we
can speak about the amplitude f∗ and about the half-width 1/c. We then note that the half-width is the
same for all fw. The amplitude also does not vary as w → −∞ and decreases as e−w as w → ∞. It remains
to describe the dependence of the position of the maximum on w. As w → −∞, it is proportional to w; as
w → ∞, it remains constant and corresponds to droplets arising at t = t∗. Therefore, its separate parts in
the spectrum f(w, x) are also similar to each other. Different sections fw reproduce each other.

The same idea can also be used to study the kinetics of decay of the metastable phase. In this case,
the rectangular approximation is used as the central approximation of the spectrum. Precisely as under
the dynamic conditions, this approximation is the formal limit as the power in the integral term in the
substance balance equation tends to infinity. In the language of free volumes [26], this means that W varies
instantaneously from 1 to 0. The formal generalization of the models is quite similar to that in [26].

5. Condensation in inhomogeneous systems

We can now use the theory to study the stationary process of condensation in inhomogeneous systems.
Widely known examples of such systems are condensation in the atmosphere and condensation in a diffusion
chamber. For simplicity, we study an inhomogeneous system in the form of a diffusion chamber [31]. Earlier,
the theory was constructed only for collective substance absorption [32], which cannot occur in a diffusion
chamber.

We study the vapor absorption by a single droplet. We do not consider thermal effects; they are similar
to those studied above. The ordinate axis is denoted by h, and the Stokes law is used for the stationary
particle velocity,

(
dh

dt

)
st

= V0ρ
2 (74)

with the characteristic constant V0, where

ρ = ν1/3 (75)

and ν is the number of molecules in a droplet.7 The variable ρ is the linear dimension of a droplet. It is
possible to show that the stationary approximation can be used for the droplet velocity in the majority of
cases.

We first consider the free-molecule conditions of substance absorption, which permits considering both
the case where the density profiles exist and the case where they do not exist. We can write the growth
rate as

dν

dt
= V1ρ, (76)

6It is possible to show that the spectrum is bounded above by the exact solution if there is no depletion of centers and
bounded below by the first iteration.

7The theory can also be constructed if the law of droplet motion differs from the stationary law.
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where V1 is a constant. (In what follows, all known constants whose calculation can be reduced to algebraic
transformations are denoted by the symbol V with some subscript.) We then obtain the relation

dh

dt
= V2

dν

dt
(77)

or
dν

dh
= V −1

2 . (78)

In the study of vapor absorption by a single droplet, we can assume that there is approximately no nucleation
in some domain of cylindrical form and that the nucleation outside this domain is unaffected. Moreover,
we can use the expression for the nucleation rate known from classical nucleation theory. In this case, the
nucleation rate is used in the probability interpretation.

It follows from (78) that the diffusion is small with respect to h because the vapor absorption intensity
per unit path of the droplet remains the same for the entire evolution process. Instead of studying the
three-dimensional case, we can then solve the problem on the plane. The diffusion from the bottom of
the cylinder exists, but its effect is negligible (the bottom corresponds to the instant of formation of an
essentially supercritical nucleus, which begins to grow regularly). The radius of this cylinder can be obtained
using the Green’s function formalism. In fact, we need not know this radius because the profile spreads with
time because of diffusion. We thus obtain the case of collective vapor consumption in which the influence
of the profile is negligible. We must recall here that the functional form of the evolution equation for the
second model and the equation for the collective substance absorption are similar, which permits obtaining
the form of the spectrum of droplet dimensions. We must also take the integral character of the definition
of the depleted domain boundary into account [26]. Therefore, we can speak formally about the depletion
domain boundary and about the collective character of the vapor absorption.

We study the global evolution of the system. All the functions now depend only on h. The intensity
jdh of the vapor absorption on a sufficiently short interval dh is known [27] and has the form

j ∼
∫ z

−∞
eV4(n(x)−nid∗) dx, (79)

where n is the molecular density of the condensing substance, nid is the unperturbed value of n, and ∗
indicates a certain spatial point similar to the instant t∗. In relation (79), the integrand is the nucleus
formation rate, whose functional behavior can be approximated by an expression of form (4). Then the
right-hand side of the last expression contains the total number of droplets that have formed before the
height z is attained. As shown above, all of them consume vapor at the same intensity per unit path (but,
of course, they move at different velocities).

We can show that the main consumers of the vapor are supercritical nuclei, i.e., droplets. We can also
show that the quasistationary approximation of the nucleus formation rate can be used in the case where
this is actually necessary.

Because the diffusion equation is linear, we can write it directly for the deviation ∆n of the density n

from the unperturbed value nid. In the study of the metastable substance consumption by a single nucleus,
the diffusion with respect to h is not taken into account. In the study the global evolution, it is necessary
to use other scales of lengths and characteristic times. The diffusion in the horizontal plane occurs on the
level of the description of vapor absorption by a single droplet, but in the study of the behavior of the
entire system, there is no diffusion in the horizontal plane, which corresponds to the case of homogeneous
boundary conditions in this plane. The stationary diffusion equation can be written as

Dl
∂2∆n

∂h2
= −j, (80)
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where Dl is the diffusion coefficient. After two integrations8 with the asymptotic expansions as n → nid

and with ∂n/∂z → ∂nid/∂z as x → −∞, we obtain

∆n = −V5

∫ z

−∞
(z − x)2eV6(n(x)−nid ∗) dx. (81)

Because V6nid ∗ 	 1, we can show that the relative dimensions of the domain of the intensive nucleus
formation in the diffusion chamber are sufficiently small. In this connection, we can consider only the
linearization9

nid = nid ∗ + V7z (82)

for nid. By changing the scale, we can make the coefficient V7 be equal to 1.
Substituting (82) in (81), we obtain the equation already studied in [27] for the power two in the homo-

geneous limit; this equation was considered in the preceding sections. Therefore, all the above conclusions
also hold here.

We now describe the condensation approximately in a more general situation. Previously, we studied
the free-molecule conditions, which led to formula (77). We now consider the opposite conditions, i.e., the
diffusion conditions, which permit studying all possible conditions of substance absorption and estimating
the errors. In this case, we have

dρ

dh
=

V8

ρ
(83)

and
dν

dh
= t−1/2 = h−α, α =

1
4
, (84)

or
(dν/dh)h=ha

(dν/dh)h=hb

=
(
hb

ha

)α

. (85)

To obtain these formulas, we use the stationary Stokes law for the droplet velocity. Expression (74) is an
approximation. If there are deviations from the stationary conditions, then the velocity is bounded below
by this expression. The absorption cylinder no longer has a constant section; its radius r0 depends on h as

(dr0/dh)h=ha

(dr0/dh)h=hb

=
(
hb

ha

)α/2

(86)

(without the vertical diffusion taken into account). The small value α/2 permits using the quasistationary
approximation and neglecting the vertical diffusion. All conclusions remain valid, and we obtain a descrip-
tion similar to that of the nonstationary condensation in a homogeneous system. Instead of the power two
in integral relation (81), we obtain the power 3/2 recalling the condensation in the homogeneous case. The
first iteration in this case sets the foundation for more precise expressions.

We consider the scope of the model considered above. The stationary conditions can be observed only
for the fog-type condensation. This means that the elementary volume must contain many droplets. We
determine the dimensions of this volume. After the spectrum parameters are found, we can determine the
dimension h0 of the domain of intense nucleus formation. This dimension yields the characteristic time t0

8The role of the variables z and x is similar to their role in the preceding calculations. Now z is identified with the
current value of h.

9Because V6 is sufficiently large (of the order of Γ/Φ∗nid∗), the dependence on relative variations in the molecular density
is significant, and we cannot assume that nid is constant.
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during which a droplet exists in the domain under study. Then the characteristic horizontal dimension is
equal to

√
Dlt0, which leads to the volume V0 = h0Dlt0. The number of droplets in this volume must be

large. If the number of droplets in this volume is N , then the fluctuations are estimated as ∼
√
N . It is

desirable that the relative weight of fluctuations be less than the errors of the second iteration.
The similarity of the forms of the spectra shows that small fluctuations cannot significantly affect the

characteristics of the condensation process. The situation is similar to that in the case of nonstationary
condensation in a spatially homogeneous system, where the influence of microscopic corrections to the free
energy is significant.

6. Conclusions

The above consideration is based on the assumption that the forms of the spectra of droplet dimensions
are the same in different situations. This assumption permits both deriving systems of equations for the
condensation kinetics and obtaining concrete results.

In the case of collective vapor absorption, the construction of the system of equations is independent
of the form of the dimension spectrum. If the density profiles exist, then the situation is different, and the
fact that the spectra are the same in different models plays an important role in their justification [26].
Analytic results show that the solution of the homogeneous system (or the second model) and of the first
iteration (or the third model) are close to each other. This is illustrated in Fig. 1, where the forms of the
dimension spectra are presented for different powers in the integral terms of the balance equations. Curve 1
corresponds to the power three, curve 2 corresponds to the power 3/2, curve 3 corresponds to the analytic
solution in the case of the power one, and curve 4 shows the form of the first iteration. The ordinate axis
is the ratio of the distribution of p to its maximum value pmax. The abscissa axis is the deviation x of the
dimension linearly increasing with time from the value corresponding to the distribution maximum (this
deviation is measured in units of the distribution half-width).
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The general character of the laws established above permits considering a weak dependence of the
results on microscopic corrections to the free energy [27] a general feature of first-order phase transitions.

The equations (and hence the solutions) in the case of stationary condensation in an inhomogeneous
system and in the case of nonstationary condensation in a homogeneous system are the same. This permits
considering the nonstationary condensation in an inhomogeneous system a simple superposition of the cases
already described. A similar superposition was already studied for the multicomponent condensation [33].

Theoretically calculating the form of the spectrum of the new phase nuclei permits finding this function
experimentally. For this, it suffices to measure only the linear dimensions of droplets at some instant and to
find the dependence of the linear dimension on time. It is then easy to determine the new variable as a func-
tion of the linear dimension (whose rate of variation is constant in time) and to recalculate the distribution
function with respect to the linear dimension as the distribution function with respect to this new variable.
Precisely this function must have the universal form obtained in this paper. Technically, performing such
experiments is simpler than performing the now classic experiments of observing the stationary nucleation
rate, in which it is necessary to ensure that the metastable phase appears and disappears instantaneously
for the system to be stationary during the nucleation period. The fact that there are no experimental data
concerning the process described in the present paper can be easily explained: in this case, the experiment
would give fragmentary information, which is in no way related to the properties of the substance. An
efficient study of this information is impossible without theoretical investigations.
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Abstract

The full theoretical analysis of the kinetics of multicomponent nu-
cleation is presented. The relief of the free energy with surface excesses
was analyzed, the valleys and ridges were described, their mutual in-
teraction was studied. The new possibility to change the valley of
nucleation is shown. The possibility to have one common valley in-
stead of several neighbor ones which leads to the radical change in the
height of the effective activation barrier and to the new value for the
nucleation rate.

Introduction

Historically the problem of determination of the stationary rate of nucleation
was primary investigated in one-dimensional approximation [1], [2]. The
unique variable characterizing an embryo of a new phase was a number of
molecules inside the embryo. Meanwhile, it is evident that the embryo has at
least several characteristics, which have to be taken into account to give the
adequate description of the nucleation process. That’s why it is necessary
to study the description of the nucleation process on the base of several
characteristics of the embryo.

One can not pretend to take into account all characteristics of an embryo
and to give the nucleation description on the base of all embryo characteris-
tics. The kinetic aspects of the embryo formation are also far from clear inter-
pretation. Even the mathematical structure of the theory of multi-dimension
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nucleation is far from complete understanding. So, it is worth to start with
the simple cases of multidimension description.

The simplest and the most evident example of multi-dimension descrip-
tion is a multicomponent nucleation. It means that the nucleation in mixture
of vapors is studied. Here kinetic coefficients are determined extremely clear,
the free energy of the embryo is also rather well known in general features.

The history of investigations of the binary nucleation is very rich. The
number of publications concerning the binary nucleation is now greater than
devoted to other domains of the nucleation theory. But already in the case
of binary nucleation there appear many problems to solve. So, it is worth
paying attention namely to multicomponent nucleation.

Until nowadays there is still no universal self consistent analytic approach
which makes use of all previous theories or directly shows their errors. This
task will be the goal of the present paper.

At first one has at least to mention approaches, which pretend to give
original recipes for the stationary nucleation rate. Certainly, the classical
expression for the free energy given by the standard thermodynamics has
to be the starting point of a theory. In our analysis we ignore approaches
suggesting some artificial correction terms or some reconsiderations without
a solid thermodynamic base.

The microscopic corrections to the free energy given by classical thermo-
dynamiocs [3], [4] are not the subject of our investigation, we consider only a
task to describe nucleation at the relatively low supersaturations. Even this
question is out of a true solution. We do not consider a normalising factor
in an equilibrium distribution which evidently appear in the expression for
the nucleation rate. This will be a subject of a separate investigation.

The first essential contribution to establish the binary nucleation rate
was made by H.Reiss [5] who determined the rate of nucleation on the base
of a steepest descent line in a near critical region. Solution of a kinetic
equation presented by Reiss was corrected by Stauffer [6]. In the last paper
the correct formula for the rate of nucleation in the square approximation of
the free energy in the neighborhood of the critical embryo was given. Earlier
the general ideas for the problem of overcoming the activation barrier in the
multicomponent case were formulated by Langer [7] but one can not state
that the publication [6] is a direct consequence of [7]. One has to stress that
the constant direction of a flow in a neighborhood of the critical point was
simply postulated in [6]. This constancy can be proven only with the help of
the boundary conditions which was done in [8] where direct solution of the
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kinetic equation was presented.
As it became clear after the solution of Trinkaus [9] the problem to deter-

mine the nucleation rate requires to decide whether the transition over the
barrier really occurs at the critical point ( the saddle point - here and later
the critical point means the coordinates of the critical embryo). When there
is a strong hierarchy between kinetic coefficients of absorption of different
components one can see that flow of embryos can pass aside the critical re-
gion (the region near the critical point), but over the ridge far from critical
point.

Solution of Stauffer implies the square approximation of the embryos
free energy near the critical point. Solution of Trinkaus implies the linear
approximation of the height of special activation barrier. But as it will be seen
later there is no contradiction between approximations - both are suitable in
corresponding situations.

Further analytical progress is associated with the appearance of many
variations. Among them one can outline the refined Stauffer’s solution pre-
sented by Berezhkovski and Zitserman [10] and conception of the genuine
saddle point proposed by Li et al. [11]. One has to stress that these contri-
butions did not radically change the already known formulas for nucleation
rate but slightly corrected some known results. In this context it is also
necessary to mention the publications of Shi and Seinfeld [12] and Wu [13].

Here we do not analyze the theories connected with the reconsidered
free energy of the embryos formation taking their history from the famous
publication of Lothe and Pound [14] and modifications of this approach to
the case of multicomponent nucleation. Any new expression for the free
energy will cause the new value of the nucleation rate but the mathematical
structure of the derivation of the nucleation rate remains the same.

In the middle of 1990-ies the serious set of attempts to analyze the binary
nucleation problems was presented in [15], [16].

In the last years one can outline the publications which analyze the same
problems which have been already mentioned. The problem of boundary
conditions was revised in publication of Wilemski and Fisenko [17]. The
authors put the natural boundary conditions directly at the boundaries of
a whole pre-critical region where these conditions are evident. But then it
is necessary to solve the kinetic equation in the whole pre-critical and the
near-critical region which was done in [17] only numerically.

The set of papers by Li, Nishioka, Maksimov [11] is devoted to give the
definition of the generalized saddle point which can be used both in the
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situation where the flow goes over the standard saddle point and in the
situation of hierarchy where the solution of Trinkaus [9] takes place. This idea
is certainly attractive but as it will be shown in this publication sometimes
the nucleation occurs in a more complex way and can not be described in
terms of the genuine saddle point even approximately. Moreover, the point
of the Trinkaus’ solution depends not only on the free energy but also on the
derivatives along special directions.

The problem of transition of the binary case to the unary one was studied
in [18] where the full analysis of this problem was given. Here we are not
interested in this transition because the embryo with one molecule of a rare
component can not be considered on the base of a standard thermodynam-
ics in an approximation of a homogeneous liquid which is adopted in this
publication.

Here we do not analyze numerous publications which combine the stan-
dard known approach with some artificial additions. Such combinations are
rather typical for publications of Djikaev with coauthors (see, for example,
[19]). In [19] the values of kinetic coefficients from the first passage time
analysis are formally injected in the standard solution presented in [20] and
the final formulas are presented. One has to mention that the first passage
time analysis is based on some unknown characteristics (for example, the
height of activation barrier for a molecule to penetrate inside the embryo)
which can not lead to concrete results.

All mentioned publications in the binary nucleation do not make any
profit from the topology of the relief of the free energy of the embryo. This
task was solved in [20] where the structure of relief of the free energy in
the capillary approximation was studied. It was shown that the relief of the
free energy can be characterized as the straight channels, ridges and saddle
points. In this publication the results of [20] will be widely used.

The formulation of the capillary approximation faces the difficulty known
as the Renninger-Wilemski’s paradox [21], [22]. Because of publications by
Oxtoby and Kashiev [24] the thermodynamic background of the surface ex-
cesses is completely studied. To overcome this difficulty one has to write the
Gibbs’ absorption equation and to introduce surface excesses of components
of the surface of tension. This leads to the difference of concentration in the
surface layer and in the bulk of the embryo which was noted in [20]. But
there further conclusions for kinetics of the process have not being made.

The structure of the free energy relief with surface excesses was investi-
gated in [23] but only in thermodynamic aspects of the problem. The kinetic
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features have not been considered in [23].
In [8] the kinetic equation was solved in the neighborhood of the critical

embryo. The progress achieved in [8] was the appropriate formulation and
account of boundary conditions. Certainly earlier the boundary conditions
were mentioned in [9] but they were put in the infinitely far points where the
structure of a free energy can not be seen in all details. Namely the necessity
to conserve the boundary conditions at the low boundary of a near-critical
region determines the conservation of the square form of the free energy in
transformation presented in [8].

Having summarized the development of theoretical investigations in the
binary nucleation one can state that despite the essential progress in this
field there are still many problems to consider.

It is rather natural to construct the global picture of the nucleation in-
cluding the case of the hierarchy between kinetic coefficients, surface excesses,
etc. The unification of the free energy topological features with the already
mentioned approaches is the main goal of this publication. This approach
leads to many rather essential features of nucleation presented below. More-
over, some striking features changing the rate of nucleation in the order of
magnitude will appear.

The structure of this paper is the following

• In the first part the main ideas of the capillary approximation are
formulated and the free energy is constructed. Here the surface excesses
are taken into account. The variables providing the simple form of
the free energy are shown and their connection with the numbers of
molecules in the embryo is established.

• The second part is devoted to the description of the near-critical region.
It is shown that this region has the form similar to the case of the
absence of the surface excesses. Here the hierarchy of evolution will be
shown.

• The third part is devoted to the analysis of the Reiss’ solution and
the Stauffer’s one. The plausible way to see the Reiss’ formula will be
shown. The moderate value of the difference between the Reiss’ and
the Stauffer’s solution is justified. This is important for the possible
ignorance of the slow or rapid variables of correcting order.

• The forth section analyzes the jump of the embryos from one channel
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to another one. The situation of the near-equilibrium falling transition
is considered here. The solution is found also in the discrete model.

• The fifth section considers the conception of the common valley. The
equilibrium common valley transition is analyzed. It will be shown the
new height of activation barrier. This value seriously differs from all
known results.

• The sixth section analyzes the general picture picture of the nucleation
rate formation. The case of the equilibrium saturation of the destina-
tion valley is studied.

• All results are summarized in the conclusion.

1 Thermodynamic basis

1.1 Capillary approximation

The main object involved in determination of the nucleation rate is the free
energy of the isolated embryo. To give the description of the embryo one
has to fix the variables of the state of the embryo. Assuming the thermal
equilibrium of the embryo one can describe the embryo only by the numbers
of molecules νi inside the embryo. These variables are extracted by following
properties

• In elementary acts of evolution νi are changed separately. The step of
change is one unit.

• Although the free energy even in capillary approximation is not diago-
nal the form of expression for the free energy is relatively simple.

In the capillary approximation the energy F ordinary taken in the thermal
units is the sum of the bulk part B and the surface part Ω.

F = −B + Ω

The ordinary expressions for B and Ω are following

B =
∑
i

νiµi
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Ω = γS

Here the sum is taken over all components of the embryo, µi are the differ-
ences of the chemical potentials counted from the equilibrium values (with a
negative sign), S is the square of the surface of tension, γ is the renormalized
surface tension.

The difference between the precise value of the free energy and the value in
the capillary approximation referred as ”correction terms” (c.t.) is supposed
to be relatively small in comparison with B + Ω. This situation takes place
when the number of molecules

νtot =
∑
i

νi

inside the embryo is very (strictly speaking infinitely) big

νtot ≫ 1 (1)

The inverse number of molecules (i.e. ν−1
tot ) will be the small parameter of

the theory. So,
F = −B + Ω + c.t.

where c.t. indicates correction terms with a property

|c.t.| ≪ |F |

Ordinary the decomposition of correction terms on inverse radius r−1 of the
embryo converges and F has the form

F = −B + Ω +
∞∑

k=−1

ckr
−k + c0 ln r

Here ck are the coefficients. One can also consider the last decomposition as
an asymptotic decomposition. We shall accept the validity of this decompo-
sition.

Ordinary this decomposition is taken with a finite number of terms

F = −B + Ω +
1÷2∑
k=−1

ckr
−k + c0 ln r (2)

From the last decomposition it follows

|d c.t.| ≪ |dF |
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The last inequality is important in the justification of the linearization of the
free energy.

While speaking about the capillary approximation one has to imply a
whole set of assumptions beside the pure thermodynamic consideration. There
are several ordinary used approximations included into the capillary approx-
imation. These approximations are the following

• The surface tension is attributed to the dividing surface calculated on
the base of the volume separation, i.e.

S = (
∑
i

viνi)
2/3

where vi are the volumes in a liquid phase. The formal factor 4π/(4π/3)2/3

is ordinary included into the effective surface tension.

• Values vi, γ are taken from the case of a bulk liquid.

• To give expressions for µi one has to use some model. The most widely
used model is the model of a liquid solution. The validity of this model
requires

νi ≫ 1

for every component. Certainly one can use other models and ignore
these limitations. When νj = 1 for some component, one can consider
this component as a heterogeneous center. That’s why the extension
of the approximation of the regular solution up to νi = 1 in [18] causes
questions.

In this paper we shall use the model of solution.

To give a formula for chemical potential one can define a supersatura-
tion as

ζi =
ni
ni∞

where ni is the molecular number density in the existing vapor and ni∞
is the molecular number density of the vapor saturated over the pure
bulk liquid of component i with a flat surface. Then

µi = ln(ζi) − ln ξi − ln fi({ξ})

Here it is supposed that the vapor is an ideal gas which gives the value
for the first term in the r.h.s. as ln(ζi). Ordinary it is assumed that the

8



concentrations ξi form a set {ξ} of concentrations and the coefficients
of activity fi can depend on the whole set of activities.

For approximation of ideal solution all coefficients

fi = 1

To know fi one has to construct some model of solution or to use some
experimental data.

• A special question concerns the definition of concentration. Ordinary
the concentration is determined as

ξi =
νi∑
j νj

(3)

Sometimes this definition is also included into the ordinary auxiliary
approximations of the capillary approach.

This question is directly linked with the Wilemski-Renninger’s paradox
[21].

All assumptions made above are necessary for formula for the free energy
in capillary approximation.

The presented formula for the free energy is rather transparent, but it
faces the difficulty known as the Wilemski-Renninger’s paradox. The diffi-
culty is the following:

• It is known that in the critical embryo the Kelvin’s relation

µi
vi

= invariant

has to be observed. This follows from the general thermodynamics and
from the sense of chemical potentials.

The last relation gives an equation for the concentration in the critical
embryo.

• One can come to the same equation on concentration also by direct
differentiation of expression for the free energy. For simplicity assume
that vi do not depend on concentration. This gives

∂F

∂ξi
= 0
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i.e.

0 = −µi −
∑
j

∂µj
∂νi

νj +
2

3
γ(

∑
j

vjνj)
−1/3vi + S

∂γ

∂νi

Here it is supposed that vi do not depend on concentration.

One has to recall that the coefficients of activity fi satisfy the Gibbs-
Duhem’s equations ∑

i

ξidµi = 0

which put a restriction on the coefficients of activity.

∑
i

ξid ln fi = 0

Moreover the Gibbs-Duhem equation can be written as

∑
j

∂µj
∂νi

νj = 0

Then the differentiation becomes very simple and leads to

∂F

∂ξi
= 0 = −µi +

2

3
γ(

∑
j

vjνj)
−1/3vi + S

∂γ

∂νi

Then one can come to the widely known Kelvin’s equation only if the
derivative ∂γ/∂ξi is zero. So, the formal recipe is to forbid the differen-
tiation of the surface tension on concentration. Since the last equation
comes from the foundations of thermodynamics it means that some-
thing is irrelevant in the previous formula for the free energy.

In the case when vj depend on concentration we have

∂F

∂ξi
= 0 = −µi −

∑
j

∂µj
∂νi

νj +
2

3
γ(

∑
j

vjνj)
−1/3[vi +

∑
j

∂vj
∂νi

νj ] + S
∂γ

∂νi

But the Gibbs-Duhem equation has to be here the following one

−
∑
j

∂µj
∂νi

νj +
2

3
γ(

∑
j

vjνj)
−1/3

∑
j

∂vj
∂νi

νj = 0

which leads to the same conclusions.
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As the result there appeared a formal recipe not to differentiate the
surface tension. At first it was the artificial recipe but later the jus-
tification of this recipe was given on the base of the Gibbs dividing
surfaces formalism.

To resolve this difficulty one has to add to the free energy some new
contributions connected with the surface excesses. It will be done later.

Now we return to consideration of the properties of F .
The leading idea here is the extraction of the mentioned small parame-

ters ν−1
i . Recall that conditions are rather far from the second order phase

transition. If we accept that the surface layer has a finite thickness d, then
in the limit r → ∞ (where r is the radius of the embryo) one can see that
correction terms (c.t.) are really relatively small in the following sense

|B| ≫ |c.t.| |Ω| ≫ |c.t.|

|∂c.t.
∂νi

| ≪ |∂B
∂νi

| |∂c.t.
∂νi

| ≪ |∂Ω
∂νi

|

|∂
2c.t.

∂ν2
i

| ≪ |∂
2Ω

∂ν2
i

|

These inequalities are valid for absolute values.
These inequalities is a new result and they will be widely used below.

Their validity can be proven analytically.

1.2 The form of the free energy

To see the structure of the free energy one can introduce the extensive variable

V =
∑
i

viνi

Certainly V is a volume of the embryo. Then

F = γV 2/3 − b(ξ)V

with the generalized chemical potential

b =

∑
j µjξj∑
j vjξj
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The generalized chemical potential allows an interpretation

b =
< µ >

< v >

as the ratio of the mean chemical potential excess and the mean volume per
one molecule in the embryo.

One can take also as an extensive variable the total number of molecules
inside the embryo

νtot =
∑
i

νi

Then the free energy can be written in a following way

F = γ(
∑
i

viξi)
2/3ν

2/3
tot − νtotb̂(ξ)

where
b̂(ξ) =

∑
i

µiξi

and the renormalized surface tension

γ̂ = γ(
∑
i

viξi)
2/3

appears.
One has also to mention the possibility to take as external variable the

surface energy in the power 3/2, i.e.

ς = γ3/2
∑
i

viνi

used in [20]. Then the free energy has the form

F = −bp(ξ)ς + ς2/3

where the generalized chemical potential is

bp =

∑
j µjξj∑

i γ3/2viξi
=

b

γ3/2

The third possibility used in [20] is the most preferable because here the
free energy has the most simple form and in the ”surface” term the factor
depending on concentration is absent.
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The question to discuss is what we shall take as an extensive variable
- the variable proportional to the volume or the value proportional to the
number of molecules? Thermodynamics does not give an answer because
asymptotically these values are proportional.

But the problem to take into account the Renninger-Wilemski’s paradox
remains here our of attention. To overcome this difficulty one has to include
into description the surface excesses of components. To take these excesses
one has to choose the surface accurately. The most preferable choice is to
choose as the surface the surface of tension because the surface tension can
be attributed to this surface without corrections. At this surface all compo-
nents have the surface excesses ψi but the surface tension can be attributed
namely to this surface. In the first (rough) approximation these values are
proportional to the square S of the surface of tension

ψi = ̺iS

Parameters ̺i are supposed to be independent on S and have to be given
by the theory of a liquid state.

The square of the surface of tension can be approximately calculated as

S = (
∑
i

vi(νi − ψi))
2/3

Certainly, there exists a difference between a surface of tension and the sur-
face covering the volume of the embryo. But since the sense has only Sγ one
can attribute this difference to the value of γ.

Here we omit the constant factor having included it into the surface ten-
sion γ. Hence,

ψi = ̺i(
∑
i

vi(νi − ψi))
2/3

The last relation is not a formula for ψi but an equation. It can be solved
by iterations. These iterations are based on a small parameter ψi/νi. The
smallness of these parameters at νi → ∞ is evident. The first approximation

ψi = ̺i(
∑
i

viνi)
2/3

is already suitable as a leading term under the conditions (1). The second
iteration

ψi = ̺i(
∑
i

vi(νi − ̺i(
∑
j

vjνj)
2/3))2/3
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will refine the solution. The complexity of dependence of ψi on νi is the
certain difficulty.

The value of concentration ξi has now to be redefined as

ξi =
νi − ̺iS∑
j(νj − ̺jS)

As an extensive variable it is natural to choose the straight analog of ς,
namely

ς = (Sγ)3/2 =
∑
i

vi(νi − ψi)γ
3/2

But this choice does not lead to the ”true” form of the free but to

F = −
∑
j

λjµj −
∑
j

̺jµj
ς2/3

γ(ξ)
+ ς2/3

with
λi = νi − ψi

Here the dependence γ on {ξ} is the source of difficulties. Certainly,

λi
λj

=
ξi
ξj

One can introduce another set of variables. Now instead of ς one has to
choose the extensive variable

κ = S3/2(γ −
∑
i

̺iµi)
3/2

In these variables the free energy F has the form

F = −κbg(ξ) + κ2/3 (4)

with the generalized chemical potential

bg =

∑
i λiµi
κ

or

bg =
∑
i

ξiµi

∑
j λj
κ
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One has to show that bg does not depend on κ. To fulfill this derivation one
can come to

bg =
∑
i

ξiµi

∑
j λj

S3/2(γ − ∑
k ̺kµk)3/2

or

bg =
∑
i

ξiµi

∑
j λj

(γ − ∑
k ̺kµk)

3/2
∑
l vlλl

It can be also presented as

bg =
∑
i

ξiµi
1

(γ − ∑
k ̺kµk)3/2

∑
l vlξl

(5)

The last relation evidently shows that bg is really a function of ξ. The
dependence on κ is absent.

One can use expression (5) to clarify the Renninger-Wilemski’s paradox.
According to the Gibbs’ absorption relation

dγ = d
∑
j

̺iµi

the derivative of the surface tension on concentration is cancelled by the
corresponding derivatives of ̺i on ξ. So, if we write bg without surface
excesses as

bg =
∑
i

ξi
1

γ3/2
∑
j vjξj

we have to forbid the differentiation of γ on concentration. Now the Renninger-
Wilemski’s paradox is explained. It is necessary to stress that the reason is
not the formal Gibbs’ absorption equation, but the difference of concentra-
tions in the bulk solution from the integral values.

Although the the new variables ensure the simple form of the free energy
their connection with ”initial” variables νi is rather complex. One has to see
how on the base κ, ξi it is possible to reconstruct νi. The procedure is the
following:

• On the base of ξi we know µi, then we get γ − ∑
i ̺iµi.

• This gives a value of

S = κ2/3/(γ −
∑
i

̺iµi)
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• On the base of S having presented S as

S =
∑
i

viλi =
∑
i

viξi
∑
j

λj

we get
∑
i λi.

• Since λi = ξi
∑
j λj we get all λi.

• Then
νi = λi + ̺i(ξ)S

and we know all νi.

The inverse transformation can not be made by explicit formulas, the
problem to find1 ̺ on the base of ν has been considered above. When ̺ is
found then λ is known. This gives ξ and κ.

The main new facts found here are the following:

• The variables giving the simple expression for the free energy with
surface excesses are found.

• The recipe to get the initial variables on the base of the new ones is
given

1.3 The structure of the free energy relief

The functional form (4) has some consequences analogous to those considered
in2 [20]. But now this form takes into account the surface excesses of an
embryo. Here the form (4) ensures the following properties of the free energy
of an embryo

• One can see the channels of nucleation defined by equations

∂bg
∂ξi

= 0

∂2bg
∂ξ2

i

< 0

Along these channels the equilibrium density of distribution has a max-
imum (but the real distribution coincides with the equilibrium one only
in the part of the pre-critical region)

1When the index is absent it means that the whole set is considered.
2In [20] the free energy without surface excesses was considered.
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• Because of the Gibbs-Duhem’s equation the variables ξi in differentiat-
ing of bg are separated. This leads to the approximately zero value of
the cross derivatives ∂2bg/∂ξi∂ξj .

• One can see the separation lines of nucleation defined by equations

∂bg
∂ξi

= 0

∂2bg
∂ξ2

i

> 0

Along the separation lines the equilibrium density of distribution has
a minimum.

• In one channel there is only one saddle point. Certainly, this takes place
only in the capillary approximation. This saddle point has a coordinate
κc determined from the following equation

κc = (
2

3bg(ξc)
)3

Here ξc is the coordinate of the channel.

• The amplitude value of the free energy Fc in the channel is given by
the formula

Fc =
1

3
κ2/3
c

Here one can see the Gibbs’ equation and now it is clear that namely
κ2/3 is the true surface energy, but not γS as it seems from the first
point of view. One has to attribute to the surface energy all energy like
contributions with the space dimension 2 (or 2/3 in relative units).

• All channels are independent - the embryos starting from the origin of
coordinates will use only one separate channel to go to the supercritical
region where they begin to grow irreversibly. The nucleation flow will
mainly go through the channel with minimal κc or maximal bg. This
remark concerns the case where there is no strong hierarchy between
kinetic coefficients of absorption.

One can see that the picture of nucleation is rather simple, but this sim-
plicity was observed for the free energy with the surface excesses for the first
time here. This is the new result of this section.
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1.4 The form of the near-critical region

As it has been mentioned at the beginning the set of natural variables is νi.
The elementary kinetic act of absorption leads to the change

νi → νi ± 1

So, it is necessary to establish connection between κ, ξ and ν at least approx-
imately.

Denote by the subscript o the values when all surface excesses are zero.
Then the theory is very simple and one can get the connection between κo, ξo
and νo in a very transparent manner. From ν0 to κ0, ξ0 one can get by

κ
2/3
0 = γ

∑
i

viνi0

ξi0 = νi0/
∑
j

νj0

Inverse transformation is given by the chain formulated above. So, it is quite
easy to write the kinetic equation for the case of the absence of excesses.

The above consideration shows the role of the case with zero excesses.
Hence, this case will be the base to construct the description in the general
case.

Return now to the general case.
One can define the near-critical region as the region where

|F − Fc| ≤ 1

This is quite analogous to the one component case. But here we consider the
near-critical region associated with the given channel. Then it is necessary
that this region has to be closer to this point than the separation lines.

One can define the positive size ∆κ of the near-critical region along the
channel of nucleation as

F (κc ± ∆κ, ξc) = Fc − 1

Here ξc is the coordinate of some channel. Certainly, we get two values ∆1κ
and ∆2κ corresponding to the positive and to the negative shift. In the
square approximation of the free energy

∆1κ = ∆2κ = 3κ2/3 (6)
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When νi ≫ 1 for all i the square approximation is rather accurate.
Analogously one can define the characteristic sizes ∆ξi according to rela-

tion
F (κc, ξc ± ∆ξi) = Fc + 1

Certainly, we get two values ∆1ξi and ∆2ξi corresponding to the positive and
to the negative shift. In the square approximation

∆1ξi = ∆2ξi = | ∂
2bg

2∂ξ2
i

|−1/2κ−1/2 (7)

When νi ≫ 1 for all i and there is no singular behavior of generalized chemical
potential then the square approximation is valid.

Certainly, it is necessary that the channels have to be separated, i.e. the
height of the separation line has to be several thermal units higher than the
height of the channels. This has to take place at κ near the critical value.

We define the reduced near-critical region as the region where |κ− κc| ≤
∆κ, |ξi − ξic| ≤ ∆ξi. This definition differs from the ordinary definition of
the near critical region as extracted by condition |F − Fc| ≤ 1.

In the multi-dimensional case there exists long tails near lines F = Fc. To
illustrate it one can use the square approximation, then the curves F = Fc+1
and F = Fc − 1 are hyperbolic ones with common asymptotics which are
straight lines.

We shall define the tails as the regions corresponding to |F −Fc| ≤ 1 and
|ξi − ξic| > ∆ξi, |κ− κc| > ∆κ.

Actually, the following statements can be proven analytically:

• One can show that the tails do not play any essential role in formation
on the total nucleation flow.

• Then it is possible to reduce the near-critical region up to the following
domain

|ξi − ξic| ≤ ∆ξi

|κ− κc| ≤ ∆κ

Here and later we shall imagine the reduced near-critical region speaking
about the near-critical region.

Now one can see that the relative sizes of the near-critical region are small

|ξi − ξic| ≪ ξi
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|κ− κc| ≪ κ

Ordinary this smallness is implied when the kinetic coefficient of absorp-
tion is supposed to be a constant value. Here this smallness will help to prove
the following main result of this section:

• In the near-critical region the function F − Fc as a function

of variables κ− κc, ξi − ξic for every i has practically the same

behavior as the function Fo − Fco as a function of variables

κo − κco, ξio − ξico. At least the relative difference is small:

|(F (νi − νic) − Fc) − (Fo(νio − νico) − Fco)|
(Fo(νio − νico) − Fco)

≪ 1

The explanation and the idea of the proof is rather simple. Really, the
correction terms to which the excesses belong begin to be essential only
when the surface term cancels the bulk term. But as it clear from the
sequential differentiation this can take place only in the first derivative.
Starting from the second derivative the contribution from the bulk term
is zero and this compensation can not take place. This effect is taken
into account by the shift of νic instead of νic0. So, here the influence of
correction termms is negligible.

The last result allows to write the kinetic equation in νi variables taking
into account the surface excesses by a simple shift. This takes place only in
the near-critical region. This result is new.

1.5 The place of the Renninger-Wilemski’s effect

The ”paradox” of Wilemski and Renninger occupies so important place in the
multicomponent nucleation that from the first point of view it seems that this
is the real effect taking place in the leading term of capillary approximation.
Below it is shown that this effect has an order of correction. To see this effect
one can redefine κ as S3/2 and forget about excesses.

Really, from equation

∂F

∂ξ
|κ=fixed =

∂γ

∂ξ
κ2/3 +

∂bg
∂ξ

κγ3/2
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it is seen that the first term ∂γ
∂ξ
κ2/3 with the derivative ∂γ

∂ξ
has a correction

order κ2/3

∂γ

∂ξ
κ2/3 ∼ κ2/3

in comparison with the second term ∂bg
ξ
κγ3/2 having the order κ

∂bg
ξ
κγ3/2 ∼ κ

We extract this result which is explicitly outlined for the first time here
because of its importance for the reconstruction of the logical self-consistency
of thermodynamics. Only the correcting order of the term with the derivative
of the surface tension allows to ignore it in the main order and to return the
leading role of the ordinary capillary approximation.

Since the formal recipe to resolve the Renninger-Wilemski’s paradox is to
forbid the differentiation of γ on concentration then the equation on concen-
tration will be different. It would cause the impression that there is a shift
in a leading term. The correct answer is that this result causes the shift in
Fc which has a correction order as it follows from the last equation.

The necessity to develop the theory with surface excesses is evident be-
cause the surface excesses will essentially shift the position of the near-critical
region. The shift is many times greater than the size of the near-critical
region. The shift has the order κ (because there is another equation on
concentration - the derivative of γ on ξ is cancelled) while the size of the
near-critical region has the order κ1/2.

One can treat the surface tension as a coefficient in the first correc-
tion term proportional to the surface of the embryo. The coefficients at
κ1/3, lnκ, κ−1/3, etc. depend on intensive variables (concentrations is one
example). Their derivatives will be cancelled by derivatives of correspond-
ing excesses. The structure will resemble the Renninger-Wilemski’s paradox.
But here the dimension of ”surface” will be κ1/3, lnκ, κ−1/3, etc. This effect
will be called as ”generalized cancellation of derivatives on intensive vari-
ables”.

One to note that the same procedure can be effectively applied for all
other correction terms. Rigorously speaking to determine the form of the
near-critical region one has to take the expression for F with correction terms
up to the order which causes the shift of position of the near-critical region.
Now it is clear that the effect of all correction terms will be quite similar to
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the already described one.

2 Channels and separation lines

2.1 Similarity of the near-critical relief

Although the Renninger-Wilemski’s effect has a correction order it is worth
taking it into account. The main reason is the following:

• The relative sizes of the near-critical region is very small. Really, from
(6) it follows that

∆κ

κc
∼ κ−1/3

c ≪ 1

and the relative size in κ-scale is small. From (7) it follows that

∆ξi/ξi ∼ κ−1/2

and the relative size in the ξi scale is small also. Then it is clear that
the relative size in νi scale will be

νi/νic ∼ ν
−1/3
i

Namely these estimates allow to put in the near-critical region the
kinetic coefficient W+

i of absorption of the molecule of i-th component
to the constant value W+

ic corresponding to the critical embryo

W+
i ≈W+

ic

So, the relatively small error in the determination of the coordinates νi can
remove embryo out of the near-critical region which makes the consideration
of kinetic equation without surface excesses in the near-critical region useless.

Beside this one has to take into account that the elementary transitions
are written in the ν-scale

νi → νi ± 1

and the free energy is written explicitly (with the surface excesses account)
in variables κ, ξi. So, it is necessary to have the a very precise transformation
between νi and κ, ξi. This forms the problem.

Although the transformation from κ, ξi to νi exists it is very complex.
The inverse transformation has not been found explicitly. So, it is necessary
to establish the approximate connection. The following statement establishes
this connection
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• The function F − Fc as a function of νi − νic approximately coincides
in the near-critical region with the behavior of F0 − F0c as a function
of νi − νic0:

F0(νic0 + yi) − Fc0 ≈ F (νic + yi) − Fc

This property can be called as the approximate similarity of the free
energy relief.

Here this fact is established for {νi} variables while earlier the same con-
clusion was made for κ, {ξ} variables.

The idea of the proof of this property is based on the simple remark
that the terms produced by the surface excesses can be important only when
the terms produced by the bulk and surface contributions are cancelled. In
the near-critical region this occurs only in the first derivative over νi at the
critical embryo. Cancellation in high derivatives is impossible3. Here we use
the form F =

∑
i µiνi − γS and differentiate it over νi. This ensures the

similarity of relief.
Now one can propose the following sequence of actions

• at first one has to solve equations for the characteristics of the critical
embryo

• then one has to solve the kinetic equation without excesses but in
shifted coordinates.

Certainly, the similarity of relief takes place both in νI coordinates and
in κ, ξi coordinates.

Analogously one can one can prove the small relative role of microscopic
corrections in the value of dFc/dζi which is used in construction of the global
evolution of the phase transition. Here the formula (2) has to be used and it
has to be taken into account that the coefficients in this formula are constant.

2.2 The form of pre-critical region

One can see the following important property:

• The critical embryo can not have ξi = 0

3Since the high derivatives of the bulk contribution are zero.
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It can be seen from the explicit form of µi

µi = ln ζi + ln ξi + ln fi(ξ)

Recall that here ζi is the supersaturation of i-th component defined as

ζi =
ni
nii

ni is the molecular number density of vapor of i-th component, nii is the
molecular number of the pure saturated vapor of i-th component. The sec-
ond term is caused by the standard entropy of mixing, the third term char-
acterizes the deviation of mixture from the ideal solution, here fi is the
phenomenological coefficient of activity.

Then one can see that at ξi → 1 the situation of dilute solution takes
place. Then the Henry’s law states that the situation is close to the ideal
solution, then fi = 1 and there are no correction terms. Then one can see
that

dbg
dξi

|ξi=1 = ∞

and the condensation into the pure component is forbidden. Analogously

dbg
dξi

|ξi=0 = −∞

Earlier the analogous estimates were formulated in [20] for ξi0. Then from
(6) and (7) it follows that the widths ∆νi along νi satisfy

∆νi ≫ 1

for all i. These estimates ensure the possibility of continuous description of
evolution in the kinetic equation.

In the absence of the strong hierarchy between coefficients of absorption
one can define the pre-critical region by two conditions

• by inequality
F < Fcm − 1

where Fcm is the minimal activation barrier among different channels.

• by requirement that this region has to be continuous and the origin
belongs to this region.

24



One can prove that in this region the quasi stationary equilibrium state
takes place. Here the absence of the hierarchy of kinetic coefficients plays
the principal role.

Now one can investigate the form of the pre-critical region in νi variables.
It looks like a star and the needles are going along the bottoms of channels.
Certainly due to restrictions νi ≥ 0 there is only one quarter of a star. In
κ, {ξ} variables it looks like a brush.

If in every channel we put the value Fc corresponding to this channel,
the shortest needle is the main one. The shortest needle (in κ, ξ plane)
corresponds to the lowest barrier and, hence, it is the main needle through
which the nucleation takes place.

If the level Fc is chosen as Fcm and it is one and the same for all channels
then the main needle is the longest one

To see the relaxation to the equilibrium distribution we need to determine
the minimal diameter of this star. It is given by the following relation

−κminbg min + κ
2/3
min = Fcm − 1

Here bg min is the minimal value of bg. So, if |bg min| does not go to infinity,
one can easily see the finite value of κmin and the connection of channels.

The last consideration solves the problem of connection of channels of
nucleation. The problem was that the behaviour of channels near the origin
where the surface excesses can play the leading role was unclear. So, one
could not say whether the channels are connected or no. Now the concrete
position of channels near origin is not important.

The only condition is the restriction on b(ξ) - this function can not go to
−∞ at some concentrations.

2.3 Characteristic sizes of near-critical region.

Consider the variables parallel to ξi, κ and having the scale of νi. These
variables are

νpar ≃
κn

γ3/2
∑n
i vi

νi perp ≃ νparξi

Here it is supposed that all vi have the same order of values. The total
number of components n is not supposed to be a big parameter.
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Then the halfwidths along νpar and νi perp satisfy the following estimates

∆νpar ∼ κ1/6∆νi perp

∆νpar ∼ κ2/3 ∼ ν
2/3
tot

∆νperp ∼ κ1/2 ∼ ν
1/2
tot

The time of establishing of the stationary state along νpar, νi perp is given
by

tr parsim(
W+

∆2νpar
)−1

tr iperp ∼ (
W+

∆2νi perp
)−1

Here all kinetic coefficients of absorption are supposed to have one and the
same order of value which is marked by W+.

Then we come to the following strong inequality

tr par
tr iperp

∼ κ1/3 ≫ 1

This equation states the hierarchy in the near critical region. Earlier this
hierarchy was established in [25] for the situation without surface excesses.
Here it is done for the presence of the surface excesses.

To see this property the main effort was spent to show the similarity of
forms of the free energy relief. Then one can come to the hierarchy rather
automatically.

The mean characteristic time tu to overcome the near-critical region for
the embryo at the bottom the channel at the boundary of the near-critical
and pre-critical regions has the order of tr par

tu ∼ tr par

Then we come to the following strong inequality

tu
tr iperp

∼ κ1/3 ≫ 1

It means that along νi perp there is a quasi equilibrium.
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2.4 Advantages of hierarchy

On the base of hierarchical inequalities one can see that along νi perp or ξi
there is quasi equilibrium. Then the distribution function n({νi}) which can
be transformed into n(νpar, {νi par}) can be presented as

n(νpar, {νi par}) = Npar(νpar)neq({νi perp})

where Npar plays the role of the amplitude of the known equilibrium distri-
bution and neq is given by

neq({νi perp}) ∼ exp(−F (νpar, {νi perp}))

or more convenient

neq({νi perp}) ∼ exp(F (νpar, {νi perp}) − F (νpar, {νi perp b}))

where b marks the coordinate of the bottom of the channel.
Then there remains only the task to determine the amplitude Npar. This

is a simple one-dimensional problem of nucleation. One can easily solve it.
Reduction the problem of nucleation to the one dimensional case allows

to solve more complex situations. At first one can see that when the char-
acteristic width of equilibrium distribution seriously changes it leads to the
change of the effective free energy in Npar. Really the effective free energy
looks like

Feff = F − ln∆eqν

where
∆eqν = (

∑
νperp

neq(νperp))
−1

In the majority of cases the summation in the last formula can be replaced
by integration

∆eqν = (
∫

∞

−∞

neq(νperp)dνperp)
−1

Here the region of integration is formally put to an infinite one, actually one
has to integrate over the region near the bottom of the channel where neq is
essential.

The further simplification is the following: one can take the last integral
in square approximation for the equilibrium distribution:

neq({νi perp}) ∼ exp(−Fb)
∏
j

exp(−∂
2F (νpar, {νi perp})

2∂ν2
j perp

|νi perp=νi perp b
(νj perp−νj perp b)2)
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This allows to take integrals explicitly.
Then the effective free energy is given by

Feff = F −
∑
j

ln
π1/2

√
∂2F (νpar,{νi perp})

2∂ν2
j perp

|νi perp=νi perp b

Later one has to solve one-dimensional nucleation problem with the effective
free energy instead of the initial free energy. As it will be shown later by
demonstration of the plausible derivation of Reiss’ formula one has to be very
attentive at this step.

Ordinary in the near-critical region the value ∆eqν is constant and there
is no peculiarities in behavior of Feff . Certainly, in the square approximation
the is an explicit solution of Stauffer. But the approach based on hierarchy
leads to final analytical results in more complex and may be exclusive cases.
Really, here the square approximation was taken only as an illustration.

One has to clarify the place of the presented approach in the task to
determine the nucleation flow. Ordinary to justify the total square approx-
imation in the near critical zone and to use the Langer-Stauffer’s approach
one has to adopt some approximations including the smooth behavior of the
derivative of bg near the bottom of the channel. But there is no clear evidence
of the regular behavior of bg near the bottom. So, the approach based on the
hierarchy is preferable.

On the base of hierarchy one can also see many interesting and important
facts:

• At first we see that the quasi-unary condensation can not be described
in terms of the square approach. A direct transformation of the for-
mulas appeared in the Langer-Stauffer’s approach does not lead to the
formulas of the unary nucleation. This occurs because inevitably the
square approximation has to be violated. So, we come to the impos-

sibility of description of the quasi-unary nucleation in terms

of the standard Stauffer’s binary nucleation approach.

• The next consequence of general results is the impossibility of situation
of the inverse direction proposed by Zisterman-Berezhkovskii, where
[10] the Stauffer’s approach meets difficulties. Really, now it is clear
that valleys have to be directed to the origin, but not at the perpendic-
ular direction as it is supposed in the consideration of Zisterman and
Berezhkovskii.
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One has to mention that the thermodynamics is rather formal and can
give essential corrections to the initial variant of the theory if some other
expressions for chemical potentials and surface energy are taken. Certainly,
these expressions have to be the matter of discussion. But one can not deny
the possibility to come to the situation where the square approximation is
not suitable and one has to follow the approach suggested here.

Here we suppose that these expressions are already given. They are some
external information for the theory developed here.

3 Stauffer’s and Reiss’ solutions

The main goal in the investigation of the multicomponent nucleation is to
get essential corrections in comparison with the already known approaches.
For this purpose we shall examine the formulas of Stauffer and Reiss for the
nucleation rate.

3.1 Kinetic equation

Consider the binary case. Introduce the Reiss’ variables x, y as the variables
when the free energy in the critical region has the form

F = Fc − x2 + y2,

where Fc is the free energy in the saddle point. These variables can be
obtained from ν1, ν2 by rotation and rescaling4.

Instead of rotation and rescaling it is more convenient to introduce the
separated variables directly. The variables κ, ξ are the stable and unstable
ones. One can come to

∂2F

∂ξ∂κ
= −dbg(ξ)

dξ
,

which is vanished in the saddle point. It means that the square form of the
free energy in κ, ξ variables looks like

F = −A(κ− κc)
2 +B(ξ − ξc)

2 + Fc

4 May be some part of the Lorenz transformation with an arbitrary parameter has been
made. So, these variables aren’t completely fixed.

29



without the cross term. Here A and B are some positive constants

A = −(
∂2F (κ, ξ)

2∂κ2
)c B = (

∂2F (κ, ξ)

2∂ξ2
)c

Then in the coordinates

x̃ =
√
A(κ− κc) ỹ =

√
B(ξ − ξc)

one gets
F = Fc − x̃2 + ỹ2

Now we shall seek for the similar variables obtained by the linear transfor-
mations.

The variables x, y can be obtained from ν1, ν2 by the linear transformation

x = c11(ν1 − ν1c) + c12(ν2 − ν2c),

y = c21(ν1 − ν1c) + c22(ν2 − ν2c)

(which isn’t orthogonal) with the known coefficients

c11 = [−1

2
(
∂2F

∂κ2
)c]

1/2(
∂κ

∂ν1

)c,

c12 = [−1

2
(
∂2F

∂κ2
)c]

1/2(
∂κ

∂ν2
)c,

c21 = [
1

2
(
∂2F

∂ξ2
)c]

1/2(
∂ξ

∂ν1
)c,

c22 = [
1

2
(
∂2F

∂ξ2
)c]

1/2(
∂ξ

∂ν2
)c.

The variables x, y practically coincide with x̃, ỹ. The difference has an order
of a small parameter.

The estimates for coefficients c11, c21, c12, c22 are

c11 ∼ κ−2/3
c ,

c12 ∼ κ−2/3
c ,

c21 ∼ κ−1/2
c ,

c22 ∼ κ−1/2
c .
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The estimates
∆κ ∼ κ2/3 ∼ ν

2/3
tot ∼ ∆νpar

∆νperp i ∼ κ1/2 ∼ ν
1/2
tot

in positive powers of a big parameter κ (or νtot) allows to use the Fokker-
Planck’s approximation.

In the Fokker-Planck’s approximation the kinetic equation for the distri-
bution function n can be written in the following form

∂tn(ν1, ν2) = W1∂1[n∂1F + ∂1n] +W2∂2[n∂2F + ∂2n],

where W1, W2 are the kinetic coefficients, i.e. the numbers of the first sort
molecules and the second sort molecules which are absorbed by the embryo
in the unit of time. Here

∂1 ≡ ∂/∂ν1, ∂2 ≡ ∂/∂ν2

and ∂t ≡ ∂/∂t. The differentiation on the number of the molecules of the
given sort in marked by the index near the symbol of the partial differentia-
tion.

Now we rewrite the kinetic equation in the variables x, y. Note that

∂1 = c11∂x + c21∂y

∂2 = c12∂x + c22∂y

where ∂x = ∂/∂x and ∂y = ∂/∂y.
The distribution n(x, y) is proportional to the distribution n(ν1, ν2) with

coefficient ∂(ν1, ν2)/∂(x, y) and one has to take this difference into account
in final calculations. In the near-critical region the coefficients of kinetic
equation are approximately constants.

To simplify the treatment one can use notations

∂x1 = c11∂x, ∂x2 = c12∂x, ∂y1 = c21∂y, ∂y2 = c22∂y.

Then one can get the equation

∂tn = W1(∂x1 + ∂y1)[n(∂x1 + ∂y1)F + (∂x1 + ∂y1)n]

+W2(∂x2 + ∂y2)[n(∂x2 + ∂y2)F + (∂x2 + ∂y2)n]
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Since the structure of terms like n(∂x1 + ∂y1)F coincide with the structure of
(∂x1 + ∂y1)n one can simply miss the last term and reconstruct it in the final
expressions. Then

∂tn = K1∂x(n∂xF+∂xn)+K2[∂x(n∂yF+∂yn)+∂y(n∂xF+∂xn)]+K3∂y(n∂yF+∂yn)

where
K1 = W1c

2
11 +W2c

2
12

K2 = W1c11c21 +W2c12c22

K3 = W1c
2
21 +W2c

2
22

To stress the hierarchy one can introduce the coefficients

R = K1, k = −K1

K2
, q =

K3K1

K2
2

Then finally

∂tn(ν1, ν2) = R[∂x[n∂xF + ∂xn] − k−1[∂x[n∂yF + ∂yn] + ∂y[n∂xF + ∂xn]]

+k−2q∂y[n∂yF + ∂yn]]

For R, k, q one can get the following expressions

R = W1c
2
11 +W2c

2
12,

k = − W1c
2
11 +W2c

2
12

W1c11c21 +W2c12c22
,

q =
(W1c

2
21 +W2c

2
22)(W1c

2
11 +W2c

2
12)

(W1c11c21 +W2c12c22)2

The last coefficient can be also written as

q = 1 +W1W2(
c11c22 − c12c21

W1c11c21 +W2c12c22
)2.

The value of R isn’t important because it can be changed by the time
rescaling. One can see the estimate

k ∼ ν−1/6
c

which shows that k is a small parameter. The scale of q is arbitrary, but one
can outline situations where q − 1 ≪ 1.
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The boundary conditions for the last equations are the following

n/ne = 1 x≪ −1 −∞ < y <∞,

(8)

n/ne = 0 x ≫ 1 −∞ < y <∞

The plausible but not rigorous consideration corresponding to the solution
proposed by Reiss is the following one

• The main operator of kinetic equation is the last term in r.h.s.

• It ensures the relaxation over the stable variable and the kinetic equa-
tion becomes the one dimensional one.

• The consideration of the evolution only over the unstable variable leads
to the reduction of the kinetic equation to

∂tn(ν1, ν2) = R∂x[n∂xF + ∂xn]

The solution of the last equation leads to the results of Reiss. But in
the cited paper of Reiss the hierarchy was not observed. Hence, the analysis
there was less plausible.

3.2 The influence on the characteristics of the process

One needs the transformation of kinetic equation which conserves the bound-
ary conditions, since the variables in the boundary conditions (8) are already
separated. This transformation is the Lorenz’ transformation.

Introduce the Lorenz’ transformation via formulas

ψ =
x+ αy√
1 − α2

, η =
y + αx√
1 − α2

This transformation conserves the form of the free energy in the critical
region:

F = Fc − ψ2 + η2

The kinetic equation is transformed to

∂tn(ν1, ν2) = R(1 − α2)−1k−2[[(k − α)2 + α2(q − 1)]∂ψ[n∂ψF + ∂ψn]−

33



[(k − α)(1 − kα) − α(q − 1)][∂ψ[n∂ηF + ∂ηn]+

∂η[n∂ψF + ∂ψn]] + [(1 − kα)2 + q − 1]∂η[n∂ηF + ∂ηn]].

Parameter α which has the absolute value less than 1 has to be chosen
to vanish the cross term. The equation for the choice of α is the following

(k − α)(1 − kα) = α(q − 1)

Then
∂tn(ν1, ν2) = A∂ψ[n∂ψF + ∂ψn] + C∂η[n∂ηF + ∂ηn]

where

A =
R

k2
(1 − α2)−1[(k − α)2 + α(k − α)(1 − kα)]

C =
R

k2
(1 − α2)−1[(1 − kα)2 +

(k − α)(1 − kα)

α
]

The parameter of the Lorenz’ transformation is given by

α =
1

2k
[k2 + q −

√
(k2 + q)2 − 4k2].

After the decomposition at small k one can come to

α =
1

q
k. (9)

in the leading term. One can see that it is small. So, it is difficult to see the
effect of the Stauffer’s consideration on the direction of the flow. But one
can not directly put α = 0 because there is a small parameter k. Expression
for A will be

A = R
q − 1

q
. (10)

The ratio 1/q is not small. So the correction to the Reiss’ formula is essential.
The direct substitution α = 0 leads to

A|α=0 = R

which is the Reiss’ result and it is not precise.
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3.3 Some consequences for the binary nucleation

The question to discuss here is the rate of the deviation of the Reiss’ formula
for the nucleation rate from the analogous result of Stauffer.

In the derivation of the expression for q no suppositions about W1 and
W2 have been made. At first the situation with the moderate ratio W1/W2

will be discussed.
As far as

∂ξ

∂ν1
=
∂(1 − ξ)

∂ν2
= − ∂ξ

∂ν2
(11)

we see that the partial cancellation can take place in expression for q only in

W1c11c21 +W2c12c22

but not in
c11c22 − c12c21

So q is big enough to lead to result near the Reiss’ formula A = R. This
shows that the Reiss’ formula is not so bad although it is not a true result.

The precise coincidence of Reiss’ and Stauffer’s results takes place when
q = ∞, i.e. when

W1c11c21 +W2c12c22 = 0

The last relation taking into account (11) can be rewritten as

W1
∂κ

∂ν1
= W2

∂κ

∂ν2

In the rough approximation corresponding to:

• the capillary approximation itself,

• the Gibbs-Duhem’ equation in the capillary approximation

• the negligible dependence of vi on κ in capillary approximation

one can see that the last relation transforms to

W1v1 = W2v2

where vi is the volume per molecule in a liquid phase. This condition is the
condition of precise applicability of the Reiss’ result. It differs from condition

W1 = W2

35



announced in paper [10] analyzing the theory of Stauffer.
It is clear that the last condition is wrong which opens a question of

the formal validity of the Stauffer’s derivation. Really, formally regarding
one molecule of the first substance as several particles, one can attain the
applicability of Reiss’ result by such an artificial way. For condition W1v1 =
W2v2, this trick fails.

Let us extract the conditions when A essentially differs from R. It can
be only when

q ≈ 1

The last condition can be satisfied only when W1 ≪ W2, W1 ≫ W2.
Namely, this situation occurs when there is the rapid component. The es-

sential variation of the nucleation rate in comparison with the Reiss’ formula

is possible only under the hierarchy of the kinetic coefficients. This situation
requires a separate analysis.

As an illustration here we shall show the result in a square approximation
of the free energy, although one can analytically prove that the existence of a
rapid component throws the main nucleation flow away from the near-critical
region and another approximations for the free energy have to be used.

Under the hierarchy one can see the evident rapid component and for-
mulas can be simplified. The simplification can be made also directly in the
final formulas and the expression for A

A = W2
(c11c22 − c12c21)

2

c221

is proportional to W2. Then

A = W2(−
1

2

∂2F

∂κ2
)[
∂κ

∂ν1
+
∂κ

∂ν2
]2

In the further considerations of this section this simplification is not used.

3.4 Conclusions based on hierarchy

In the post critical region one can assume the derivative on the unstable
variable to be locally a constant and reduce the kinetic equation to

∂tn = R[∂x(∂x + h) − k−1(∂x(∂y + 2y) + ∂y(∂x + h)) + k−2q∂y(∂y + 2y)]n,
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where h is the constant coefficient corresponding to the first derivative on the
unstable variable and the values of R,k, q are changed since the derivatives
are taken now in the local current point. Renormalize the scale over the
unstable variable as to put h = 1. Certainly, the hierarchy takes place after
the renormalization.

We are interested in the stationary solution and shall seek it in the form

n = Q(x) exp(−(y − y0)
2) (12)

with the constant mean value y0 and some function Q(x). The derivative
dQ(x)/dx can be neglected. Then

[−k∂yh + q∂y(∂y + 2y)]n = 0

For y0 one can get taking into account

∂y exp(−(y − y0)
2) = −2(y − y0) exp(−(y − y0)

2),

∂y(∂y + 2y) exp(−(y − y0)
2) = −4y0(y − y0) exp(−(y − y0)

2)

the following relation
kh

q
= 2y0. (13)

So the solution is obtained.
Consider this solution. We see that the deviation of the rapid parameter

is small also in the post critical region and the possible hidden parameter
can not be extracted.

Due to the slope of the free energy surface on κ the minimum of the free
energy in the cross section depends on the slope of this cross section. But
since the slope of the free energy surface on κ is small the deviation of the
minimum is small also. This deviation can be considered as the deviation of
the mean value of the rapid variable and leads to the absence of the possibility
to extract this variable in the post critical region also.

The analogous method can be applied also for the near-critical region. In
the near-critical region one can make the substitution

n = P (x) exp(−(y − y0(x))
2),

where y0 is now the function of x. One can determine y0 according to

(∂x − 2x)n = −Jx,
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there the r.h.s. is constant. Then

∂xn = −Jx + 2xn. (14)

The linear character of the last equation ensures the linear dependence of y0

on the unstable variable. As far as the flow is reciprocal to the halfwidht
(along the trajectory y0) one can get the equation on the flow. The linear
dependence of y0 on x ensure the linear character of the transformation which
is analogous to the Lorenz’ transformation.

This way of considerations can be applied to the more general situations
without the square form of the free energy. Then the trajectory isn’t the
straight line and the solution is some approximation based on the hierarchy.

The last question to solve is a real position of the near-critical region.
When the deviation of the flow from the steepens descent situation is

essential there is the danger to violate the square form of the free energy.
The boundary conditions for kinetic equation in the critical region in reality
have to be observed at

n/ne = 1 x ∼ −1 − 1 < y < 1,

n/ne = 0 x ∼ 1 − 1 < y < 1.

After the Lorenz’ transformation

n/ne = 1 ψ ∼ −1 − 1 < η < 1,

n/ne = 0 ψ ∼ 1 − 1 < η < 1.

Rigorously speaking one has to put the equilibrium conditions at the
line where F = Fc − 1 which is invariant to Lorenz’ transformation. But
actually, to ensure the finite relaxation time and the constant values of kinetic
coefficients one has to cut-off the tails and to go to the boundary of the
reduced near-critical region. But this boundary is not invariant to Lorenz’
transformation.

The last definition of the boundary conditions has to be considered as the
main one.

But here the reduced near-critical region is stretched along one of the
lines F = Fc where the transition occurs. The square approximation in such
stretched region can be invalid.
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3.5 Conclusions

The main new results of the consideration made above are the following:

• The hierarchy of terms in kinetic equation is shown. Earlier the hier-
archy was observed only for halfwidths of the near critical region [25].

• The plausible way to derive the Reiss’ formula was demonstrated. Since
this formula is wrong, this deviation demonstrates the impossibility to
neglect in kinetic equation all terms except the main one.

• The moderate value of the error made by Reiss is established. Earlier
there was a strong conviction that the error of the Reiss’ approach can
be enormous, which was illustrated by numerical examples in [6]. Now
it is clear that the big error can be only in the cases of strong hierarchy
between kinetic coefficients (W1 ≫W2,W2 ≫W1) when the nucleation
flux goes mainly far from the saddle point.

• The simplified relations for α (see (9)) and for the nucleation rate (see
equation (10) for A) have been derived.

• The super-critical region is studied and the expression for the distribu-
tion function over the stable variable (12), (13) in this region is derived.

One can see that the precise result is rather complex. It can not be
achieved by a simple superposition of naive solutions based on hierarchy.
One has also to mention that even in hierarchy W1 ≫ W2 the result differs
from the naive one.

But the main result is the absence of the really important corrections in
comparison with a naive approach. All obtained corrections are rather small
and mainly less than the microscopic corrections in real situations. Below,
we shall seek essential corrections in the case of hierarchy.

4 Nucleation rate in the situation with hier-

archy

The case of hierarchy certainly requires a special consideration going outside
the local approximations in the neighborhood of a saddle point of the embryos
free energy.
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There are many substances for which the densities n∞i have the different
orders of the values. For example,

n∞H2O

n∞H2SO4

> 105

in the everyday thermodynamic conditions.
Assume that there are two groups of substances: the substances with a

slow exchange and the substances with a rapid exchange. Suppose

W+
a ≪W+

b

The components of the first group will be marked by the index ”a” and the
components of the second group will be marked by the index ”b”. At first we
shall consider the situation of two components and later the generalization
will be evident.

Here the variable υ̃ is the following one

υ̃ =
∑
a

vlaνa . (15)

4.1 Direction of a flow

Extract the conditions when the flow is parallel to νb. We construct a simple
model which will show some estimates.

The quantity of the embryos at the bottom with a fixed slow component
can be estimated from above by

Nabove = ∆νn0 exp(−Fb)

where Fb is the free energy at the bottom ∆ν is the effective width of the
bottom. The normalizing factor n0 in some situations of the overcoming of
the few activation barriers can differ from the standard one. That’s why we
keep a special definition for this factor.

The quantity of the embryos in the critical region which change the num-
ber νa in the unit of time is

IA = W+
a ∆νn0 exp(−Fb)

The flow over the ridge is Js. So, the necessary condition is the following

W+
a ∆νn0 exp(−Fb) ≪ Js . (16)
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One can adopt for Js the following expression

Jsb = W+
b n0 exp(−Ft)/∆νπ1/2 (17)

where Ft is the free energy at the top of the ridge and put ∆ν as

∆ν = (
∂2F (νa, νb)

2∂ν2
b

)−1/2|νa=νac,νb=νbc
. (18)

It is necessary that the transition occurs earlier than the near-critical region
is attained. Then it is possible to put

Fb = Fc − 1

at the boundary of the near-critical region. At the same boundary one can
also put

Ft = Fc + 1

The inequality (16) comes to

W+
a ≪ W+

b

exp(2)(∆ν)2π1/2
. (19)

Practically the same condition can be obtained by the comparison of the
characteristic time between the transitions of the embryo along νa which is

ttr ∼ (W+
a )−1

and the time of the relaxation in the bottom

ts =
(∆νb)

2

W+
b

.

4.2 The normalizing factor

Here we shall see that there is no equilibrium distribution in the whole pre-
critical region.

Extract the condition when there will be the equilibrium distribution at
the level with the fixed νa of the pre-critical region. The quasi equilibrium
distribution has the form

n = nq = nq0 exp(−F (νa, νb))|νa=const . (20)
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The normalizing factor nq0 differs from the standard normalizing factor
because there is an equilibrium along the band but there is no equilibrium
between bands.

To establish the equilibrium it is sufficient to have the intensity of the
contact between the neighbor bands greater than the intensity of the over-
coming over the activation barrier. So, it is necessary to determine the height
of the activation barrier. Choose as νb the value of νbe, corresponding to the
minimum of the free energy at the band

νbe : minνb
F (νa, νb) = F (νa, νb) . (21)

Then the intensity of the contact can be estimated by W+
a n0 exp(−F (νa, νbe).

One can due to (19) assume that the transition to the post critical region
occurs along νb, i.e. inside the band5. Beside νbe one can introduce νbx as
the point inside the band where the free energy has the maximum

maxνb
F (νa, νb) = F (νa, νbx) ≡ Fx(νa) . (22)

Under the square approximation the transition along νb can not occur
because this variable is the stable one. Then νb x can not be defined. But
if the component νb is supersaturated over the pure plane liquid then the
condensation into the pure liquid is possible and νb x must exist. This shows
that the square approximation can not be used here.

The transition into the super critical region can occur under the arbi-
trary νa. But the probability of such transition is very low for all νa when
exp(−Fx(νa)) strongly differs from exp(−Fc), i.e. out of the critical region.
But it can be greater than the intensity to come to the next band. The
intensity of the establishing of the equilibrium (not the quasi equilibrium)
at the next band6 is less than the intensity of the transition over the ridge.
This intensity is given by

J = Js = nq0 exp(−Fx(νa))W+
bx/∆xνbπ

2 , (23)

where

W+
bx = W+

b (νa, νbx); ∆xνb = (
∂2F (νa, νb)

2∂ν2
b

)−1/2|νb=νbx
. (24)

5 The value ∆νb depends on νa weakly.
6 The intensity of transition to the next band.
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There is no need to establish the equilibrium along the whole band with
the small νa. The value of νbx for small νa can be very big, the barriers of the
nucleation can be very high, but it is necessary to have the equilibrium only
near the bottom, i.e. at νb near to νbe. The establishing of the equilibrium
along the whole pre-critical region of the band is necessary only for the bands
where the intensity of the transition to the post critical region is essential
(comparable with the intensity of the transition between the bands). Ac-
cording to the previous considerations there is the quasi equilibrium along
such bands.

Introduce the number of embryos in the band

N(νa) = nq0 exp(−F (νa, νb e))∆eνb , (25)

where

∆eνb =
νbx∑
νb=0

exp(−F (νa, νb) + F (νa, νbe)) (26)

has a sense of characteristic width. The last formula in a continuous limit
can be transformed to

∆eνb =
∫ νbx

0
exp(−F (νa, νb) + F (νa, νbe))dνb . (27)

At the ends of the interval of integration the equilibrium distribution
can be violated but there the subintegral function goes to zero. As far as
exp(−F ) as function of νb is rather sharp near the maximum then the number
of the embryos going from the band with νa to the band with νa − 1 can be
approximated by W−

a (νa, νbe)N(νa). The number of the forward transitions
is W+

a (νa− 1, νbe)N(νa− 1). Then one can write the balance equation at the
band

∂N

∂t
= W+

a (νa − 1, νbe)N(νa − 1) +W−

a (νa + 1, νbe)N(νa + 1) −
(28)

W+
a (νa, νbe)N(νa) −W−

a (νa, νbe)N(νa) − J(νa) .

For J(νa) one can get

J(νa) = N
W+
bx exp(F (νa, νbe) − Fx(νa))

∆eνb∆xνb
. (29)

One can see that the absence of the equilibrium distribution in the whole
pre-critical region is the characteristic feature of the transition far from the
saddle point.
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4.3 Valley zone and ridge zone

For every νa in the pre-critical region there will be νbe. The curve νbe(νa) will
be called the valley in νa, νb plane.

For every νa in the region under consideration there will be νbx. The
curve νbx(νa) will be called the ridge in νa, νb plane.

Since there is a slope of the ridge and the valley in νa direction it is
necessary to specify the set of variables.

In the set of variables κ, ξ the channel of nucleation is the straight analog
of a valley. But the channel of nucleation does not coincide with the the
valley in νa, νb plane.

The line analogous to the ridge, i.e. the ridge in κ, ξ plane will be the
separation line defined as

∂F (κ, ξ)

∂ξ
= 0

∂F (κ, ξ)

∂ξ
< 0

The values at the channel of nucleation here will be marked by the sub-
script h and at the separation line the values will be marked by the subscript
s.

We see that effectively the flow is directed along νb. The problem to
get J(νa) is purely a one dimensional problem. So, in the band νa = const
there exists the valley νb ≈ νb e zone and the ridge νb ≈ νb x zone. Precise
definitions are the following

• The ridge zone in νb scale is determined by conditions

F (νa, νb) ≥ F (νa, νbx) − 1

Certainly, F (νa, νb) ≤ F (νa, νbx). This zone has to be near the given
ridge.

• The valley zone in νb scale is determined by conditions

F (νa, νb) ≤ F (νa, νbe) + 1

Certainly, F (νa, νb) ≥ F (νa, νbe). This zone has to be near the given
valley.
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To find the value of the flow J(νa) one has to solve kinetic equation in the
ridge zone. To find the normalizing factor like it was done in heterogeneous
nucleation it is necessary to consider the valley zone and to solve kinetic
equation in this region.

The problem under consideration is the influence of the surface excesses on
the forms of the free energy in the ridge zone and the valley zone. Fortunately
some simplifying properties will be established below which help to escape
from the explicit inclusion of surface excesses in the kinetic equation.

For the ridge zone these properties are the following

• Define by the subscript 0 the values without surface excesses

• In the ridge zone for arbitrary s corresponding to the ridge zone

F (νa, νbx + s) − F (νa, νbx) ≈ F (νa, νbx0 + s) − F (νa, νbx0)

For the valley zone these properties are the following

• In the valley zone for arbitrary s corresponding to the valley zone

F (νa, νbe + s) − F (νa, νbe) ≈ F (νa, νbe0 + s) − F (νa, νbe0)

One can analogously define the channel zone and the separation zone.

• The separation zone is determined by conditions

F (κ, ξ) ≥ F (κ, ξs) − 1

The value of κ is fixed here. Certainly, F (κ, ξ) ≤ F (κ, ξs). The sepa-
ration zone has to be near the given separation line.

• The channel zone is determined by conditions

F (κ, ξ) ≤ F (κ, ξh) + 1

The value of κ is fixed here. Certainly, F (κ, ξ) ≥ F (κ, ξh). The channel
zone has to be near the given channel line.

One can analytically prove the following properties for the separation
zone
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• In the separation zone for arbitrary s corresponding to the separation
zone

F (κ, ξs + s) − F (κ, ξs) ≈ F (κ, ξs0 + s) − F (κ, ξs0)

One can analytically prove the following properties for the channel zone

• In the channel zone for arbitrary s corresponding to the channel zone

F (κ, ξh + s) − F (κ, ξh) ≈ F (κ, ξh0 + s) − F (κ, ξh0)

The method of a proof of all these properties is quite analogous to the
already presented for the near-critical region. These properties allow to solve
kinetic equations in these regions by some shift renormalizations and solu-
tions in the absence of the the surface excesses.

4.4 Discrete case

Consider the stationary solution. The last equations form the system of
algebraic equations. Note that the sufficient equations are those where W+

a N
has the order of J . The equations with W+

a N ≫ J can be taken into account
by the boundary condition n = nq = ne for νa which is less than some νamin,
where J begins to be comparable with W+

a N . More precisely this question
will be discussed later.

Formally one has to put this condition at ν ≪ νamin. Then one has to
solve equations and to see where the condition n ≈ ne will be violated. It is
very easy to do having calculated J(νa) on the base of ne to get

n ≈ ne −
∫ νa

−∞

J(ν ′a)dν
′

a

or having expelled the unphysical region

n ≈ ne −
∫ νa

1
J(ν ′a)dν

′

a

This will give the necessary estimate.
In the region where W+

a N ≪ J the solution is rather simple

n≪ ne . (30)
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This condition will be seen automatically at some νa and since n/ne is a
decreasing function of νa it will take place later. So, one has to investigate
only few equations of the type

W+
a (νa − 1, νbe)N(νa − 1) +W−

a (νa + 1, νbe)N(νa + 1)

(31)

−W+
a (νa, νbe)N(νa) −W−

a (νa, νbe)N(νa) = J(νa) .

The total flow is defined as

Jint =
νamax∑

νa=νamin

J(νa) , (32)

where νamax marks the upper boundary of the equations sufficient for the
consideration.

In the limit when there is only one sufficient equation7

Jint = W+
a

∫ νbx

0
n0 exp(−F (νa, νb))dνb = W+

a Ntot(νa) (33)

where the total number of droplets at νa is

Ntot(νa) =
∫ νbx

0
n0 exp(−F (νa, νb))dνb

The discrete situation is the most frequent one. But namely this situation
has not been considered earlier.

4.5 Differential model

Consider the opposite situation when among (31) there are so many equations
that it is difficult to solve the algebraic equations. Then it is reasonable to
come to the differential form. The condition of the validity of the differential
form coincides with the condition of the big number of the essential equations.
Then

J(νa) = − ∂

∂νa
{(W+

a (νa, νbe) −W−

a (νa, νbe))N(νa)} +

(34)

∂2

2∂ν2
a

{(W+
a (νa, νbe) +W−

a (νa, νbe))N(νa)} .

7 Having attained νa all embryos come automatically to the super critical region. Then
it is possible to write the expression for the transition on νb.
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With account of (29) one can get

N
exp(F (νa, νbe) − Fx(νa))

∆eνb∆xνb
W+
bx =

∂

∂νa
{(W+

a (νa, νbe)(1 − exp(
∂F (νa, νbe)

∂νa
)))N(νa)} + (35)

∂2

2∂ν2
a

{(W+
a (νa, νbe)(1 + exp(

∂F (νa, νbe)

∂νa
)))N(νa)} .

One can note that

• The hierarchy of the halfwidths of the near-critical region shows that
the quasi-unary nucleation in the square approximation in the neigh-
borhood of the saddle point is impossible.

So, the change of approximation to a linear one is absolutely necessary. This
conclusion is very essential for further consideration.

One can use the following approximations

J = J0 exp(cy) , (36)

y = νa − νa0 , (37)

c =
∂F (νa, νbe)

∂νa
|νa=νa0

− ∂F (νa, νbx)

∂νa
|νa=νa0

, (38)

J0 = J(νa)|νa=νa0
. (39)

It means that the linear approximation for F (νa, νbx)−F (νa, νbe) is adopted.
The supposition made in this paper radically changes from the supposition
of Trinkaus. This difference will be discussed in a special part of this paper.

One has to note that
∂F (νa, νbe)

∂νa

differs from
∂F (νa, νb)

∂νa

and
∂F (νa, νbx)

∂νa
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differs from
∂F (νa, νb)

∂νa
.

When we use ∂F (νa,νbe)
∂νa

we imply the differentiation along the bottom of a

valley. When we use ∂F (νa,νbx)
∂νa

we imply the differentiation along the top of
a ridge.

Then one can get

I exp(cy)N = −W+
a (1 − ǫ)

dN

dy
+W+

a (1 + ǫ)
d2N

2dy2
, (40)

where

I =
W+
bx exp(F (νa0, νbe) − Fx(νa0))

∆eνb∆xνb
, (41)

W+
a = W+

a (νa, νbe) , (42)

ǫ = exp(
∂F (νa, νbe)

∂νa
) . (43)

It is supposed that ǫ depends on νa rather weakly. We suppose that ǫ is
locally a constant value. This supposition is many times weaker than the
previous approximation.

Since ∂F (νa,νbe)
∂νa

is small the value of ǫ is close to 1 and 1− ǫ is very small.

Then the value 1 + ǫ is close to 2. Then the relative deviation of ∂F (νa,νbe)
∂νa

have no importance.
Then one can get

x = cy , N exp(x) + A
d2N

dx2
+B

dN

dx
= 0 (44)

with the known values of A, B.
After the transition to ψ̃ = exp(x) one can get

Aψ̃2N ′′ + (A+B)ψ̃N ′ + ψ̃N = 0 (45)

with the known solution

N = ψ̃−B/(2A)ZB/A(
2√
A
ψ̃1/2) , (46)

where Zi is the cylinder function. One has to choose the solution vanishing
at ∞.

The known value of N allows to determine the total intensity of the
embryo formation and the integral can be taken analytically.
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4.6 Applicability of solution

Our solution corresponds to the solution derived by H. Trinkaus in [9]. But
this correspondence is only a formal one. Recall the derivation by Trinkaus
in [9]. Trinkaus proposed the linearization of the free energy F (G in terms
of Trinkaus) around n̂2 (this value is analogous to νa0).

Now we shall analyze the possibility of linearization of F in the vicinity
of νa0. This linearization can be considered in the global sense and in the
local sense when linearization is done over one coordinate while the other
coordinate determines the values of coefficients in this linearization.

Linearization in the global sense can not exist because the second deriva-
tive at the ridge and the second derivative at the valley must have different
values. Only then the value of

∆F (νa) ≡ F (νa, νbx) − F (νa, νbe)

will be a real activation barrier. The exponent of the last value is the leading
term in the expression for the flow.

Linearization in the local sense can not be valid also. It is absolutely clear
that the linearization over νb can not be made because it is necessary to have
a valley and a ridge for F as a function of νb. So, it can not be linearized.
Another possibility is to fulfill linearization over νa while coefficients depend
on νb. The last possibility is the most preferable one.

The careful analysis of the last possibility shows the impossibility of lin-
earization. Really, since the ridge in νa, νb scale is relatively close to the
ridge in κ, ξ scale one can see that the behavior of F as a function of νa at
νb slightly greater than νbx is the following one: At first F increases until the
ridge in νa, νb will be attained. Later with increase of νb the value of F will
decrease. This behavior is the direct consequence of the slope of the channels
of nucleation in νa, νb plane. So, the linearization is impossible.

The only possible variables, in which the approximate local linearization
is valid are variables κ, ξ. One can see that there F can be linearized far
from the critical point

∂F (κ, ξ)/∂κ = 0

at every ξ. The linearization is made only along κ. But these variables have
not been even mentioned in [9].

It has been already analytically shown that we are far from the critical
point. Namely this allows the linearization in a local sense along κ.
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The critical point which is the nearest to the origin of coordinates is
situated in the channel in νa, νb picture. This is the real saddle point. But
since we are far from the main saddle point it means that we are far from
every critical point.

Now we shall see that the linearization of the free energy in κ, ξ variables
is possible. Really,

∂F (κ, ξ)

∂κ
= −bg(ξ) + 2κ−1/3/3

The second derivative is

∂2F (κ, ξ)

∂κ2
= −2κ−4/3/9

The size of characteristic region in which the linearization is necessary
can be estimated as

∆κ = (bg(ξ) − 2κ−1/3/3)−1

So, the necessary condition is

|(−bg(ξ) + 2κ−1/3/3)−22κ−4/3/9| ≪ 1

Since we are far from the critical point one can neglect the compensation in
(−bg(ξ) + 2κ−1/3/3) and get

|(2κ−1/3/3)−22κ−4/3/9| ≪ 1

or
κ−2/3 ≪ 1

The last inequality is evident.
The last property is important for our needs. We are interested in the

linearization of the free energy of the ridge and of the valley. Really, the
particular case of the last derivation is the possibility of linearization of F
along the ridge and the valley in κ, ξ scale, i.e. along the channel and along
the separation line.

The last step is to go from κ, ξ picture to νa, νb picture. We see that the
slope of the valley and the ridge in κ, ξ picture along κ is very small. Since
the slope is proportional to |∂F (κ,ξ)

∂κ
| it can be seen from

|∂F (κ, ξ)

∂κ
| = | − bg(ξ) + 2κ−1/3/3| ∼ 2κ−1/3/3 ≪ 1
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So, the characteristic distance where the height of the valley, the height of
the ridge and, thus, the height of the activation barrier (in fact it can be
proven that there is no compensation) undergo the variation of one thermal
unit is

D1 = κ1/3

One can see that D1 ≪ κ and it means that the relative size of the transition
region has to be small.

This slope has to compared with the characteristic halfwidth along νb or
the characteristic size D1 has to be compared with the half-width along ξ
multiplied on κ. We have

D2 = (
∂2F (κ, ξ)

2∂ξ2
)−1/2κ = (

∂2bg(ξ)

2∂ξ2
)−1/2κ1/2 ∼ κ1/2

We see that
D2 ≪ D1

The slope at the boundary of halfwidth is

∂2F (κ, ξ)

∂ξ2
D2/κ ∼ κ1/2

and it is rather essential.
We introduce the distance D3 where the slope

Sl =
∂2F (κ, ξ)

∂ξ2
D3/κ

2 ∼ D3/κ

has the order of the slope of the ridge ∂F/∂κ ∼ κ−1/3, i.e. κ−1/3. Then we
get

D3 ∼ κ2/3

We see that the order of D3 is the same as the order of D1 and it is relatively
small

D3 ≪ κ

It means that the deviation of the separation line in κ, ξ scale from the ridge
in νa, νb scale is relatively small.

Since Fh, Fs allow linearization as functions of κ or of νa we come to a
conclusion that the linearization of Fe, Fr, ∆F (this value is a function of
one variable) as a function of κ or of νa is quite possible.
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4.7 Simplified solution

Since ∂F (νa, νbe)/∂νa ≪ 1 one can put ǫ = 1. Then B = 0 and one come to
the universal solution

N ∼ Z0(
2√
A
ψ̃1/2) (47)

This is the universal function Z0 of the variable

2√
A

exp(cx/2)

Finally we get a universal solution.

4.8 Discussion

The multidimensional case is quite analogous to the two-dimensional one. In
the multidimensional nucleation one has to consider some channel of nucle-
ation. One has to extract the set of fast variables {νb} and the set of slow
variables {νa}.

For the set {νa = fixed} one can establish J{νa}
by the consideration of

the evolution in the set {νb}. It can be done by the standard methods from
the previous sections.

After the calculation of J{νa}
one can define the direction. It will be the

quasi-integral on νa. This defines the first coordinate. The second coordinate
is the direction of the bottom of the valley in the cross section {νb = const}.
The further consideration is absolutely analogous.

The new results formulated above are the following:

• In the paper of Trinkaus [9] only the differential case was considered.
The discrete case was not considered there. Really, the height of the
pseudo-activation barrier can change rather rapidly with increase of νa.
This leads to the preference of discrete model.

As for the half-widths of the bottom of the channel and of the top
of the ridge in calculation of J there are inequalities which guarantee
the possibility of the differential description. Really, these half-widths
increase like κ1/2 (see the standard estimates for the half-widths along
the stable variables). But if even these variables will be not so big
nothing will be changed because they variate slowly in comparison with
the exponent of the height of the pseudo-activation barrier. So, the
mathematical structure of the balance equation will be the same.
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• Here the surface limited growth is considered while in [9] the diffusion
limited growth was used. It seems that because the transition occurs
earlier than the saddle point will be attained the embryos are small
enough and the surface limited growth is preferable.

• It is shown that the absence of the equilibrium distribution in the pre-
critical region is the driving force of the transition far from the saddle
point. This fact stresses once more the importance of the formulation
of the boundary conditions and outlines the paper [8] where the bound-
ary conditions were used for the situation without hierarchy of kinetic
coefficients.

• The hierarchy of the halfwidths of the near-critical region (more ac-
curate the near-saddle region) shows that the quasi-unary nucleation
in the square approximation in the neighborhood of the saddle point
is impossible. So, the change of approximation to a linear one is ab-
solutely necessary. Moreover, it is impossible to see the transition of
the Stauffer’s solution to Trinkaus’ one on the analytic level of explicit
formulas.

Beside the mentioned disadvantages of the differential approach one can
mention the disadvantage connected with the position of the basic point ν∗a
for decompositions of the height of the ridge and depth of the valley. An
ordinary chosen point for such decompositions is

W+
a = J(νa)/N(νa) (48)

The presence of this point awakes the idea of the Genuine Saddle Point [11].
It is reasonable to put the point of decomposition at

n(ν∗a) = neq(ν
∗

a)/2 (49)

The shift between ν∗a determined by (48) and (49) will be called ”the soft
shift”.

The greater is |c|−1, the greater is the soft shift. But the applicability of
differential approach requires

|c| ≪ 1

The last parameter ordinary comes from two decompositions: one of the
height of the ridge8

Fr(νa) = Fr(νa0) + kr(νa − νa0)

8Take a cross section {νb = const}.
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with parameter kr and another of the depth of the valley9

Fe(νa) = Fe(νa0) + ke(νa − νa0)

with parameter ke.
Ordinary

ke > 0

(the opposite sign means that the saddle point is already behind)

kr < 0

(the opposite sign means that energetically it was more profitable to cross
the ridge earlier10). Then in

J ≃ J0 exp(−kr(νa − νa0) + ke(νa − νa0)) = J0 exp(c(νa − νa0))

parameters ke and kr can not be compensated. Ordinary both linear approx-
imations are necessary.

Then the condition |c| ≪ 1 leads to

|kr| ≪ 1

|ke| ≪ 1

Under the last two inequalities one can see that N becomes many times
less than the equilibrium value N eq much earlier than νa = νa0 and the
transition is actually over. So, the point of decompositions has to shifted.

The shift of decompositions has to lead to the basic point situated at the
position characteristic for the relatively intensive flow. One of the possible
recipes is to choose the point ν∗a of decomposition according to

N(νa)W
+
a =

∫ ν∗a

0
Jdν ′a

The last condition can be approximately rewritten as

W+
a =

1

|kr| + |ke|
1 − J(ν∗a)

N

9Take a cross section {νb = const}.
10Then the cross of the ridge can not disturb the equilibrium distribution. So, the flow

is known.
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One can start instead of νa = 0 from infinity and get a similar estimate. Also
it is reasonable to consider

W+
a =

1

|kr| + |ke|
J(ν∗a)

2N

as the point for decompositions.
Here naturally appears the length ∆ of the region where the transition

occurs. It can be estimated as

∆ =
1

|kr| + |ke|

So, the soft shift can be greater than this region.
We continue to consider the problems of the differential approach.

• Another problem is the smallness of |ke|, |kr|. Because of the monotonous
character of derivatives of the free energy along channels and ridges it
can be attained only near the saddle point. But here the square approx-
imation has to be used and the Stauffer’s solution will be the answer.

Certainly, if the value of νa is extremely big one can observe small
values of derivatives rather far from the saddle point. But, although
even here the discrete approach is preferable as it will be shown later.

Now the simplified approximate method for continuous case will be pre-
sented. In equation

d2N

dx2
− ke

dN

dx
= N

exp(Fr − Fe)

∆νe∆νr

W+
bx

W+
a

one can put ke
dN
dx

to zero because of the smallness of |ke|.
Also because of the smallness of |ke|, |kr| one can put very approximately

exp(Fr − Fe)

∆νe∆νr

W+
bx

W+
a

to some constant (let it be I0). Then

d2N

dx2
= NI0
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Solution of the last equation is evident

N = A exp(−
√
I0x) +B exp(

√
I0x)

The requirement N → 0 at x→ ∞ leads to

N = A exp(−
√
I0x) (50)

But this solution has a bad behavior at x → −∞. So, in this region one
has to use another approach. At x → −∞ the flow is very small and N is
approximately equal to the equilibrium value Neq. Then

d2N

dx2
− ke

dN

dx
= Neq

exp(Fr − Fe)

∆νe∆νr

W+
bx

W+
a

Then approximately

N = Neq −
∫
Jdx

or

N = Neq −
∫
Neq

exp(−(|ke| + |kr|)x)
∆νr∆νe

dx
W+
bx

W+
a

With the evident approximation for the equilibrium value Neq:

Neq = N∗ exp(−|ke|x)

with parameter N∗ = Neq(x = 0) one can get

N = Neq −N∗

∫ exp(−|kr|x)
∆νr∆νe

dx
W+
bx

W+
a

Since one can approximately take ∆νr∆νe as a constant value there are no
problems with integration. So,

N = Neq −N∗

1 − exp(−|kr|x)
|kr|∆νr∆νe

W+
bx

W+
a

These two solutions (let it be N1 and N2) have to be stuck together at
the point where

N1 = N2
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Another method can be formulated if we notice that (50) is valid namely
locally because it was derived with a supposition I0 = const. So, we have to
go to the local form by differentiation of (50) which gives

dN

dx
= −NI0

This equation can be integrated with arbitrary I0 which leads to

N ∼ exp(−
∫
I0(x

′)dx′)

When the evident known functional form

I0 ∼ exp(cx)

is taken, one can come to

N ∼ exp(−I00
c

exp(cx))

with parameter I00. Certainly, parameters I00 and c can be considered here
as the fitting parameters.

The functional form announced above resembles Θ-function with a soft
transition from 1 to 0. We shall call it as a soft Θ-function and denote it by

S(x) = exp(− exp(x))

This function can be used as a brick in an ansatz

Q =
∑

AiS(ai(x− xi))

which can be very effectively used as an approximate solution in all situations
considered below in this paper.

5 Interaction of valleys

5.1 Coordinates of valley in the νa, νb coordinate sys-

tem

The coordinate of the valley is given by the condition

∂F (νa, νb)

∂νb
= 0
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The straight differentiation of the free energy gives

∂F

∂νb
=
dγ

dξ

∂ξ

∂νb
S + γ

2

3
S−1/2[vb +

∂va
∂ξ

νa
∂ξ

∂νb
+
∂vb
∂ξ

νb
∂ξ

∂νb
]

−bb − [
∂ba
∂ξ

νa
∂ξ

∂νb
+
∂bb
∂ξ

νb
∂ξ

∂νb
]

where S is the surface square of the embryo. In simplest approximation it
can be written as

S = (vaνa + vbνb)
2/3

The standard Gibbs-Duhem’s equation looks like

νadba + νbdbb = 0

and leads to

[
∂ba
∂ξ

νa
∂ξ

∂νb
+
∂bb
∂ξ

νb
∂ξ

∂νb
] = 0

This brings the condition for the valley coordinate to

∂F

∂νb
=
dγ

dξ

∂ξ

∂νb
S + γ

2

3
S−1/2[vb +

∂va
∂ξ

νa
∂ξ

∂νb
+
∂vb
∂ξ

νb
∂ξ

∂νb
] − bb

But due to the surface enrichment the concentration differs from

ξ =
νa

νa + νb

and has to be

ξ =
νa − S̺a

νa − S̺a + νb − S̺b

Then the Giibs-Duhem’s equation looks like

Sdγ + νadba + νbdbb = 0

and leads to
dγ

dξ

∂ξ

∂νb
S + [

∂ba
∂ξ

νa
∂ξ

∂νb
+
∂bb
∂ξ

νb
∂ξ

∂νb
] = 0

and
∂F

∂νb
= γ

2

3
S−1/2[vb +

∂va
∂ξ

νa
∂ξ

∂νb
+
∂vb
∂ξ

νb
∂ξ

∂νb
] − bb
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The careful analysis of the generalization of the Gibbs-Duhem’s equation
for the embryos shows that the terms

∂va
∂ξ

νa
∂ξ

∂νb
+
∂vb
∂ξ

νb
∂ξ

∂νb

have to vanish together with

dγ

dξ

∂ξ

∂νb
S + [

∂ba
∂ξ

νa
∂ξ

∂νb
+
∂bb
∂ξ

νb
∂ξ

∂νb

Really, the Kelvin’s relation in the saddle point requires that

ba
va

=
bb
vb

(51)

The direct calculation with a non zero value of the last terms gives

bb

[vb + ∂va

∂ξ
νa

∂ξ
∂νb

+ ∂vb

∂ξ
νb

∂ξ
∂νb

]
= γ(36π)1/22

3
S−1/2 =

ba

[va + ∂va

∂ξ
νa

∂ξ
∂νa

+ ∂vb

∂ξ
νb

∂ξ
∂νa

]

and one can come to (51) only if these terms vanish.
Generally speaking the Gibbs-Duhem’s equation has to written in the

form∑
(differentials of all intensive variables)∗(corresponding intensive variables) = 0

Particularly

Sdγ + νadba + νbdbb + νadva + νbdvb = 0

Then

dγ

dξ

∂ξ

∂νb
S + γ

2

3
S−1/2[

∂va
∂ξ

νa
∂ξ

∂νb
+
∂vb
∂ξ

νb
∂ξ

∂νb
] − [

∂ba
∂ξ

νa
∂ξ

∂νb
+
∂bb
∂ξ

νb
∂ξ

∂νb
] = 0

and
∂F

∂νb
= γ

2

3
S−1/2vb − bb

One can see that the concentration of valley satisfies the condition

γ
2

3bb(ξ)
(va(ξ) + vb(ξ

−1 − 1))−1/3 = ν1/3
a

and it is not a constant value. Moreover, it is evident that valleys in the
νa, νb system of coordinates do not coincide with channels in κ, ξ system of
coordinates. They coincide only in saddle points. The valleys in νa, νb system
can appear and disappear, their position in the absence of hierarchy of kinetic
coefficients means nothing.
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5.2 Asymptotics at νb → ∞, νa − fixed

The necessary condition of applicability of solution of Trinkaus is the limit

νb → ∞, νa = fixed F → −∞

The explicit calculation gives

νb → ∞, νa = fixed F → −bbζb

So, it is necessary that ζb > 0. But the last condition is not a necessary
condition for nucleation in a gas mixture. The necessary condition is the
existence of concentration ξ for which the function baξ+bb(1−ξ) is negative.
So, there exists a situation when there is no behavior necessary for application
of the Trinkaus’ solution.

When bb > 0 one can see the asymptotic wing with a negative slope. It
will be called simply as ”wing”.

Otherwise there can be a situation when even with bb > 0 nucleation
can go from one valley to another (may be more deep) valley and further no
transition to νb → ∞, νa = fixed will take place because of the height of a
new (further) ridge.

In the case of purely supersaturated vapor of components the wings have
to be included in the general picture of relief of the free energy.

5.3 Two valleys. Kinetic equation

The previous consideration shows that the most ordinary situation is the
jump of embryo from one valley to the neighbor one. In one valley (let it be
called as the ”source valley” and marked by the subscript −) the embryos are
in the pre-critical region (i.e. κ < κc) and in the other valley (let it be called
as the ”destination valley” and marked by the subscript +) the embryos are
in the post-critical region (i.e. κ > κc). The transitions take place along
lines νa = const. Since the increase of νb leads to the increase of κ it is quite
possible.

The values of νb at the ridge will be marked as νbr. The values of νb at
the bottom of the source valley will be marked as νbe− and the values of νb at
the bottom of the destination valley will be marked as νbe+. All these values
are taken in the νa, νb coordinate system.
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Kinetic equations are rather transparent and look like

dN−

dt
= W+

as(νa − 1, νbe−)N−(νa − 1) −W+
as(νa, νbe−)N−(νa)

(52)

+W−

as(νa + 1, νbe−)N−(νa + 1) −W−

as(νa, νbe−)N−(νa) − J−(νa) + J+(νa)

dN+

dt
= W+

ad(νa − 1, νbe+)N+(νa − 1) −W+
ad(νa, νbe+)N+(νa)

(53)

+W−

ad(νa + 1, νbe+)N+(νa + 1) −W−

ad(νa, νbe+)N+(νa) − J+(νa) + J−(νa)

Here N− and N+ are the numbers of embryos with given νa in a valley (in
νa, νb system of coordinates), W+ and W− are direct and inverse absorption
coefficients, J− is the flow from the source valley to the destination valley,
J− is the flow from the destination to the source valley (the inverse flow).

We shall investigate the stationary solution.
One has to take into account that W+

a and W−

a are functions of νb. They
are taken at νb equal to the values at the bottom of valley. This can be done
because of the relative narrowness of valleys which goes from representation
in κ, ξ variables.

5.4 Two valleys. Direct and inverse flows

The values of flows J− and J+ are given by the standard formulas

J− = N−

exp(−Fr + Fe−)

∆rνb∆e−νb
W+
bx

J+ = N+
exp(−Fr + Fe+)

∆rνb∆e+νb
W+
bx

Here Fr is a free energy of the embryo at the ridge (in νa, νb coordinates),
Fe− is the free energy of the bottom of the source valley in νa, νb coordinate
system, Fe+ is the free energy of the bottom of the destination valley in νa,
νb coordinate system.

The value of ∆rνb is given by

∆rνb =
νbr2∑

νb=νbr1

exp(−Fr + F (νa, νb))
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Here νbr1 and νbr2 are chosen as roots of equation

F (νa, νb) = (2Fr + Fe+ + Fe−)/4

closest to νbr and
νbr1 < νbr < νbr2

The value of ∆e−νb is given by

∆e−νb =
νbe−2∑

νb=νbe−1

exp(Fe− − F (νa, νb))

Here νbe−1 and νbe−2 are chosen as roots of equation

F (νa, νb) = (Fr + Fe−)/2

closest to νbe− and
νbe−1 < νbe− < νbe−2

The value of ∆e+νb is given by

∆e+νb =
νbe+2∑

νb=νbe+1

exp(Fe+ − F (νa, νb))

Here νbe+1 and νbe+2 are chosen as roots of equation

F (νa, νb) = (Fr + Fe+)/2

closest to νbe− and
νbe+1 < νbe+ < νbe+2

In continuous approximation one can get the following equations

∆rνb =
∫ νbr2

νb=νbr1

exp(−Fr + F (νa, νb))dνb

∆e−νb =
∫ νbe−2

νb=νbe−1

exp(Fe− − F (νa, νb))dνb

∆e+νb =
∫ νbe+2

νb=νbe+1

exp(Fe+ − F (νa, νb))dνb

One can prove that in frames of inequalities lying in the base of capillary
approximation the continuous approximation is valid. One can also prove
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that in the absence of peculiarities in behavior of the free energy it is possible
in the capillary approximation to use the square approximation with infinite
limits for calculation of the mentioned values. This gives

∆rνb =
√
π(−1

2

∂2F (νa, νb)

∂ν2
b

|νb=νbr
)−1/2

∆e−νb =
√
π(

1

2

∂2F (νa, νb)

∂ν2
b

|νb=νbe−
)−1/2

∆e+νb =
√
π(

1

2

∂2F (νa, νb)

∂ν2
b

|νb=νbe+
)−1/2

One can rewrite equations for J− and J+ as following

J− = N−I−

J+ = N+I+

where I+ and I− are independent on N+, N−.
Already now one can fulfill the qualitative analysis of the kinetic equa-

tions.

5.5 Qualitative analysis of the kinetic equations

Consider the region of νa where W+
a (νa, νbe−) ∼ I−. It is easy to see that at

νa corresponding to the possible transition from one valley to another

W+
a (νa, νbe−) < W−

a (νa, νbe−)

(otherwise the saddle point in the source valley is already over)

W+
a (νa, νbe+) > W−

a (νa, νbe+)

(otherwise it will be necessary to overcome the saddle point in the destination
valley and it will cause the establishing of the equilibrium distribution until
the height of the saddle point; moreover there is a straight way without
barriers to the origin of coordinates).

It means that
F (νa, νbe−) < F (νa + 1, νbe−)

F (νa, νbe+) > F (νa + 1, νbe+)
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Moreover one can see that

F (νa, νbr) > F (νa + 1, νbr)

(otherwise it is more profitable to overcome the ridge earlier at smaller νa).
Practically in the main order

I−
I+

= exp(+Fe− − Fe+)

The ratio I−/I+ governs the evolution of the process. One can see two
characteristic situations here

• Situation
I− ≫ I+

Here one can see that the solution of the previous section can be directly
applied. The destination valley do not affect the distribution in the
source valley. So, one can put J+ = 0 and split the system of equations.
Only the first equation is essential and solution is really the solution in
the situation discussed above.

• Situation
I− ≪ I+

This situation has no analogs and has to be considered separately.

5.6 Situation

I− ≪ I+

One can approximately put

W+
a (νa, νbe−) ≃W+

a (νa, νbe+)

This is taken only for simplicity.

Approximately, the condition of the beginning of the jump of embryos,
which changes N− is the following

I− ≥W+
a (νa, νbe−)
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Then
I+ ≫W+

a (νa, νbe−)

Then the second equation of the system becomes the following

J− = J+

and we have locally in a rough approximation

dN−

dt
= W+

a (νa − 1, νbe−)N−(νa − 1) −W+
a (νa, νbe−)N−(νa)

(54)

+W−

a (νa + 1, νbe−)N−(νa + 1) −W−

a (νa, νbe−)N−(νa)

Then
N−

∆e+νb
=

N+

∆e−νb
exp(−Fe− + Fe+)

and approximately
N+

N−

= exp(Fe− − Fe+)

The point where
I− ≈W+

a (νa, νbe−)

will be marked as νa = y0. When νa increases one has

I− ≫W+
a (νa, νbe−)

I+ ≫W+
a (νa, νbe−)

This ensures the quasi-equilibrium and actually the common valley.
Later one attains y1 where

Fe−(y1) = Fe+(y1)

For νa > y1 one has
I− ≫ I+

J− = J+

N+ ≫ N−
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It will be until y2 defined by condition

I+(y2) = W+
a (νa = y2, νbe−)

(also the soft shift has to be added). Later all remaining embryos from
the source valley go into the destination valley. But their total quantity
is already rather small. So, we need not to consider this process in
details.

The main conclusion results in the appearance of the common valley
with a new free energy F0. Here there is no connection with the absence
of excesses. This free energy can not be defined separately from the
width of the equilibrium distribution, only the ratio

exp(−F0)/∆e0νb

can be determined. But namely this ratio is the equilibrium distribu-
tion and in the expression for the nucleation rate.

The last ratio can be determined from

exp(−F0)

∆e0νb
=

exp(−Fe−)

∆e−νb
+

exp(−Fe+)

∆e+νb

Very approximately one can say that

exp(−F0)

∆e0νb
=

exp(−Fe−)

∆e−νb

when Fe− < Fe+ and

exp(−F0)

∆e0νb
=

exp(−Fe+)

∆e+νb

when Fe− > Fe+.

5.7 Intermediate situation

• Intermediate situation is very rare because it can take place only under
the simultaneous realization of two equations

I− = I+
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and
I− = W+

a (νa, νbe)

(also the soft shift has to taken into account). But this case in the
only one where the interaction of valleys and the exhaustion of the
equilibrium distribution play simultaneously.

Solution of this situation is rather simple - it is necessary to solve the
system of several algebraic equations. At small

νb < y0

where
W+
a (νa, νbe−) ≫ I−

one has to use the boundary condition

N− = N−eq ∼ exp(−F (νa, νbe−)/∆e−νb

N+ ≪ N+eq ∼ exp(−F (νa, νbe+)/∆e+νb

At big
νb > y0

where
W+
a (νa, νbe−) ≪ I−

one has to use another boundary condition

N− ≪ N−eq

I+ = 0

if it will be necessary. So, the task is to solve several simple alge-
braic equations. Certainly, the discrete approach is preferable in the
computation.

To come to the continuous approximation one has to change the finite
differences for derivatives which approximately leads to the following kinetic
equations

∂N−

∂t
= W+

a (νa, νbe−)[ke−
∂N−

∂νa
+
∂2N−

∂ν2
a

] − J−(νa) + J+(νa)
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∂N+

∂t
= W+

a (νa, νbe+)[
∂2N+

∂ν2
a

+ ke+
∂N+

∂νa
] − J+(νa) + J−(νa)

Here

ke− = −(1 − exp(∂F (νaνbe−)/∂νa)) ≈ ∂F (νaνbe−)/∂νa

ke+ = 1 − exp(∂F (νaνbe+)/∂νa) ≈ −∂F (νaνbe+)/∂νa

Continuous approximation can not be widely spread but can be applied
only in rather specific situations. The reasons are similar to those described
in analysis of the Trinkaus’ solution. The proximity of dFr/dνb and both
dFe+/dνb and dFe−/dνb to zero means the proximity to the saddle point
where the linear approximation fails.

The simple approximate method is the iteration one - the values J− and
J+ are calculated on the base of previous approximations and they are treated
as known functions. Initial approximations are following:

• when the source valley are deeper than the destination one, then there
is the quasi-equilibrium.

• when the destination valley are deeper than the source one, then there
is the Trinkaus’ solution or the corresponding simplified solution.

This method is very effective and leads to a rather precise solution after
one or two iterative steps.

It is necessary to stress here the effectiveness of the method based on the
ansatz with the soft Heavisaid’s functions.

The main result of this section which was the goal of the whole publication
is the radical change of the nucleation rate. The main goal is achieved - the
change of the nucleation rate in the orders of magnitudes is shown. One
can also see that the rate of nucleation does not depend on the free energy
in saddle point but on the mutual position of valleys and ridges and their
relative heights. Certainly, the problem to find the nucleation rate includes
now the determination of many characteristics and is more complex than
in the theories suggesting the recipes based on the value of the free energy
in one point. The theory presented here has to be used in order to get
the true value of the free energy. Now the problem is transformed in the
thermodynamic area - it is necessary to find the free energy of the embryo
formed in the mixture of vapors. This problem is complex enough to continue
investigations of the binary and multicomponent nucleation.
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6 Paths of transition

Now one can return to the general situation to see how the real transition
from the pre-critical region to the post-critical region will occur.

The problem is to see where the real change of the channels will take
place. This problem will be solved here. So, here the analysis will be mainly
qualitative. All details of transition between channels will be a subject of a
separate analysis.

6.1 Approximate position of the valley

To get the approximate position of valley and the ridge one can act without
surface excesses.

Consider the channel in coordinates νa, ξ. Then

νa = κ/p(ξ)

where p(ξ) is a known function and

F = −B(ξ)p(ξ)νa + p2/3(ξ)ν2/3
a

The coordinate of the valley is given by condition

∂F

∂ξ
= 0

or

−B′(ξ)p(ξ)νa −B(ξ)p′(ξ)νa +
2

3
p2/3(ξ)ν−1/3

a p′(ξ) = 0

At the saddle point

−B(ξ)p′(ξ)νa +
2

3
p2/3(ξ)ν−1/3

a p′(ξ) = 0

and the saddle point of valley coincides with the saddle point of the channel
line, since

B′(ξ) = 0

Asymptotically at νa → ∞ one can get

−B′(ξ)p(ξ) −B(ξ)p′(ξ) = 0
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One can see that the function p is rather smooth while B is rather sharp.
This condition is a definition of a ”clear channel”. Then one can neglect
B(ξ)p′(ξ) in comparison with B′(ξ)p(ξ). This leads to

−B′(ξ)p(ξ) = 0

and because of p 6= 0 the last equation coincides with the coordinate of the
channel. So, we see that the valley is near the channel line for every νa.

To see the behavior at moderate νa near the critical values one can note
that p′ attains a moderate value. Really

p′ =
∂2κ

∂ν2
a

∼ 1

(we choose the space scale to have the volume for a molecule in a liquid phase
the order of 1). Then one has to take into account that

κc = 2/(3max B(ξ)) ≫ 1

requires max B ≪ 1 Then the term B(ξ)p′(ξ)νa has a small parameter. The
term p−1/3(ξ)ν−1/3

a p′(ξ) has the same order as B(ξ)p′(ξ)νa and, thus, is small.
This reduces the coordinate of a value to coordinate of a channel.

The same analysis can be done for every ridge. The general approximate
conclusion is that every separation line corresponds to the ridge and their
coordinates are similar.

At νa → 0 and κ→ 0 the leading term is

2

3
p2/3ν2/3

a p′

which means that the valley does not exist. So, the valley can not directly
start at νa = 0 in continuous approximation. Fortunately, ordinary this effect
takes place at νa less than 1.

All above considerations are very approximate and they are used only to
see that qualitatively nothing is changes when we consider valleys instead of
channels.

Approximately speaking every channel corresponds to one valley, their
coordinates are rather similar.

Precisely speaking one can see many specific peculiarities, for example,
the appearance of valleys without corresponding channels. But the proba-
bility of such peculiarities is very low. As a rule these valleys are not deep
enough and can be treated as negligible ones.
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6.2 Transition zones

Consider the pair of valleys.
Every valley (index v) can be considered as a source valley (s). Every

valley can be considered as a destination valley (d). One can imagine many
pairs of source and destination valleys. Every pair has to be investigated.

At first we consider the situation when the channels are neighbor ones.
The ridge is the maximum of F at the band νa = const between the con-
centration ξs of a source valley and the concentration ξd of a destination
valley.

We define Fv as the free energy at the valley, Fr the free energy at the
ridge.

Now we shall make use from the approximate functional form for Fr, Fv
established above

F = const1ν
2/3
a − const2νa

One can see the following facts

• Every valley has only one critical νavc point determined by

dFv/dνa = 0

• One can define the pre-critical region of the valley where dFv/dνa > 0
and post-critical region of valley where dFv/dνa < 0. There is only one
pre-critical region with a size νa < νavc and a post-critical region where
νa > νavc.

• Every ridge has only one critical νavc point determined by

dFr/dνa = 0

• One can define the pre-critical region where dFr/dνa > 0 and post-
critical region of ridge where dFr/dνa < 0. There is only one pre-critical
region with a size νa < νarc and a post-critical region where νa > νarc.

The real effect on the nucleation rate occurs when there is a transition
from the pre-critical part of the source valley to the post-critical part of a
destination valley. Transition from the post-critical part is useless because
the embryos can simply continue to grow, they already overcame the barrier.
So, there is no need to overcome another one barrier and this case is out of
our interest.
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At first we suppose that in the whole pre-critical part of the destination
channel there is an equilibrium distribution. It means that there is no further
change of channels and the destination channel will be the final destination
channel. So, there is only one cascade - only one change of the channel. We
shall call such processes as one-cascade processes.

One can choose components in such a way that the first component is a
rapid one.

Consider the regions where the probability to change the channel is greater
than to increase the value of slow components in the old channel. This cor-
responds to condition

Wsl ≤W1Z1 exp(Fr − Fs)

Here the kinetic coefficient Wsl is the total kinetic coefficient of all slow
components, W1 is the kinetic coefficient of a rapid component and Z1 is
the corresponding Zel’dovich factor for transition over the ridge. The last
inequality can be expressed in terms of the Fr − Fv as

Fr − Fv ≤ ln(Wsl/(W1Z1)) ≡ ∆t

The rhs is a very slowly varying function. Approximately it is a constant.
Consider

∆ = Fr − Fv

According to the approximate formulas the function ∆(νa) has the second
derivative

d2∆

dν2
a

= −[p2/3(ξr) − p2/3(ξv)]
2

9
ν−4/3
a

which has a constant sign.
Thus, ∆ has no more than maximum (it will be marked by the index

”m”).
Certainly, the condition Fr − Fv = ∆t depends on the scale of νa. It is

necessary to choose the scale of νa-axis to have

d∆/dνa ∼ 1

at ∆ ≃ ∆t. Since ∆ is not a too sharp function of νa, it is easy to do. The
condition ∆ < ∆t can be valid no more than in two zones: one before νam
another later νam. Namely, in intervals

[0, νat−], [νat+,+∞]
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the last condition is valid.
One can make the following notes:

• The second interval [νat+,+∞] can be absent when

B(ξr)p(ξr) < B(ξs)p(ξs)

• The first interval also can be effectively (not precise) absent when
νat− < 1 which occurs rather often.

• One can come to the situation when valleys are purely isolated.

• One has to keep in mind that the approximate formulas take place only
at big νa.

The interval [0, νat−] will be called as the ”pre-transition zone”, the in-
terval [νat+,+∞] - as the ”post-transition” zone.

Consider the question about the mutual position of the destination and
the source channels. The definition of κ as even without microscopic correc-
tions (

∑
νivi)γ

3/2 contains γ and vi and is a very complex function. But in
the majority of situations the increase of νa (other νi are fixed) causes the
increase of κ. We shall imply this property to take place. This property will
be referred as the property of κ-convexity. The line κ = const as a function
of νa is convex.

Certainly, in real systems there can be concave regions, where the growth
of νa leads to the change of concentration, the partial volumes change, the
surface tension change and the value of κ falls. But this situation is exclusive.

Under the property of convexity one can see that the transition will be
carried out only by addition of molecules of the first component (ejection is
not possible) and will go from the left side to the right side in νa, νb plane.

The precise position of boundaries have to be defined with surface ex-
cesses. Also a shift connected with a special renormalization has to be taken
into account.

6.3 Nucleation conditions and supplying conditions

Here we shall mark νa by x.
Conditions for the possibility of nucleation through the post-transition

zone are the following ones
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• Transition has to be effective, i.e. there has to be a region in the
post-critical region in a destination valley x > xdc where Fd(x) < Fsc
Certainly this region looks like

[xb,+∞]

and the beginning of this region has to be smaller than xsc:

xb < xsc

• Transition has to be opened, i.e.

xt+ < xsc

The beginning of transition will be at

xw = max{xb, xt+}

There are two possibilities at xw:

• The first possibility
Fd(xw) > Fs(xw)

Here the common valley will be formed and the most effective transition
will be at xu defined as

Fd(xu) = Fs(xu)

• The second possibility

Fd(xw) < Fs(xw)

Here the transition from valley to valley occurs like a falling from the
high channel to the low channel. Solution looks like the Trinkaus’ one.

To see the real process of the channel transition it is necessary to have
corresponding conditions at the beginning of transition. These conditions
have to be the equilibrium conditions. It is necessary that earlier in the
valley there would be no possibility to escape from the valley. One has to
analyze such possibility.

To see the transition in the pre-transition zone it is necessary that two
conditions take place
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• The first condition:
Fd(x) < Fs(xw)

• The second condition:

Transition has to lead to the post-critical region in the destination
valley.

We are interested to avoid such intensive transition which can destroy the
equilibrium conditions at xw.

Since Fd has to be at the post-critical region, it is a decreasing function
of x and it is sufficient to check condition at the boundary:

Fd(xt−) < Fs(xw)

In this situation the intensity of the valley transition in the pre-transition
zone is so big that there is no equilibrium condition for the transition in the
post-transition zone.

Since the transition in the pre-transition zone has to lead to the post-
critical zone then the peak of Fd lies inside the transition through the pre-
transition zone. So, since

maxFd > maxFs > Fs(xw)

the transition occurs in a manner of common channel and the real transition
takes place at xp when

Fd(xp) = Fs(xp)

if
xp < xt−

If at
x = xt−

we have
Fd > Fs

the most intensive transition takes place at xt−. This situation is more prob-
able than the precedent one.

What has to be done when the condition

Fd(xt−) > Fs(xt−)
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takes place?
Certainly, the transition can take place out of pre-transition and post-

transition zones but with a very low probability. To take into account this
possibility one has to add to Fs the quantity Fr − Fs − ∆t, i.e. to go from
Fs to Fr − ∆t. This has to be done out of pre- and post-transition zones.

The point of transition will be near the root of equation

Fd = Fr − ∆t

Let it be at x = xy.
This transition can not violate the equilibrium. So, the transition in the

post-transition zone is not destroyed and intensities of this transition and
transition in the post-transition zone have to be compared (added).

We shall call this transition as ”the saturation transition”.
Here the transition is going across the ridge into the valley. The surface

excesses can be taken into account very simply by noticing that the forms of
ridge and valley profiles remain the old ones and only the shifts of profiles as
a whole take place due to the account of excesses.

6.4 Details of the saturation transition

Solution of the saturation transition is rather simple. Consider at first the
general situation. Let nd(νa) be the embryos number density in a destination
valley, ns(νa) be the embryos number density in a source valley, The evolution
equation for the source valley looks like

∂ns
∂t

= − ∂

∂νa
W+
asn

e
s(νa)[

ns(νa)

nes(νa)
− ns(νa + 1)

nes(νa + 1)
]−

ns
Zs
∆s

exp(−Fr + Fs)W
+
bx + nd

Zd
∆d

exp(−Fr + Fd)W
+
bx

Here Wa is kinetic coefficient, ne is the equilibrium distribution, the flow

ns
Zs
∆s

exp(−Fr + Fs)W
+
bx

is the flow from the source valley to the destination valley and

nd
Zd
∆d

exp(−Fr + Fd)W
+
bx
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is the flow from the destination valley to the source valley. The value Z is
the Zeldovich’ factor, ∆ is the normalizing factor.

Analogously one can write equation for the destination valley

∂nd
∂t

= − ∂

∂νa
W+
adn

e
d(νa)[

nd(νa)

ned(νa)
− nd(νa + 1)

ned(νa + 1)
]+

ns
Zs
∆s

exp(−Fr + Fs)W
+
bx − nd

Zd
∆d

exp(−Fr + Fd)W
+
bx

In continuous approximation

∂ns
∂t

= W+
as[

∂2

∂ν2
a

ns(νa) +
∂Fs
∂νa

∂

∂νa
ns(νa)]

(55)

−ns
Zs
∆s

exp(−Fr + Fs)W
+
bx + nd

Zd
∆d

exp(−Fr + Fd)W
+
bx

for the source valley and

∂nd
∂t

= W+
ad[

∂2

∂ν2
a

nd(νa) +
∂Fd
∂νa

∂

∂νa
nd(νa)] −

(56)

nd
Zd
∆d

exp(−Fr + Fd)W
+
bx + ns

Zs
∆s

exp(−Fr + Fs)W
+
bx

for the destination valley.
One can assume that

∂Fd
∂νa

= vd
∂Fs
∂νa

= vs

are constants. Also it can be assumed that the linear approximations

− Fr + Fd = Adx+ C̃d (57)

− Fr + Fs = Asx+ C̃s (58)

for x = νa − νa0 are valid. Here νa0 is some parameter chosen as to belong
to effective region of transition.

Then the stationary solutions will satisfy the system of equations

∂2

∂x2
ns + vs

∂

∂x
ns − Csns exp(Asx) + Cdnd exp(Adx) = 0 (59)
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∂2

∂x2
nd + vd

∂

∂x
nd − Cdnd exp(Adx) + Csns exp(Asx) = 0 (60)

with
Cs = exp(C̃s)ZsW

+
bx/∆sWas

Cd = exp(C̃d)ZdW
+
bx/∆dWad

In the second solution because the region in the destination valley is the
super-critical one it is possible to neglect ∂2

∂x2nd. Then the second equation
is the linear first order differential equation with a known solution. Then
after the substitution the first equation becomes the closed the closed equa-
tion. Since solution of (60) contains the integral then to get the differential
equation it will be necessary to differentiate (59) one time and the resulting
differential equation will have the order 3. It can not be solved at least in
elementary functions. So, it is necessary to consider simplification based on
classification of transitions.

These are three types of transitions - the non-equilibrium falling transition
(first type), the equilibrium common valley transition (second type), the
equilibrium saturation transition (third type). For different types we shall
use different approximations.

For the first type it is possible to neglect

Cdnd exp(Adx)

in the first equation. Then it becomes the closed equation

∂2

∂x2
ns − vs

∂

∂x
ns − Csns exp(Asx) = 0 (61)

Then there is no necessity in validity of the linearization (58).
Solution of the last equation is presented above via cylindrical function.
The second equation is not necessary, but to complete the picture one

can write it in the form

vd
∂

∂x
nd + Csns exp(Asx) = 0 (62)

with the solution

nd = −
∫ x

−∞

Csns exp(Asx
′)/vddx

′
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Certainly, the presentation of the solution via the cylindrical function is
not convenient. It is more convenient to fulfill a block transformation and
then to solve the system of several algebraic equations. We shall formulate
this procedure. Really, one can go from x to kx to have

Ask ≈ lnα

where the parameter α ≈ 1.5. Then with an increase of x by 1 the intensity
of transition increases 1.5 times. Then the equation (61) will be

k−2 ∂
2

∂x2
ns + vsk

−1 ∂

∂x
ns − Csnsα

x = 0 (63)

Now it is possible to consider the interval −2 < x < 2 and to come back
to the initial discrete form of equation

k−2[ns(x+1)−2ns(x)+ns(x−1)]+vsk
−1[ns(x+1)−ns(x−1)]/2−Csns(x)αx = 0

(64)
These coupled algebraic equations have to be written at x = −2,−1, 0, 1, 2.
At x < −2 one has to put ns to the equilibrium value. So, there is a system
of five coupled equations which can be easily solved.

One can continue analysis. Every band has a separate physical meaning:

• The band x = 2 is the starting band.

• At x = −1 one can use the smallness of the flow Csns(x)α
x and the

smallness of the deviation of ns from the equilibrium value.

• The point x = 0 is the point where |d/dx[(ns − nes)/n
e
s]| attains maxi-

mum and, thus,
d2/dx2[(ns − nes)/n

e
s] = 0

• At x = 1 one can assume that ns is already small in comparison with
nes

• The values at x = 2 are the final values.

One can use these features at the characteristic zones to get analytic solutions
and then the common solution will be their combination.

These approximations allow to solve this equation analytically by com-
bination of the corresponding analytical band solutions. But the resulting
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formulas will be very long to use them for calculations. To get concrete re-
sults it is more profitable to solve algebraic equations, the precision is rather
high while the error is less than one tenth.

Certainly, one can directly solve the initial form of evolution equation
described earlier as the discrete model.

The analysis of the first type is completed.
For the transition of the second type it is possible to neglect

∂2

∂x2
ns + vs

∂

∂x
ns

and
∂2

∂x2
nd − vd

∂

∂x
nd

Then both equations will be reduced to

− Csns exp(Asx) + Cdnd exp(Adx) = 0 (65)

with the evident equilibrium solution as it was described earlier. The point
x = 0 is the saddle point, i.e. the point where approximately Fs = Fd.

The third type of transition can be described in a following manner:

• Equation (59) leads to the fact that ns = nes. For nes one can take
approximation

nes(x) = nes(0) exp(Bsx)

where

Bs = −dFs
dx

|x=0

• Equation (60) looks like

vd
∂

∂x
nd − Cdnd exp(Adx) + Csn

e
s exp(Asx) = 0 (66)

and can be easily solved since it is the first order linear equation. The
integral can be taken and the result will be expressed via Whittaker
or Kummer functions which can be reduced to the Hypergeometric
function.
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The point x = 0 has to be chosen as arg(maxdnd

dx
).

Since the result can be expressed only in the form of special functions it
is worth solving the discrete model. The method is quite the same and one
can come to

k−2 ∂
2

∂x2
nd + k−1vd

∂

∂x
nd − Cdnd exp(Adkx) + Csns(0) exp((Bs + As)kx) = 0

(67)
The value of k has to be chosen to satisfy

kmin(Ad, As +Bs) = α

Then algebraic equations will be

k−2[nd(x+ 1) − 2nd(x) + nd(x− 1)] + k−1vd[nd(x1) − nd(x− 1)]/2

(68)

−Cdnd exp(Adkx) + Csns(0) exp((Bs + As)kx) = 0

and have to be written at x = −2,−1, 0, 1, 2
Also it is necessary to mention the possibility to solve the discrete model

from the very beginning. The starting equation will be

Wad[nd(x− 1) − ned(x− 1)

ned(x)
nd(x) − nd(x) +

ned(x)

ned(x+ 1)
nd(x+ 1)]

(69)

−Cdnd exp(Adx) + Csn
e
s exp(Asx) = 0

These equations are coupled algebraic equations. The initial condition is
nd = 0 at x→ −∞.

Our consideration has to be completed by equation on parameters of
transition.

The points of approximations x = 0 form the equations on parameters of
the process. The possible presence of the special functions can be eliminated
by rational approximations for special functions. Then the parameters of th
process will be determined by the root of the algebraic equation.

Now one can see the general picture of transition. One can note that
the complexity of the phase transition already between two valleys is rather
essential. There are at least several possibilities to observe this transition

• Equilibrium transition in the pre-transition zone
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• Equilibrium transition out of transition zone

• Equilibrium transition in the post-transition zone

• Falling transition in the post-transition zone

So, the unique approach to get the rate of nucleation is impossible.
One has to stress that already the equilibrium transitions can lead to

the absence of equilibrium in valley with bigger x, and κ. This effect has
to be taken into account to diminish the intensity of transition in the post-
transition zone.

Here it becomes clear that the flow can split and merge. Beside these
effects one can see the rapid change of the leading manner of the supercritical
embryo formation. This is caused only by kinetic coefficients and, thus, it is
reasonable to speak about ”the kinetic rupture in the rate of nucleation”.

One has to stress that in the saturation transition there is no difference
whether the transition occurs in the open or in the forbidden zone. Really,
Fr − Fs can be greater than ∆t:

Fr − Fs > ∆t

and the transition will take place. The only conditions is

•
Fr(νa) − ∆t < Fmc

where Fmc is the value at the saddle point with a minimal height and

•
Fd(νa) < Fsc

for some νa > νacd

Rigorously speaking the same consideration can take place for transition
of other types.

Then one can come to the situation when both the equilibrium common
channel transition and the falling transition can take place. When at some
νa > νacd

Fd(νa) = Fs(νa) < Fmc

we have to examine Fr.
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If
Fr − ∆t < Fmc

we see that the intensity of the common channel transition is greater than
the intensity of transition through the saddle point.

Since Fd for νa > νacd is a decreasing function this intensity is also greater
than the intensity of a saturation transition. Then we have to compare it
with the intensity of a falling transition.

If
Fr − ∆t < Fs

we have the common valley transition with intensity greater than the further
falling transition.

If
Fr − ∆t > Fs

then the further falling transition will occur with intensity greater than the
intensity of the common valley transition.

All this is done without account of the soft shift. To take this shift into
account in a rough approximation it is necessary to add to ∆t the quantity

ln[
d(Fr − Fs)

dνa
]−1

6.5 Other peculiarities of transition

The property of the κ-convexity is very important in the context of the
current analysis because it forbids the possibility to reach the pre-critical
region after the transition through the post-transition zone. Otherwise there
would be a source of embryos in some region of the destination valley. The
property of the κ-convexity forbid the localization of the flow.

Such a localization of the transition flow can be seen in a multi-valley
transition. Consider the situation when there is an intermediate valley (index
i) and, thus, there are two ridges - one between the source valley and the
intermediate valley (index rs), another between the intermediate valley and
the destination valley (index rd). Suppose that for intermediate valley

Frs − Fi < ∆t

Frd − Fi < ∆t
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Then one can speak about one effective ridge with a height

Frr = max(Frs, Frd)

Then the property of the ridge convexity disappears and the localization of
the transition flow can be seen. One can speak about the

• Injection at the finite zone into the valley.

Earlier we consider only two components in the mixture. So, the inverse
transition has to be the backward one. But in the three component mixture
one can imagine the curved transitions - at first transition the concentration
of the first component increases, at the second transition the concentration
of the second component increases. However, it is necessary to have at least
two rapid components in the mixture. In some special cases it is possible
to return to the same valley but in another place of this valley - may be it
is possible to jump from the pre-critical zone to the post-critical one, may
be it is possible to make one loop of a spiral. Here the picture will be very
picturesque. However, it would be very nice to see the concrete examples of
such nucleating systems.

Here we do not consider the transitions from the post-critical zone of one
valley to the post-critical zone of the other valley because this transition can
not change the rate of nucleation.

Despite the transition will have now a very complex form the elementary
bricks remain the same:

• the equilibrium common-valley transition

• the equilibrium saturation transition

• the non-equilibrium falling transition

The possibility to reach the rather transparent classification is based
on the following simple approximate structure of every channel/separation
line/valley/ridge:

• Every channel/separation line/valley/ridge has a pre-critical zone which
is directly (without hills) connected with the origin, post-critical region
with the irreversible growth (until infinity) and a small near-critical
growth.
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The last property takes place for every channel, separation line, valley and
ridge.

According to the last analysis the multi-cascade transitions are not ef-
fective. Really, the cascade can lead to the post-critical region or to the
pre-critical region. When it leads to the post-critical region it will be the
last cascade. If it leads to the pre-critical region there is a smooth increasing
path along the valley and this path will have at least the same intensity. So,
the transition across the ridge is not effective here. As the result we see that
there is only one main cascade in the multi-cascade transition.

Here we imply that one cascade can be the saturation transition, the
falling transition or the common valley transition. Actually, the saturation
transition is also the common valley transformation because here there exists
a common valley. Then we shall speak here about the generalized common
valley. Then there is the generalized common valley and the falling transition.

Certainly, the multi-common valley can be such a cascade. In this cascade
at some may be finite zone several valleys are treated as one common channel.
It is also possible that the set of common channels with the given channel
can change - at some zone there is one set, at another zone there is another
set. But in this common valley under the κ-convexity there will be only one
leading pair of the neighbor channels.

As the result we see that in the binary case there is only one leading
cascade which is the falling transition or the generalized common valley.

We have examined only the stationary solutions. The relaxation of the
distribution n to the stationary solution can be easily studied since in all sit-
uations the stationary solution nst is known. Then one can linearize equation
on n− nst and get

∂n

∂t
= Ln

where L is a differential operator (or in finite differences) on νi. Then one
can get the relaxation time as the minimal eigenvalue of the linear operator
L in the evolution equation by the iteration procedures

Trace(L), T race(L2), T race(L3), etc.

of the standard numerical methods.
In reality all operators in the rhs of kinetic equations are reduced to

the square approximations. Then the eigenvalues and eigenfunctions are
known. Eigenfunctions are the Hermite’s polynomials or the Generalized
error-functions.
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Main results

One can see that the problem to get even the stationary rate of nucleation is
rather complex. Below we present the sequence of actions to fulfill this task:

1. We determine all channels and find the channel with a minimal activa-
tion barrier. Determine its height Fcm

2. We determine the rate Wa/Wb. Choose components to have Wa < Wb

If Wb/Wa < exp(1) there will be a Stauffer’s solution with Fcm. If there
is an opposite situation one has to continue consideration.

Suppose that we have the binary case and the κ-convexity. The last
property is rather ordinary but it simplifies the consideration. Then
the procedure will be the following

(a) Instead of channels determine the valleys. D We determine also
all ridges. We enumerate valleys to have ξi < ξj for i < j. We
enumerate ridges to have ξi < ξj for i < j. For every neighbor
valleys we determine the source valley i and the destination valley
i+ 1. Below we shall consider the one-cascade transition.

(b) We determine the possibility of the saturation transition: there is
νa satisfying conditions:

νa < νacs

νa < νacr

Fr(νa) − ∆t < Fcm

If these conditions are satisfied we determine the point of the
saturated transition ν∗a by equation

Fd(ν
∗

a) = Fr(ν
∗

a) − ∆t

This gives
F∗ = Fd(ν

∗

a)

(c) We determine the possibility of the common valley transition:
there exists νa with properties

νa < νacs
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νa > νacd

Fs(νa) = Fd(νa) < Fr(νa) − ∆t

The last condition determines only one point ν∗∗a of the common
valley transition with a maximal intensity. This value will be the
saddle point of the unified valley. Here we determine

F∗∗ = Fs(νa)

If the equilibrium valley transition takes place there is no need to
consider the falling transition. If it does not exist then we consider
the falling transition.

(d) The falling transition takes place when there is νa satisfying con-
ditions:

νa < νacs

νa > νacd

Fd(νa) < Fs(νa)

Fr(νa) − Fs(νa) ≤ ∆t

Conditions

Fr(νa) − Fs(νa) = ∆t Fd(νa) < Fs(νa)

determine the point of transition ν∗∗∗a and the free energy

F∗∗∗ = Fs(ν
∗∗∗

a )

(e) To see what transition is more profitable one has to compare Fcs,
F∗, F∗∗ and F∗∗∗ and to choose the minimal value

Fch = min(Fcs, F∗, F∗∗F∗∗∗)

This will be the free energy corresponding to this valley as the
source valley. Then one has to take the minimum over all valleys
and to determine the free energy of nucleation Ff . Then the rate
of nucleation is rather approximately given by

J = exp(Ff)ZWa

where the Zeldovich’ factor Z contains the normalizing factor of
the equilibrium distribution.

88



(f) If there are two approximately equal minimal values of free en-
ergies between Fcs, F∗, F∗∗ and F∗∗∗ then one has to add the
quantity ln(d(Fr−Fs)/dν) to the free energy of the falling transi-
tion. Certainly, the last quantity shifts the point of transition but
approximately one can take it at the old point.

The analysis presented above gave the following new results

• The free energy of the embryo is found including the surface excesses
and the clear interpretation of the generalized chemical potential is
given. The variables giving the simple form of the free energy is found
and their connection with the initial natural variables is shown (section
1). The similarity of the form of the near-critical energy to the situation
without surface excesses is shown (section 1). The correction order of
the Renninger-Wilemski’s effect is shown (section 1).

• The hierarchy in the near-critical region is shown (section 2).

• The impossibility of the essential difference between the Reiss’ formula
ad the Stauffer’s formula in capillary approximation is shown (section
3).

• The possibility to change valleys during the evolution is shown. The
discrete analog of Trinkaus’ solution is presented and investigated (sec-
tion 4).

• The possibility to have one united valley instead of several initial ones
is shown. It is shown that the height of the effective activation barrier
is changed in comparison with the heights of barriers in the initial
channels. Thus, the rate of nucleation will be radically changed (section
5)

• The possibility to change the valley and to reach the post-critical zone
already from the pre-critical transition is shown (section 6). This form
a special type of the equilibrium saturation transition. This transition
also leads to a new special value of effective height of activation barrier.

• All possible transition are classified. It is shown that the tree mentioned
types cover the variety of possible transitions.
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Here only the main new results are outlined. An application of the pre-
sented theory to the concrete binary and multicomponent systems will form
the subject of a separate publication.
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stochastic effects in diffusion regime of

metastable phase decay
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Abstract

The theory for manifestation of stochastic appearance of embryos
in the global decay of metastable phase has been constructed. The
regime of droplets growth is supposed to be both free molecular one
and diffusion one. The deviation for a mean droplets number from the
value predicted by the theory based on averaged characteristics have
been calculated. The value of dispersion for the distribution of the
total droplets number in particular attempt has been also calculated
analytically. Comparison with results of numerical simulation has
been given and the correspondence between simulation and analytical
approximate results is rather good.

The aim of this paper is to give analysis of decay in diffusion regime of
the droplets growth in frames of the method given in [1] and corrected in [6].
This method is based on the following approximation

• Until the half of the nucleation period (in the time scale) the supersat-
uration remains unperturbed and the droplets appear independently.

• In the second half of the nucleation period the droplets appear under
the supersaturation changed by the vapor consumption by the droplets
appeared in the first part of the nucleation period.

The part of the droplets size spectrum which corresponds to the droplets
appeared during the first part of the nucleation period will be called as the
first part of spectrum, the remaining part will be the second part of spectrum.

Here this model will be generalized by means of the following changes:
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• The duration of the first part of nucleation period will be not exactly
the first half but it will be regulated by some parameter p instead of
1/2.

• The regime of growth will be an arbitrary power law of growth (the
power type is adopted only to present concrete formulas, it isn’t prin-
cipal here).

• It is supposed that the distribution of droplets in the first part of spec-
trum can differ from the distribution

P0(N) ∼ exp(
(N − N̄)2

2N̄
)

of N independently appeared droplets during the period of time corre-
sponding to the mean value N̄ of appeared droplets.

Now instead of the previous distribution the distribution with renor-
malized dispersion

Pr(N) ∼ exp(
(N − N̄)2

2ψN̄
)

will be used. Here ψ is parameter of renomalization. This change is
initiated by the using of the property of self similarity of spectrums in
the first iteration (see [5]) used for investigation of stochastic effects in
[6].

The structure of consideration will be the following

• At first we shall present the formal generalized model

• Then the parameter p of the boundary between the first and the second
parts will be calculated.

• In the last part the effect of the ”growing volumes of interaction” will
be described and it will be shown how to include this effect into already
presented scheme.

• In Appendix the theory for the free molecular regime of growth will
be presented. This theory was given in [6] but now some modifications
and improvements have been made. So, a new variant can be found in
appendix.
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The main object of investigation will be the calculation of dispersion
of the droplets distribution since the mean value will be very close to the
characteristic calculated in frames of the theory based on the averaged char-
acteristics (TAC), all arguments given for the free molecular regime of the
droplets growth remain here practically the same [6], the only principally
new feature is to use the theory with explicit profiles of density around the
growing droplets [4].

The smallness of fluctuations which will be shown here plays a very im-
portant role in transition from the free molecular kinetics to the diffusion
kinetics. Really, such transition was shown in [4] only in general features on
the level of TAC and the possible giant fluctuations initiated by stochastic
appearance of droplets would destroy this transition in frames of the known
approaches. Fortunately the giant fluctuations don’t appear and the justi-
fication of their absence lies in the moderate value of dispersion calculated
here.

1 Calculation of dispersion

Here we shall analyze the situation with diffusion regime of metastable phase
consumption. At it has been already noticed this situation is characterized
by the growing volumes of interaction which produces additional difficulties.
The growing volume of interaction means that the fixed point in the volume
will be under influence of vapor consumers which appeared in a volume V
with a center at this point and with a radius

√
4Dt where t is a time counted

from the consumer appearance up to a current moment and D is a diffu-
sion coefficient. Certainly the last value can be regarded only as the rough
estimate, the precise expression can be obtained only of the base of precise
profiles of a substance gap [4].

At first we briefly follow the way to derive the estimate for dispersion
proposed in [1] to use it for diffusion regime of metastable phase consumption.
As we have noticed the formalism of a volume of interaction is a rather rough
estimate (precise theory has to be based on a form of substance gap from [4]).
Thus, the accuracy here is limited. So, in frames of adopted accuracy we shall
use here only some rough way to estimate dispersion of a distribution and
can use formalism from [1] with appropriate comments and modifications.
This way is useful because it allows to understand formulas from [1] which
were widely used in above consideration.
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Here we suppose that the rate of embryos growth is given by

dν

dt
∼ νs

where ν is the number of molecules inside the embryo and s is a power
parameter. We suppose that s takes values which are essentially greater
than 0 (s isn’t too small in comparison with 1) and essentially less than 1
(1 − s isn’t too small in comparison with 1). For the free molecular regime
of metastable phase consumption s = 2/3, for the diffusion regime s = 1/3.

Then the characteristic ρ of a droplet defined as

ρ = ν(1/s)+1

grows with velocity independent on it’s value

dρ/dt ∼ 1

The period of nucleation is divided in many elementary intervals with a
length ∆ (or ∆i) in a ρ-scale, the average total number of interval in the
whole nucleation period is M , the number of embryos Ni appeared during
every elementary interval is supposed to be big Ni ≫ 1.

The fact that the total number of intervals is M and their length is ∆ (in
estimates we can put it one and the same for all intervals, at least we can
take the smallest length and attribute it to all intervals) means that

Γf̄(M∆)( 1

1−s
+1) ∼ (

1

1 − s
+ 1)ζ(0) ,

where ζ(0) is the initial supersaturation, f̄ is the initial average amplitude
of embryos size spectrum [3], Γ is parameter from TAC [3]. Namely the last
relation can be derived from the first iteration in TAC. It will be used to
express f̄ through M,∆.

During every interval the increase δρ of the value ρ of already existing
droplet will be

δρ ∼ ∆ζ(0)/τ

with some characteristic time τ which will be dropped out in final formulas.
Denote by Ni the number of embryos appeared at i-th interval. The value

N̄i is the average Ni, Pi(Ni) is the density distribution on Ni.
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Denote by N (i) the number of embryos appeared at the first i-th intervals
∆. The value N̄ (i) is the average N (i), P (i)(N (i)) is the density distribution
of N (i). It is important to stress that N̄ (i) isn’t equal to Ñ (i) which is the
corresponding value completely calculated in frames of TAC (stochastically
appeared droplets in the previous moments of time taken into account).

At the first P intervals (i.e. at the first part of nucleation period) the
metastable substance consumption is negligible. Here P = pM and p is
parameter of constructions. Then for k < P the distribution P (k) of the
number of droplets N (k) appeared in the first k intervals is

P (k)(N (k)) ∼ exp(−(N (k) − N̄ (k))2

2ψN̄ (k)
)

and it is is a standard Gaussian distribution of k independent subsystems1.
We introduce here the parameter of renormalization ψ to be able to fulfill

calculations suggested in [6] based on the approximate similarity of nucleation
conditions [5].

For k > P the expression for P (k) will be formally the following

P (k)(N (k)) =
∑

N1,.....,NP

P∏
i=1

P̂i(Ni)Ω

where

P̂i(Ni) ∼ exp(−(Ni − N̄i)
2

2ψNi
)

Ω =
∑

NP+1,....,Nk−1

k−1∏
j=P+1

P̂j(Nj)P̂k(N
(k) −

k−1∑
l=1

Nl)

Here the function Ω is extracted because it corresponds to the second part of
spectrum. The function Ω is superposition of independent subsystems and
can be calculated explicitly

Ω ∼ exp(−(N (k) − ∑P
i=1Ni −

∑k
j=P+1 N̄j)

2

2
∑k

j=P+1 N̄j

)

The problem is that the values N̄j standing in the last expression are
unknown now. They are functions of all Ni, i = 1, .., P (since the two

1Here and later without any notation we don’t keep the preexponential factors before
Gaussian distributions, they can be easily reconstructed by integration.
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parts model is used). So, the distributions from the first group i ≤ P have
the influence on Ω. This influence is given through the values N̄j. Now
we shall get an expression for this value. At first we recall the exponential
approximation which can be found elsewhere (see [3])

N̄j = N̄1 exp(− Γ

ζ0
Gj)

Here Gj is the number of molecules in a liquid phase at j-th interval. For
this value we can write

Gj =
j∑

i=1

Niρ
(j) 1

1−s

i

where ρ
(j)
i is the ”size” ρ of a droplet appeared at i-th interval at the moment

corresponding to the j-th interval. Then

Gj =
j∑

i=1

Ni((∆ζ0/τ)j − (∆ζ0/τ)i)
1

1−s =
j∑

i=1

Ni(j − i)
1

1−s (∆ζ0/τ)
1

1−s

and

N̄j = N̄1 exp(− Γ

ζ0
(∆ζ0/τ)

1

1−s

j∑
i=1

Ni(j − i)
1

1−s )

Now we have to get another expression for

K =
Γ

ζ0
(∆ζ0/τ)

1

1−s

which appeared in the last relation. One has to clarify the meaning of M
as the total number of intervals. Certainly, it is no more than a conditional
definition to say that the end of nucleation is the moment when the averaged
rate of nucleation falls e times in comparison with initial value. Then the
corresponding equation will be

Γ

ζ0
GM = 1

We have to calculate GM in some approximation. Let it be the ideal approx-
imation, i.e. the first iteration [3]. Then

K
M∑
i=1

N̄1(M − i)1/(1−s) = 1
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or

KN̄1

M∑
i=1

(M − i)1/(1−s) = 1

For M ≫ 1 summation can be replaced by integration which gives

M∑
i=1

(M − i)1/(1−s) =
∫ M

0
(M − x)1/(1−s)dx =

M1/(1−s)+1

1
1−s

+ 1

and

K = (N̄1
M1/(1−s)+1

1
1−s

+ 1
)−1 (1)

Then

N̄j = N̄1 exp(− 1

N̄1M
( 1

1−s
+1)

j∑
i=1

Ni(
1

1 − s
+ 1)(j − i)

1

1−s )

Here
1

N̄1M
( 1

1−s
+1)

is simply the scaling factor. One can argue whether the style of calculation
of GM is appropriate. Really we used another approximation which differs
from the two cycle model which we are going to use. But there is absolutely
no sense how to calculate the last value. One can simply say that our model
is to take the first part as P = pM where the definition of M is given by (1).
The problem is how to choose p.

We continue to simplify expression for N̄j , j > P . We recall that the
droplets from the first part only consume vapor. Then we come to

N̄j = N̄1 exp(− 1

N̄1M
( 1

1−s
+1)

P∑
i=1

Ni(
1

1 − s
+ 1)(j − i)

1

1−s ) (2)

Now we shall simplify the last formula. We make the following transfor-
mations:

- we add and subtract N̄1, which is the ideal mean value of droplets
appeared during the elementary interval. Then

N̄j = N̄1 exp(− 1

M ( 1

1−s
+1)

P∑
i=1

(1 +
Ni − N̄1

N̄1

)(
1

1 − s
+ 1)(j − i)

1

1−s )
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and

N̄j = N̄1 exp(− 1

M ( 1

1−s
+1)

P∑
i=1

(
1

1 − s
+ 1)(j − i)

1

1−s −

1

M ( 1

1−s
+1)

P∑
i=1

Ni − N̄1

N̄1
(

1

1 − s
+ 1)(j − i)

1

1−s )

We can calculate
∑P

i=1 ( 1
1−s

+ 1)(j − i)
1

1−s . For M ≫ 1

P∑
i=1

(
1

1 − s
+ 1)(j − i)

1

1−s = (
1

1 − s
+ 1)

∫ P

0
(j − x)

1

1−sdx

and since we suppose 1/3 < s < 2/3 we have 1/(1 − s) ≫ 1 and

∫ P

0
(j − x)

1

1−sdx =
∫ j

0
(j − x)

1

1−sdx = (
1

1 − s
+ 1)−1j

1

1−s
+1

for j which aren’t too big in comparison with P (namely the parameter p
will be chosen in such a way that P can not be too small in comparison with
M and certainly j can not be essentially greater than M).

Then

N̄j = N̄1 exp(− 1

M ( 1

1−s
+1)

j
1

1−s
+1 −

1

M ( 1

1−s
+1)

P∑
i=1

Ni − N̄1

N̄1

(
1

1 − s
+ 1)(j − i)

1

1−s )

and

N̄j = N̄1 exp(− 1

M ( 1

1−s
+1)

j
1

1−s
+1) exp(− 1

M ( 1

1−s
+1)

P∑
i=1

Ni − N̄1

N̄1
(

1

1 − s
+ 1)(j−i) 1

1−s )

Now we linearize the last exponent over

1

M ( 1

1−s
+1)

P∑
i=1

Ni − N̄1

N̄1
(

1

1 − s
+ 1)(j − i)

1

1−s

This linearization is possible and it differs from linearization over

1

M ( 1

1−s
+1)

Ni − N̄1

N̄1

(
1

1 − s
+ 1)(j − i)

1

1−s
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made in [1]. The linearization in [1] since we study fluctuations namely in Ni

is very doubtful. In our approach we can see the compensation of fluctuation
during the period comparable with the whole nucleation period and, thus,
the linearization is possible.

It is necessary to stress that after the linearization one can not pretend
on the derivation of deviation of the mean value of droplets from the value
prescribed by TAC. Contrary to [1] we don’t pretend on this but here we
are interested only in dispersion. To prove the smallness of deviation of the
mean value of total droplets from the value given by TAC one can use other
approaches (see [6].

Here we directly use ( 1
1−s

+ 1)(j − i)
1

1−s as the quantity of substance in
droplets of a given size (the relative deviation of the size during the ele-
mentary interval is small) instead of inappropriate integration over constant
distribution (it is stochastic and isn’t constant) in [1].

In the zero approximation we get

N̄j = N̄1 exp(− j( 1

1−s
+1)

M ( 1

1−s
+1)

)

In the first approximation

N̄j = N̄1 exp(− j
1

1−s
+1

M
1

1−s
+1

)(1 − 1

M
1

1−s
+1

P∑
i=1

Ni − N̄1

N̄1

(1 +
1

1 − s
)(j − i)

1

1−s

Now we know the influence of embryos of big sizes and can directly analyze
the numerator of Gaussian distribution for Ω. We have

(N (k) −
P∑

i=1

Ni −
k∑

j=P+1

N̄j) = (N (k) −
P∑

i=1

(Ni − N̄1) −
P∑

i=1

N̄1 −
k∑

j=P+1

N̄j)

(N (k) −
P∑

i=1

(Ni − N̄1) −
P∑

i=1

N̄1 −
k∑

j=P+1

N̄j) =

(N (k) −
P∑

i=1

(Ni − N̄1) + PN̄1 −
k∑

j=P+1

N̄j)

Now we shall derive formula for
∑k

j=P+1 N̄j. We start with (2) where N̄0 ≡ N̄1

and get

k∑
j=P+1

N̄j = N̄0

k∑
j=P+1

exp(− 1

M1/(1−s)+1

1

N̄0

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s)Ni)
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Since M ≫ 1, P ∼M

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s)/M1/(1−s)+1 ≈ j1/(1−s)+1/M1/(1−s)+1

So, one can come to

k∑
j=P+1

N̄j = N̄0

k∑
j=P+1

exp(−(j/M)M1/(1−s)+1

) exp(− 1

M1/(1−s)+1

1

N̄0

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s)Ni) exp(

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s)/M1/(1−s)+1)

Then

k∑
j=P+1

N̄j = N̄0

k∑
j=P+1

exp(−(j/M)M1/(1−s)+1

)

exp(− 1

M1/(1−s)+1

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s) (Ni − N̄0)

N̄0
)

Now one can fulfill linearization of exponent over

1

M1/(1−s)+1

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s) (Ni − N̄0)

N̄0

which leads to

k∑
j=P+1

N̄j = N̄0

k∑
j=P+1

exp(−(j/M)M1/(1−s)+1

)

(1 − 1

M1/(1−s)+1

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s) (Ni − N̄0)

N̄0
)

The formula is ready.
Then

(N (k) −
P∑

i=1

(Ni − N̄1) − PN̄1 −
k∑

j=P+1

N̄j) = (N (k) −
P∑

i=1

(Ni − N̄1) − PN̄1 −

N̄0

k∑
j=P+1

exp(−(j/M)1/(1−s)+1)(1 − 1

M1/(1−s)+1

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s) (Ni − N̄0)

N̄0
))

10



The next transformation gives

(N (k) −
P∑

i=1

(Ni − N̄1) − PN̄1 − N̄0

k∑
j=P+1

exp(−(j/M)1/(1−s)+1)(1 − 1

M1/(1−s)+1

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s) (Ni − N̄0)

N̄0

)) =

(N (k) −
P∑

i=1

(Ni − N̄1) − PN̄1 − N̄0

k∑
j=P+1

exp(−(j/M)1/(1−s)+1) +

N̄0

k∑
j=P+1

exp(−(j/M)1/(1−s)+1)
1

M1/(1−s)+1

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s) (Ni − N̄0)

N̄0
)

Having noticed that

Ñ (k) = N̄1(P +
k∑

j=P+1

exp(− j( 1

1−s
+1)

M ( 1

1−s
+1)

)

is the mean number of droplets N (k) prescribed in the zero approximation
by TAC, we come to

(N (k) −
P∑

i=1

(Ni − N̄1) − PN̄1 − N̄0

k∑
j=P+1

exp(−(j/M)1/(1−s)+1) +

N̄0

k∑
j=P+1

exp(−(j/M)1/(1−s)+1)
1

M1/(1−s)+1

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s) (Ni − N̄0)

N̄0
) =

(N (k) −
P∑

i=1

(Ni − N̄1) − Ñ (k) + N̄0

k∑
j=P+1

exp(−(j/M)1/(1−s)+1)
1

M1/(1−s)+1

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s) (Ni − N̄0)

N̄0

)

Now we shall change the order of summation and come to

(N (k) −
P∑

i=1

(Ni − N̄1) − Ñ (k) +

N̄0

k∑
j=P+1

exp(−(j/M)1/(1−s)+1)
1

M1/(1−s)+1

P∑
i=1

(
1

1 − s
+ 1)(j − i)1/(1−s) (Ni − N̄0)

N̄0
) =

11



(N (k) −
P∑

i=1

(Ni − N̄1) − Ñ (k) +

P∑
i=1

(Ni − N̄0)
k∑

j=P+1

exp(−(j/M)1/(1−s)+1)
1

M1/(1−s)+1
(

1

1 − s
+ 1)(j − i)1/(1−s))

The last transformation leads to

(N (k) −
P∑

i=1

(Ni − N̄1) − Ñ (k) +

P∑
i=1

(Ni − N̄0)
k∑

j=P+1

exp(−(j/M)1/(1−s)+1)
1

M1/(1−s)+1
(

1

1 − s
+ 1)(j − i)1/(1−s)) =

(N (k) − Ñ (k) −
P∑

i=1

(Ni − N̄0)(1 −

k∑
j=P+1

exp(−(j/M)1/(1−s)+1)
1

M1/(1−s)+1
(

1

1 − s
+ 1)(j − i)1/(1−s)))

or

(N (k) −
P∑

i=1

(Ni − N̄1) − Ñ (k) +

P∑
i=1

(Ni − N̄0)
k∑

j=P+1

exp(−(j/M)1/(1−s)+1)
1

M1/(1−s)+1
(

1

1 − s
+ 1)(j − i)1/(1−s)) =

(N (k) − Ñ (k) −
P∑

i=1

(Ni − N̄0)a
(k)
i )

where

a
(k)
i = (1 −

k∑
j=P+1

exp(−(j/M)1/(1−s)+1)
1

M1/(1−s)+1
(

1

1 − s
+ 1)(j − i)1/(1−s))

The last definition can be rewritten as

a
(k)
i = (1 − b

(k)
i )

where

b
(k)
i =

k∑
j=P+1

exp(−(j/M)1/(1−s)+1)
1

M1/(1−s)+1
(

1

1 − s
+ 1)(j − i)1/(1−s)

12



Now we shall analyze denominator of Gaussian distribution for Ω. Here
we can use N̄j in the zero approximation and come to

k∑
j=P+1

N̄j = Ñ (k) − PN̄1

The use of zero approximation is based on the following simple estimate. Re-
ally, the last linearization is based on the smallness mainly of the parameter
which can be simply neglected in denominator since

k∑
j=P+1

exp(−(
j

M
)1/(1−s)+1)

isn’t too small.
Now we can directly go to the calculation of P (k)(N (k)) for k > P . The

starting formula is

P (k)(N (k)) =
∫

∞

−∞

d(N1 − N̄1)...
∫

∞

−∞

d(NP − N̄P )
P∏

i=1

exp(−(Ni − N̄1)
2

2ψN̄1

)

(3)

exp(− [N (k) − Ñ (k) − ∑P
i=1 a

(k)
i (Ni − N̄1)]

2

2(Ñ (k) − PN̄1)
)

where we because of N̄i ≫ 1 have replaced summation by integration. The
limits of integration can be infinite ones because of N̄i ≫ 1 and estimates
predicted by Gaussian distribution.

To fulfill integration we have to use a simple formula

∫
∞

−∞

exp(−x
2

c
) exp(−(lx + d)2

b
)dx ∼ exp(− d2

b+ l2c
)

We have to use this formula P times with

x ∼ xi = Ni − N̄1

c ∼ ci = 2ψN̄1

l ∼ li = −a(k)
i

b ∼ bi = 2(Ñ (k) − PN̄1)

13



This leads to

P (k)(N (k)) ∼ exp(−(N (k) − Ñ (k))2

2D(k)
)

where dispersion D(k) is given by

D(k) = Ñ (k) − (P − ψ
P∑

i=1

a
(k)2

i )N̄1

Now we can calculate dispersion at infinite k. Since M ≫ 1 we can
substitute summation by integration. The number of interval corresponds to
the variable z ∗M , then z = 1 corresponds to the end of nucleation.

Since

Ñ (∞) = N̄1(P +
∞∑

j=P+1

exp(−(
j

M
)1/(1−s)+1)) ≈MN̄1α

α ≡
∫

∞

0
exp(−x1/(1−s)+1)dx

then

D(∞) = Ñ (∞)(1 − (1 − ψ)
P

Mα
− 2ψ

α

1

M

P∑
i=1

b
(∞)
i +

ψ

α

1

M

P∑
i=1

b
(∞)2

i )

One can easily calculate b
(∞)
i :

b
(∞)
i =

1/(1 − s) + 1

M1/(1−s)+1

∞∑
j=P

exp(−(
j

M
)1/(1−s)+1)(j − i)1/(1−s)

→ (1/(1 − s) + 1)
∫

∞

p
exp(−x1/(1−s)+1)(x− y)1/(1−s)dx

Also one can note that
1

M

P∑
i=1

→
∫ p

0
dy

Then

D(∞) = Ñ (∞)(1 − (1 − ψ)
p

α
− Ψ

α
β)

where
β = β1 − β2

14



β1 = 2(1/(1 − s) + 1)
∫ p

0
dy

∫
∞

p
dx exp(−x1/(1−s)+1)(x− y)1/(1−s)

β2 = (1/(1 − s) + 1)2
∫ p

0
dy(

∫
∞

p
dx exp(−x1/(1−s)+1)(x− y)1/(1−s))2

This result can be directly calculated.

2 Calculations of parameters of the model

To compare analytical constructions with the real value of dispersion we shall
present numerical simulations.

The results for the mean value of droplets calculated in units of the
droplets number calculated in TAC as function of the droplets number cal-
culated in TAC are presented in figure 1.
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Figure 1: Mean value of the droplets number

The relative dispersion as a function of the mean number of droplets is
shown in figure 2.
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Figure 2: Dispersion

Now we shall perform calculations. We study equation

g(x) =
5

2

∫ z

0
exp(−g(x))(z − x)3/2dx

Namely the coefficient 5
2

corresponds to the final formulas in the previous
section.

At first we calculate the form of spectrum. It is shown in figure 3. Two
curves are drawn. The upper one in the second iteration approximation, the
lower curve is the first iteration approximation. The spectrum lies between
these curves.

One can see that the characteristic length of spectrum is x0 ≈ 1.2÷ 1.25.
The total number of droplets is NTAC = 0.9292. The first iteration gives

Nfirst = 0.8773.
Now we investigate the two cycle model. The relative number of droplets

as a function of the boundary p is shown in figure 4.
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Figure 3: The form of spectrum in TAC

Here two curves are drawn. The upper corresponds to the number of
droplets referred to the number of droplets in the first iteration, the lower
curve is referred to the precise value of the droplets number. One can see
that the deviation of the second curve is two times closer than the deviation
of the first curve in the value of minimum. The minimum is attained at
p0 = 0.64 which is approximately the 55 percent of x0 (the same part as in
the free molecular regime! [6]).

Now we calculate β. The values β1 and β2 are drawn in figure 5. One
can see that the behavior of β is mainly governed by behavior of β1.

The ratio β2/β1 is drawn in figure 6.
One can see that there is no extremum of the ratio. So, there is no special

boundary which provides the quickest convergence of the chain β1, β2, ...
and one has to use p0 = 0.64 going from the most precise approximation for
number of droplets as a criterium for such boundary. Also one can see that
the ratio is small for all p.
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Figure 4: Mean value of the relative droplets number in two cycle model

The value of relative dispersion calculated according to

D = 1 − β/α

is drawn in figure 7.
There are two curves: the upper is dispersion calculated with precise

number of droplets, the lower is dispersion calculated with the number of
droplets calculated in the first iteration. Both curves have extremum at
p = 0.68. Even for the lowest curve all values are greater than 0.54 while the
real value is 0.44.

If we take into account that α also has to be calculated in two cycle
model. Then the value of relative dispersion2 as a function of the boundary
p ini the two cycle model is drawn in figure 8.

One can see that practically nothing has been changed. Minimum is at
0.67, the value of minimum is near 0.6.

2More precisely there is a square of relative dispersion.
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Figure 5: Values β1 and β2.

Now we try approach based on similarity of nucleation conditions [5]. We
start with the infinite upper boundary in formulas for β1 and β2.

At first we shall show the result for renormalization of dispersion when
for α we take the result from the two cycle model. The result is shown in
figure 9.

At p = 0.64 the value of ψ will be 0.46, at p = 0.68 the value of ψ will be
0.43.

When we put α = 0.92 which is the result in the precise solutuion we
came to the result shown in figure 10. Practically nothing has been changed.

Now we shall restrict the upper limit of integration by z = 1 (this is the
current moment of observation). At first we draw the number of droplets as
function of p in figure 11.

We see that the number of droplets has minimum at p = 0.43. This value
has to be chosen as p in calculation of dispersion.

Then the value of relative square of dispersion can be calculated and it
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Figure 6: Ratio β1/β2

is drawn in figure 12.
We see that at p = 0.43 the value of dispersion is near 0.64 and it is

far from the expected value. It resembles the calculation without similarity
taken into account.

It is interesting to note that in diffusion regime the values of relative
dispersion ψ calculated in the model with the upper boundary ∞ and with
the upper boundary 1 are practically the same. This is true for moderate p
(more concrete p ≤ 0.7).

An explanation of this property is the following: under the free molecular
regime of droplets growth the droplets appeared in the first moments of time
grow so rapidly that it was very important to know until what sizes (or until
what moment) they will grow. So, the duration of the nucleation period was
very important. Under the diffusion regime of growth this effect is much
more weak. So, the position of the boundary isn’t so essential.

For p ≤ 0.5 the value 1 − β/α is also close to these values.
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Figure 7: The relative square of dispersion in the two cycle model.

The explanation lies also in collective character of stochastic effects ini-
tiated under the diffusion regime of droplets growth.

The question to decide is whether we have to take p from extremum for
α calculated with the upper boundary ∞ or with the upper boundary 1.
From the first view it seems that the boundary 1 is preferable because β1

and β2 are calculated with the upper boundary 1. But the extremum for α
corresponds to the value α = 0.815. This value is smaller than α calculated
in the first iteration, i.e. α1 = 0.8773 and smaller than this value calculated
in the precise solution αpr = 0.9292. So, at extremum (it is a minimum) of
the model with the upper boundary 1 the deviation from the precise value
attains maximum. At the upper boundary ∞ the value of α is always bigger
than 1 which is greater than α1 and αpr. So, here the extremum is really the
closest value to precise solution. Then it has a real physical meaning. So, it
is reasonable to take p corresponding to the extremum of α with the upper
boundary ∞.
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Figure 8: The relative square of dispersion in the two cycle model. Account
of the change of the droplets number.

Calculations give p = 0.65 and ψ = 0.49. This value is calculated on the
base of β1 and β2 with the upper boundary 1. The value ψ = 0.49 is rather
close to result of numerical simulation ψ = 0.44. Certainly, the relative error
is one tenth and the methods based on the explicit two cycle models cannot
give more precise results.

One can note the following curious result. Evidently, when we calculate
ψ for p = 0.65 with the upper boundary 1 we come to ψ = 0.46 which is
practically the necessary result. But this coincidence is no more than an
occasional one. When we try the same procedure for the free molecular
regime we come to ψ = 0.55 (here ψ = 0.55) which is far from numerical
result ψ = 0.64.

Having estimated the value of deviation of ψ = 0.49 from ψ = 0.44 one
has to note that it is much smaller than the deviation of ψ = 0.59 of the
value 1 − β/α in its minimum from ψ = 0.44. So, the modification made
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Figure 9: The relative square of dispersion in the similarity model. Account
of the change of the droplets number in two period model.

here really have a real sense.

3 The effect of growing volumes of interac-

tion

What shall we do to take into account the growth of the volume interaction
in diffusion regime of growth? It is necessary to rewrite formula (3). We can

substitute in exp(− (Ni−N̄1)2

2N̄1
) the denominator 2N̄1 by another denominator

which corresponds to the growing volume of interaction. Then N̄1 has to be
substituted by N̄1const(j − i)5/2 with some known const. It means that the

characteristic half-width
√
N̄1 has to be substituted by

√
N̄1const(j − i)5/2.

One can not apply directly this substitution in exp(− (Ni−N̄1)2

2N̄1
) but only ap-
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Figure 10: The relative square of dispersion in the similarity model. The
droplets number is taken from precise solution.

proximately in expression for a
(k)
i which now will be

a
(k)
i = 1 − 5/2

M5/2

k∑
j=P+1

exp(− j5/2

M5/2
)(j − i)( 1

1−s
+1)−5/2/const

with some known const and an appropriate renormalization.
In diffusion regime

1

1 − s
+ 1 − 5

2
= 0

and there is absolutely no effect. It means that kinetics of nucleation will be
absolutely different. It is described in [4]. The most strong effect will take
place in the free molecular regime where 1

1−s
+ 1 − 5/2 = 3/2

Now we shall estimate the effect of the dispersion variation. We see

D(∞) ∼ Ñ (∞)(1 − 1

α
(2(

1

1 − s
+ 1)

∫ p

0
dx

∫
∞

p
dz(z − x)

1

1−s
+1−5/2 exp(−z5/2)
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Figure 11: The number of droplets until the current moment.

−(
1

1 − s
+ 1)2

∫ p

0
dx(

∫
∞

p
dz(z − x)

1

1−s
+1−5/2 exp(−z5/2))2))

Note that the last relation has to applied to the subsystem with the size√
4Dtn where tn is the duration of the nucleation period. Then we have to

take the superposition of these independent subsystems.
We see that in the majority situations we can approximately neglect (j−

i)
1

1−s
+1−5/2 ≈ (j − i)0 = 1 and see that then

D(∞) ≈ Ñ (∞)

and there is no effect.
Nevertheless the deviation in the number of droplets from the value cal-

culated on a base of averaged characteristics exists. We have to divide the
whole system into subsystems of the size

√
4Dtn, then determine the number

of droplets in this subsystem Ñ subs
tot obtained on the averaged characteristics,
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Figure 12: Relative square of dispersion up to the current moment. Account
of the change of the droplets number.

then determine the deviation δN subs
tot from the values calculated in TAC and

then the whole deviation in the whole number of droplets Ntot from the value
based on the averaged value Ñtot will be

δNtot = δN subs
tot

Ñtot

Ñ subs
tot

These procedures completely solve the problem.
One has also to note that the use of monodisperce approximation [2] leads

to the absence of the problem of growing volume because the characteristics
governing the nucleation period have been determined only in one moment
of time. The problem here is a justification of monodisperse approximation
to the calculation of fluctuation effects.
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4 Appendix

Here we shall present the two cycle model with a fixed boundary in kinetics
of the metastable phase decay under the free molecular regime of the droplets
growth. This question was completely investigated in [6] but during the last
two years our view on this problem was slightly modified and the modern
state is described below.

Systematic investigations of the first order phase transitions are per-
formed since Wilson [7]. The classical theory of nucleation [8] gave expres-
sions for all main characteristics of stationary process of nucleation. This
allowed to investigate a global picture of the phase transition. A set of pa-
pers [9] was devoted to model pictures of the global kinetics of nucleation.
Here we shall also consider the global picture of the phase transition. One
can note that all cited publications [9] were based on averaged nucleation
rates. Here we shall consider stochastic appearance of embryos and outline
the stochastic manner of appearance.

Recall briefly the main features of phase transition. Suppose that in
initial moment of time there exists a metastable state. Then the embryos of
a new phase begin to appear in the metastable system. The average rate of
appearance is given by [8]. Then the embryos begin to grow and to consume
the vapor, metastability falls and the rate of nucleation, i.e. the rate of
appearance of new embryos falls also. The vapor consumption occurs in a
time scale in a very sharp avalanche manner.

It is clear that during the nucleation period the new supercritical forma-
tions of the new phase appear with some fixed probability, but they appear
in stochastic manner. So, the stochastic appearance of relatively big number
of droplets leads to very rapid stochastic consumption of vapor. Stochastic
appearance of relatively small number of droplets leads to delay of the vapor
exhaustion and to excess of droplets appearance in next moments of time.
But it seems that this excess can not compensate the opposite effect of the
absence of embryos in first moments of time. It seems that the total number
of droplets will differ from the average value. This is the naive reason why
stochastic effects of nucleation have to be taken into account.

In a system with macroscopic sizes due to a giant value of the Avogadro
number there appears some rather big number of droplets. It allows to use
the averaged characteristics to construct kinetics of a nucleation process.
Precise kinetic approach based on averaged characteristics is described in [3].
In [3] the time evolution is completely constructed.
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After the formulation of integral equations (see [3]) one can introduce
”elementary intervals of nucleation” - the intervals where the state of the
system changes negligibly small. In macroscopic systems the total number
of droplets is so big that at every elementary interval there appears a great
number of droplets ∆N . On the base of traditional thermodynamics one can
state that the relative fluctuation δ∆N/∆N of droplets formed at elementary
interval is small and has an order of (∆N)−1/2. This remark completely
solves a problem of justification of nucleation description based on averaged
characteristics.

Since it is possible to extract elementary intervals where thermodynamic
parameters and the nucleation rate have small variations there is no need to
take care about the stochastic corrections.

In experimental investigations one can not study quite macroscopic sys-
tems because the most popular data is the number of droplets and to fulfill
the calculation of this number one can not have too many droplets3. After
the theory based on the averaged characteristics has been presented it be-
came possible to investigate the stochastic effects in kinetics of nucleation,
i.e. the effects of stochastic appearance of droplets. Recently there appears
a set of papers [10], [1], [11] where a stochastic effects (the effects of fluctua-
tions of droplets formation) were described and investigated. One can extract
two approaches which were formulated in [10] and in [1]. Although [1], [11]
were written by the same authors of [10] these authors didn’t hesitate that
the theories formulated in [1] , [10] gave different results. So, at least one
has to analyze approaches [10], [1] and decide whether there is a true result
among these approaches and how it can be used to construct the adequate
description of the nucleation process.

One has to specify a formulation of the problem of our investigation.
In [1], [10] it was proposed to establish corrections to the total number of

droplets N appeared in the system. It was supposed that these corrections
are functions of N . To demonstrate the error of this approach it is sufficient
on one hand to take two identical systems then to calculate them separately
and to add results or on the other hand to calculate correction directly for
the total system. The results will be different.

One has to determine a real volume to which one has to refer the number
of droplets. It is simple to do with the help of results from [4]. In that

3One can not simply calculate the infinite number of droplets. The upper limit of the
number of droplets which can be noticed on a photo image is about several dozens.
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paper the kinetics of nucleation for diffusion regime of droplets growth was
constructed. It was shown that a solitary droplet perturbs vapor up to dis-
tances of an order

√
4Dt, where D is a diffusion coefficient, t is a time from

a moment of droplet formation up to a current moment. As an estimate one
can take as t a time t1 of the whole nucleation period duration4.

The last remark allows to give a new definition of the volume Vel where
the number Nel of interacting (mainly through the vapor exhaustion) droplets
is formed. Namely this value has to be regarded as a volume of a system in
approach [10], [1]. This volume is

Vel = 4π(4Dt1)
3/2/3

If the sizes of the system are smaller than this value one has to take the
volume of the system as this value. But such a small system can be hardly
regarded as a macroscopic one. At least one has to analyze carefully the
boundary conditions for the system.

Naturally, the droplets appeared at different moments of time perturb
initial phase up to different distances. So, one can regard above formulas
only as estimates. Some more rigorous equations can be found in [13].

The number of droplets Nel isn’t too big as N is. So, an analysis of
stochastic effects has a real sense. It is interesting now to get all correction
terms which are ascending with the number of droplets (but not only a leading
term). To solve this task one has to modify approaches from [1], [10].

Complexity of this problem appears here because one can not directly
use equations based on the theory with averaged characteristics. In [1], [10]
some properties of solution of the theory on the base of averaged characteris-
tics (TAC) were the starting points for constructions. This supposition was
adopted without any justification. So, at first we have to decide whether it
is possible to start with TAC.

We shall consider the situation of decay of metastable phase. The new
dimensionless parameter - the number of droplets destroys the universality
observed in [3] for the theory based on averaged characteristics. Moreover,
it is difficult even to formulate the system of equations. This radically com-
plicates the problem.

The possibility to use the effective monodisperse approximation formu-
lated in [2] was used in [10] without any justifications. Generally speaking
this property can not be directly used to calculate stochastic corrections.

4The nucleation period is a period of intensive formation of droplets.
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One has to analyze whether this conclusion leads to an error made in [10].
Here we have to formulate more correct constructions.

Both approaches from [1] and from [10] declared that they used the fol-
lowing property observed in [3] in frames of TAC:

”The droplets formed at the beginning (i.e. at the first half) of the nucle-

ation period are the main consumers of vapor”.

This property is valid [3], but it is substituted in reality in [10], [1] by the
following statement:

The main source of stochastic effects are the free fluctuations of droplets

formed at the beginning (i.e. at the first half) of the nucleation period. They

govern the fluctuations of all other droplets.
The last statement seriously differs from the first one. To get credible

results it was necessary to balance the fluctuation effects from the first half
of spectrum by the corresponding reaction of remaining part of spectrum.
Then, at least this approach needs some special justifications. So, one has
to use some new constructions which are presented below.

The application of the model approximation which was in reality done
in [1], [11] will lead to some errors. But due to universality of solution [3]
the errors can not be be too big. Qualitatively everything is suitable, but
precision will be not so high.

The same conclusion will be valid for any approach based on some model
behavior of supersaturation (justification is valid for a vapor consumption
in TAC, but not for stochastic effects). Namely, in [1] was used an artificial
approximation where at the first half of the nucleation period the conditions
of nucleation are the ideal ones and at the second half the conditions of
nucleation are governed by the droplets formed at the first half. Here in
current paper the final result will be more precise and it will be not based on
rather spontaneous artificial choice of some parameter as it was done in [1]
where this parameter was put to to 1/2. In [1] it is supposed that until some
moment (it is chosen in [1] as a half of nucleation period) the droplets are
formed under ideal conditions and namely these droplets determine a vapor
consumption. In reality this approach taken from [12] (page 310) was used
in [1] in slightly another sense. It is supposed that droplets formed during a
first half of nucleation period are the main source of stochastic effects. The
last statement was not justified in [1] and it is rather approximate. The
relative correctness of a result was attained due to specific compensation of
different errors of approximations used in [1]. It is necessary to stress that
the the mentioned model was used in [12] to justify a strong inequality and
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the high precision of constructions was not essential. But in [1] this model
was the source of numerical result.

All arguments listed above lead to necessity of reconsideration which will
be made in this publication. A plan of narration will be the following one

• Having considered the interaction of stochastic deviations of the num-
ber of droplets appeared during the elementary intervals of nucleation
we shall see that stochastic effects are at least moderate.

• A moderate scale of stochastic effects allows to seek the solution on
the base of the theory with averaged characteristics. But we have to
take stochastic effects from all droplets formed during the nucleation
period.

• The possibility to take into account the influence of stochastic devia-
tions of all droplets can be provided by the property of the self similarity
of nucleation conditions during the nucleation period. This property
can be considered in two senses - 1) in the local differential sense and
2) in the integral sense in frames of the first iteration in the iteration
procedure in TAC [15]. The local property will be used in justifica-
tion of the smallness of stochastic effects and the integral property will
be used to calculate the stochastic corrections of the whole nucleation
period.

All analytical results will be checked by computer simulation and a coin-
cidence will be shown.

All mentioned constructions will be valid for an arbitrary first order phase
transition. The law of droplets growth here will be a free molecular one, then
the linear size of droplet grows with velocity independent from its value.
Consideration of other regimes can be formally attained in frames of the
current approach by some trivial substitutions, but one has to take into
account that the new regime requires new approaches to construct nucleation
kinetics as it is shown in [4]. So, one can not agree with [10] where it is stated
that one of results is an account of stochastic effects in a diffusion regime
of droplets growth. This effect has to be taken into account principally in
another manner by application of methods presented in [14].
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4.1 Some characteristic features of decay kinetics

We begin with the theory based on averaged characteristics. It is supposed
to be known [3], that the supersaturation ζ behavior can be determined after
certain renormalizations by the following equation

ψ(z) =
∫ z

0
dx(z − x)3 exp(−ψ)

on function ψ which is the relative renormalized deviation of supersaturation
from the initial value. Variables x and z can be considered as equivalent
ones. A good approximation for solution and for a distribution of the droplets
number over time (or over liner sizes of droplets) which is proportional to
exp(ψ) is

f1 = exp(−z4/4). (4)

The form of f1 is given by fig.13. It is seen that approximately at z0 = 1.25
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Figure 13: A form of approximation for size spectrum
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the nucleation period stops.
Approximation (4) has rather high precision [2]. It is based on the fol-

lowing law of substance accumulation

G = z4/4 =
∫ z

0
(z − x)3dx ≡

∫ z

0
g(x)dx, g = (z − x)3 ≡ ρ3

for the renormalized number G of molecules in a new phase. For any moment
t or z a function g has one and the same form. We shall call this property as
a ”similarity of nucleation conditions”. We see that every time the droplets
formed at the last third of a period from beginning of nucleation until a
current moment will accumulate a negligible quantity of substance. The
relative quantity of the substance there has an order of (∼ 1/27) and is so
small that even if there will be fluctuations the quantity will remain small.

From the form of f1 it is seen that until z= ≡ 0.7z0 all droplets deplete
vapor rather weak. It will be important for future analysis.

Another important property is the possibility to describe kinetics in frames
of TAC with the help of monodisperce approximation (see [2]). The men-
tioned property of g allows to use a monodisperse approximation [2] not only
at the end of nucleation but in every moment of the nucleation period [2]. Let
t(G) be the moment when there are G molecules in droplets (in appropriate
units). An application of the monodisperse approximation [2] leads to

G ≈ Nm(z)z3

where Nm(z) is the number of droplets born until z/4

Nm(z) = N(z/4) ≈ z/4

and

Nm(z) ≈ N(z)

4

for z which are essentially less than those corresponding the end of the nu-
cleation period (in reality z ≤ z=.

4.2 Interaction of arbitrary stochastic fluctuations

The account of fluctuation interactions at every moment of time is important
in justification of the smallness of stochastic corrections. Generally speaking,
one can not take consideration only at the end of nucleation period without
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justifications that the characteristic features of nucleation kinetics remains
the same at every moment of time.

The arbitrary value of z in the period of nucleation corresponds to the
arbitrary value of the number of droplets in a liquid phase G (in renormal-
ized units which will be used (see [3]) the value G will belong to interval
(0, 1)). Now it will be possible to repeat in some features the approach from
[10] with arbitrary parameter G instead of 1 (in renormalized units, before
renormalization it would be 1/Γ (see [3])). The sense of a difference from [10]
is consideration of an arbitrary moment z instead of the end of nucleation. It
is very important because allows to take into account all fluctuation effects
during the nucleation period.

Let t(z) be the current moment of time (z is the coordinate of the spec-
trum front, actually t is proportional z). We suppose that before az (a is
some parameter) droplets are formed without mutual influence and one can
write Poisson’s distribution. This is the first group of droplets. The sec-
ond group of droplets are all other droplets formed until the time moment
z. A natural restriction on a appeared, namely a < 0.7. We shall take
a > 1 − 0.7 = 0.3 also for the purposes explained below. We suppose that
the influence of other droplets on its own formation is negligible (this fol-
lows from 2 ∗ 0.7 = 1.4 > 1.25 and from notation made above about the last
third of nucleation period). Then it is possible to write Poisson’s distribution
for the second group of droplets, but with parameters depended on stochas-
tic values - characteristics of the droplets distribution from the first group.
Rigorously speaking one has to use the first four moments of the droplets
distribution in accordance with [3], but for simplicity we shall use here only
the zero momentum. As a compensation for this simplicity we has to use
here only a = 1/4 which corresponds to the applicability of monodisperse
approximation. But due to the arbitrary value of G this is quite sufficient
for our goal.

Certainly, one can not state that precisely the first fourth of the spectrum
plays the main role in vapor consumption. So, we have to consider interac-
tions of stochastic fluctuations for all a which aren’t too small in comparison
with 1/4 as well as 1 − a isn’t too small in comparison with the same 1/4.
This will be done below.

At the next step of consideration one has to come from Poisson distribu-
tions to Gauss distributions and integrate them with account of connection
between stochastic parameters of embryos formation from the first group and
parameters of distribution from the second group. The same was done in [10]
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but only for a leading term.
Why it is necessary to get all ascending terms in corrections? The ex-

istence of at least one coefficient with a big absolute value means (see the
theory of Chebyshev polynomials) that there exist a size of a group where the
interaction will lead to the big effect. Then it would lead that the interaction
in these groups will be the real driving force of the process and these groups
can be regarded as quasiparticles.

Contrary to [10] we shall take into account all correction terms which
come from transition from Poisson’s distributions to Gauss distributions and
corrections for nonlinear connection between the group distributions. We
shall take all terms which are growing when the total number of droplets
grows.

We get the following result for droplets distribution

P = P∞(1 + y)

where

P∞ = (
9a

2πN(3a+ 1)
)1/2 exp(− 9a

3a+ 1

D2
s

2
)

Ds =
N̂ −N√

N

N̂ - some stochastic value of the total number of droplets, N - the mean
value of droplets and y is the correction for spectrum.

At = 1/4 we get

y =
1

74088
Ds(8087D2

s − 10269)s+ (−4

9
+

305

1176
D2

s

− 85903

12446784
D4

s +
65399569

10978063488
D6

s)s
2

where
s ≡ 1/

√
N

is a small parameter of decomposition. To get all ascending (with N) cor-
rections we must fulfill decomposition until s2.

Why it was necessary to get all ascending terms in decomposition? The
answer lies in specific sequential influence which can be observed in nucleation
period. The droplet appeared in the first moment of time forms condition for
the embryos appearance in the second moment, then the embryos appeared
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in the first and in the second moments form conditions for further appear-
ance, etc. So, if there would be some N at which corrections will be big
then immediately namely this value will be the crucial value for all kinetics.
Fortunately here there is no such effect and, thus, we can take the theory
with the averaged characteristics as the base for further constructions.

At arbitrary a we get for P/P∞ (here P∞ is the limit at N = ∞) the
following expression

P/P∞ = 1 + w1s+ w2s
2

Here

w1 = −1

6
((486l12 + 486D2

s l
12 − 972l11D2

s + 324l10 − 648D2
s l

10 + 756l9

+810l9D2
s − 459l8 + 297D2

s l
8 − 135l7D2

s−
387l7+90l6D2

s−153l6+27l5D2
s−213l5−66l4D2

s−3l4+27l3−3l3D2
s+16l2D2

s−3l2+

9l + lD2
s +D2

s)Ds)/((1 + 3l2)3(l + 1)(−1 + l2))

where
l =

√
a

and
w2 = w02/((l + 1)2(−1 + l2)(1 + 3l2)6l2)

w02 =
3∑

i=0

q2iD
2i
s
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Having integrated this expression we get corrections to droplets number. The
term at s gives zero after integration and the first non zero correction has
an order of ∼ s2 and doesn’t depend on the total number of droplets. A
coefficient at s2 has at a = 1/4 a value

d0 = 311/3024 ≪ 1

At arbitrary a a coefficient at s2 in correction for the total number of droplets
will be

da =
1

72
[108a6 + 540a11/2 − 72a5 − 930a9/2 − 336a4+

713a7/2 + 158a3 + 4a2 − 203a5/2 − 6a+ 39a3/2 − 3a1/2]/[a3/2(1 − a)2(1 + 3a)]

It will be interesting to compare results with and without corrections from
transition from Poisson’s distribution to Gauss distribution. So, we consider
now this case. At the leading term there will be no change. At correction
terms we have

y = − 17

74088
Ds(−2331 + 289D2

s)s+ (
17

196
D2

s+
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732037

12446784
D4

s +
24137569

10978063488
D6

s −
13

36
)s2

d0 = −37/126

da =
1

72
(648a11/2 − 216a5 − 1062a9/2 + 108a4 + 753a7/2−

30a3 − 195a5/2 − 12a2 + 19a3/2 + 6a− 7a1/2)/(a3/2(1 + 3a)(1 − a)2)

It is seen that these corrections are small. At arbitrary a except too small
ones and those close to 1 (these values are unreal) we get values shown at
fig.14
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Figure 14: Dependence of corrections, i.e. of da on a

A point curve shows corrections with transition from Poisson’s distri-
bution to Gauss distribution taken into account, a line shows corrections
without transition from Poisson’s distribution to Gauss distribution. Both
corrections have one and the same order and they are small.
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We see the plateau for all a except a≪ 1/4 and 1−a ≪ 1/4. So, here the
smallness of corrections due to the interactions of stochastic peaks is quite
clear.

But still the small value of corrections can lead through sequential in-
fluence to essential change of the total droplets number. Conclusion about
the smallness of correction in the total number of droplets can be made on
the base of specific kinetic features of the process (see ”the effect of the first
droplet”) which will be done later.

One has to note that we have not taken into account corrections from
transition from summation to integration. This is definitely required by
discrete character of droplets number. It is made due to reasons formulated
below. Really, we have at transition from summation in formula

P (N) =
∑
N̂1

P1(N̂1, N1)P2(N − N̂1 − N̂2, N2(N̂1))

to integration5

P (N) =
∫
dN̂1P1(N̂1, N1)P2(N − N̂1 − N̂2, N2(N̂1))

to use the Euler-McLorrain’s decomposition. It brings to asymptotic serial,
which can be included into a final answer.

This is the formal solution of the problem. But discrete character in
nucleation isn’t so trivial. The process of vapor consumption can not begin
without the first droplet. The system will wait for droplet as long as it
will be necessary. It shows that discrete effects are complicate and require
a separate publication. At least one has to put the initial moment at the
moment of the first droplet appearance and then to consider condensation
with the substance in the first droplet calculated explicitly as ∼ z3

This property will be called as ”the effect of the first droplet”. Here it
leads only to the small effects, but in the situation of smooth variation of
external conditions the effect can be greater.

5Here N is the total number of droplets, N̂1 is the stochastic number of droplets in the
first group, N̂2 is the stochastic number of droplets in the second group, N1 is the mean
number of droplets in the first group, N2 is the mean number of droplets in the first group,
which is a function of N̂1. The value N remains stochastic number.
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4.3 Self similarity of Gaussians

To use Poisson’s distribution for the first group of droplets one has to make
the following notation. Really nucleation conditions for the first group don’t
differ from the whole group. So, for distribution for the first group one has
to take distribution P1 with reduced half-width. But one can not attribute a
half-width to Poisson’s distribution. That’s why we considered effects with
and without corrections from transition from Poisson’s to Gauss distribution.
So, we can use Gauss distributions as initial ones. For Gauss distribution
one can easily reconsider the half-width. Then for P1 one can take

P1 ∼ exp(−(N̂1 −N1)
2/(2bN1))

where b is a renormalization coefficient. Distribution P2 remains previous

P2 ∼ exp(−(N̂2 −N2)
2/(2N2))

where N2 is given by

N2 = (1 − 1

3
s+

2

9
s2 − 14

81
s3 +

35

243
s4 − 91

729
s5 − a)N

where N is a mean total number of droplets,

s =
N̂1 − aN

aN

is a small parameter of an order N−1/2

After integration one comes to

P ∼ exp(− 9a

2(9a + b− 6ba+ 9ba2 − 9a2)
d2)

where
d = (N̂ −N)/

√
N

The half-width of the distribution P1 must be equal to the half-width of
P , which leads to

b = 9
a(1 − a)

−9a2 + 15a− 1
(5)

This value is drawn in fig. 15.
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Figure 15: Function b(a).

Now we shall consider effects of renormalization. The ratio of corrections
with renormalization and without renormalizations is given by

r =
1

9

√
−9a2 + 15a− 1

√
3a+ 1

a
√

1 − a

and it is shown at fig. 16
For all reasonable values of a the last ratio is approximately 1. At a = 1/4

we get 1.0041 Here the effect of similarity of nucleation conditions doesn’t
lead to remarkable effects in the change of half-width. But here the smallness
of change takes place only because of application of monodisperse approxi-
mation and later this change will be essential.

Instead of taking into account all moments of distribution we can directly
calculate the effects on the base of explicit form of spectrum in frames of
iteration procedure.

The result of the previous consideration is the following: we have proved
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Figure 16: Ratio of halfwidths

that stochastic effects are small. Beside this we have demonstrated how to use
the similarity of nucleation conditions. Here it doesn’t lead to any remarkable
effect, but later under the smooth external conditions this method will lead
to some essential numerical corrections.

One has to stress that in [1] a linearization over deviation of the droplets
number from the mean value was made. It was necessary to perform calcu-
lations. But in the linear theory one can not get the deviation of the mean
value of result from the value calculated on the base of averaged character-
istics. So, the attempt to get deviations in the mean value of droplets in [1]
is senseless.

4.4 Calculation of dispersion

Since the mentioned combination of gaussians is also a gaussian characterized
by a mean value and by a dispersion one has to determine these values for

42



the distribution of the total number of droplets. As it was shown above the
mean value of the droplets number is practically the same as it is prescribed
by TAC and we are interested in dispersion. Now we shall calculate this
value properly.

The most advanced approach to solve this problem6 was suggested in [1].
But even this approach has many disadvantages and we need to reconsider
it.

We shall characterize a droplet by a linear size ρ which is the cubic root
of its molecules number. Its velocity of growth at fixed supersaturation does
not depend on ρ.

Decomposition of a whole interval of nucleation into elementary intervals
is connected with some difficulties. An elementary length ∆̃ according to [1]
must satisfy two requirements:

1. A number of droplets formed during elementary length must be great.
2. An amplitude of a spectrum has to be approximately constant during

an elementary interval.
It is clear that the second requirement can not be satisfied. Stochastic

deviations of an amplitude leads to the violation of the second requirement.
We shall apply the second requirement not to the stochastic amplitude

as it was stated in [1], but to the averaged amplitude. Then the second
requirement is:

An averaged amplitude of a spectrum has to be approximately constant
during an elementary interval.

Now we shall see the evident illegal consequences of the approach from
[1]. ”Stochastic” amplitudes fi are introduced in [1] as

fi =
Ni

∆̃

where Ni is the number of droplets formed during ∆̃. It isn’t the height of
spectrum but simply the renormalized value of the droplets number appeared
during this interval. An expression for the number of molecules in droplets
formed during interval number i at a moment tk (or zk) (it means that now
we are at interval number k) with approximately constant rate of nucleation

6Certainly, already expression (5) gives the decrease of the Gaussian halfwidth and can
lead directly to dispersion where b is smaller than a standard one. But b essentially depends
on a. For 0.2 ≤ a ≤ 0.9 one can see the approximate formula b = 0.6 − (a − 0.5)0.7−0.2

0.9−0.3
and the absence of concrete value for a doesn’t allow to get a concrete value for b.
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f̄i would be the following one

∫ xk−i+1

xk−i

f̄iρ
3dρ =

1

4
f̄i(x

4
k−i+1 − x4

k−i)

Namely, this equation was derived in [1] and forms the base of further con-
sideration. Here xk−i is the coordinate ρ of the droplet which was born at zi

at a moment zk (it corresponds to the definition x = z − ρ) The difference
between forth powers corresponds to a constant amplitude of spectrum. It
is wrong and then eq. (12) in [1] and all further equations are not correct.

But the is no necessity to use such a way to make an account of the
number of molecules in a new phase. It is absolutely sufficient to take the
following expression

∫ xk−i+1

xk−i

f̄iρ
3dρ = Nix

3
k−i ≈ Nix

3
k−i+1

which is valid at k − i ≫ 1. In a whole quantity of substance it is sufficient
to take into account only droplets with k − i ≫ 1. The relative weight of
dismissed terms will be small.

Then for the total number of molecules in droplets at interval number k
we have the following expression

Qk =
k∑

i=1

Nix
3
k−i

where xk−i is a corresponding coordinate. This expression can be rewritten
as

Qk ∼
k∑

i=1

Ni∆̂
3(k − i)3

This representation is important because now the note in [1] after eq.
(15) isn’t necessary. That note stated that the probability for Ni to deviate
from the number N̄i of droplets calculated in TAC under the supersatura-
tion formed by stochastically appeared droplets in previous intervals is very
low. That note is doubtful because namely these deviations are the base for
stochastic effects. Now there is no need in this note.

The next step is to build [1] a two cycle construction for nucleation period.
During the first cycle the main consumers of vapor appeared in a system
and during the second cycle they govern a process of formation of all other
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droplets. In [1] it is supposed that during the first cycle a vapor depletion is
negligible and during the second cycle new droplets are absolutely governed
by droplets from the first cycle. Now we shall analyze an effectiveness of such
procedure.

In TAC the corresponding evolution equation will be

ψ(z) =
∫ z

0
(z − x)3 exp(−ψ(x))dx

The first iteration [3] is practically a precise solution and it gives the number
of droplets

Ntot =
1

4

41/4π
√

2

Γ(3/4)
= 1.2818

A model solution requires that until z = p there will be no depletion of
vapor and then only the droplets formed before z = p will consume vapor.
Then for a total number of droplets we have an expression

Ntot appr = p +
∫

∞

p
exp(−1

4
x4 +

1

4
(x− p)4)dx

A ratio q = Ntot appr/Ntot is given in fig. 17
Always Ntot appr is greater than Ntot. The value of minimum corresponds

to p ∼ 0.78 which is 55 percent of the total length of spectrum. We can
stress the smooth dependence Ntot appr on p.

It is clear that in [1] the value of parameter of separation into two cycles
was not chosen in a good style (at least from the point of view of TAC). It
corresponds to p = 0.64.

Now we shall study the probability Pk of formation of stochastic number
Nk of droplets at the first k elementary intervals. Our constructions now
resemble [1] but there is one essential difference. We have no necessity to
linearize expression with respect to (Ni − N̄i)/N̄i, where Ni is a stochastic
number of droplets formed at interval i, N̄i is a mean number of droplets
formed at interval i (it is a function of stochastic numbers of droplets at
preceding intervals). This linearization can not take place because a ratio
(Ni − N̄i)/N̄i can be zero or can attain huge value (with a low probability).
It is more simple and more justified to linearize expression on

∑
i ρ

3
i (Ni −

N̄i)/N̄i where ρi is a linear size of droplets formed at interval i (all of them
have approximately the same size). Really, due to summation the relative
variations of

∑
i ρ

3
i (Ni − N̄i)/N̄i are much smaller than variations of (Ni −

N̄i)/N̄i.
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Figure 17: The ratio of mean numbers of droplets

Variations of (Ni − N̄i)/N̄i would be small only at very big numbers of
droplets Ntot. One can get

(Ni − N̄i)/N̄i ∼ N̄i
−1/2

Ntot ∼MN̄i

M is a number of elementary intervals. So, the theory with linearization
proposed in [1] would be well justified only in a region where the result can
be obtained on the base of averaged characteristics. The internal contra-
diction between the big number M and the smallness of fluctuations in the
elementary interval in [1] is obvious.

The linearization proposed here is much more weak than in [1]. But it
leads to the analogous numerical expressions as in [1]. So, restrictions from
[1] are not necessary.

For dispersion of the total distribution the result proposed in [1] was the
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following

D∞ = Ñ∞(1 − β

α
)

where
β = β1 − β2

β1 = 8
∫

∞

1/2
dξ

∫ 1/2

0
dτ(ξ − τ)3 exp(−ξ4)

β2 = 16
∫

∞

1/2
dξ

∫
∞

1/2
dη

∫ 1/2

0
dτ(τ − ξ)3(τ − η)3 exp(−ξ4) exp(−η4)

α =
∫

∞

0
dx exp(−x4)

In the two-cycles construction the value of α, which is proportional to the
total number of droplets has to be reconsidered and recalculated on the base
of two cycles. Then we have to use instead of previous α ≡ α0 a new value

α = α1 ≡ 1/2 +
∫

∞

1/2
exp(−x4 + (x− 1/2)4)dx

In our approach we shall use parameter k of separation7 of two cycles and
we shall calculate α1 as

α1 ≡ k +
∫

∞

k
exp(−x4 + (x− k)4)dx

Then according to fig. 17 we see that the ratio α0/α1 is greater than 1 and α1

is greater than α0. Here we see that two-cycles construction is approximate
one. Then result for D∞ will differ from the number published in [1] and will
be (here one has to put k = 1/2)

D∞

e = Ñ∞0.69

instead of
D∞

f = Ñ∞0.67

as it is written in [1].
Numerical simulations show that the value D∞

e is one tenth more than a
real result. So, the new theory is necessary.

7Here for simplicity we use k instead of p/41/4.
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Now it is necessary to decide what k shall we choose. At arbitrary k the
expression for β will be the same but for β1 β2 we have

β1 = 8
∫

∞

k
dξ

∫ k

0
dτ(ξ − τ)3 exp(−ξ4)

β2 = 16
∫

∞

k
dξ

∫
∞

k
dη

∫ k

0
dτ(τ − ξ)3(τ − η)3 exp(−ξ4) exp(−η4)

We have also to reconsider expression for α.
After calculations we have for dispersion as function of k the following

fig. 18
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Figure 18: Relative deviation in dispersion as function of k

A minimal dispersion will be at k = 0.6. This value approximately equals
to k = 0.55 which ensures minimum of α1 where the result is the most close
to the real value in the number of droplets. One can also add that this is the
true value of k because namely this value corresponds to the sense of minimal
work when we have the low dispersion. It corresponds to a minimal (in a
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certain sense) entropy and later we can get additional work from increase of
entropy.

Dispersion at k = 0.6 will be

D∞ = 2Ñ∞0.66

Now we shall calculate the value of dispersion more accurate. Due to the
similarity of nucleation the first cycle doesn’t differ from the whole period.
Function β for the first cycle will be

β = β1 − β2

β1 = 8
∫ k

k1

dξ
∫ k1

0
dτ(ξ − τ)3 exp(−ξ4)

β2 = 16
∫ k

k1

dξ
∫ k

k1

dη
∫ k1

0
dτ(τ − ξ)3(τ − η)3 exp(−ξ4) exp(−η4)

Calculations for k1 = 0.6 ∗ 0.6 = 0.36 and k = 0.6 give β = β ′ ≡ 0.0255.
In the most rough approximation one has to add β ′ = 0.0255 to the

previous value of β = 0.305 which leads to β = 0.32 ÷ 0.33. The smallness
of β ′ in comparison with β allows to use this linear approximation. For this
value of β the value of dispersion will be

D∞ = D∞

3 ≡ 2Ñ∞0.64

It is interesting that this result can be gotten by another (rather artificial)
procedure:

We suppose that β1 and β2 are the first two terms of some series. We don’t
know other terms, but it is reasonable to suppose that the series resembles
geometric progression with denominator β2/β1. This leads to dispersion

D∞ = 2Ñ∞0.64107

As it follows from fig.19 the value of extremum remains k = 0.6.
The absence of the shift of extremum is important and is necessary for

this approach to be a self consistent.
Now we shall see whether some other approaches can lead to essential

reconsideration of result for dispersion.
A way to make results more precise is take into account the shift of

dispersion directly in initial formulas. Having written for the dispersion
correction in the first cycle

D∞

3 = 2Ñ∞γ
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Figure 19: Dispersion.

with parameter γ, we get for the final distribution

P (k) ∼
∫

∞

−∞

dN1dN2...dNP

P∏
i=1

exp(−(Ni − N̄1)
2

2γN̄1
)

exp[
[N (k) − ˜N (k) − ∑P

j=1 a
(k)
j (Nj − N̄1)]

2

2( ˜N (k) − PN̄1)
]

where P is the number of elementary intervals until the argument k, ˜N (k) is
the number of droplets calculated on the base of the theory with averaged
characteristics, N̄i the mean number of droplets formed during interval num-
ber i with account of fluctuations from previous intervals. The values a

(k)
i

are given by

a
(k)
i = 1 −

k∑
j=P+1

exp(−j4/M4)

M4
4(j − i)3
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and M is the total number of intervals.
Having fulfilled integration

∫
∞

−∞
dN1dN2...dNP , we get for a limit value of

dispersion

D∞ = 2Ñ∞(1 − k(1 − γ)

α
− γβ

α
)

The approximate similarity of spectrums leads to equation on γ, which
can be easily solved

γ =
1 − k

α

1 + β
α
− k

α

Calculations lead to
γ(k = 0.6) = 0.51

This result is very strange. It radically differs from the previous one.
Certainly we made an error. The reason of the error in previous approach is
that the duration of the first cycle is limited by k. So, we have to limit the
duration of a whole period. The limit of the whole nucleation is, evidently,
∼ 1.

The limit of integration corresponds to the current moment of time. It
can not be greater than 1. So, we have to take it equal to 1. Then we have
to recalculate β as

βinitial = β1 − β2

β1 = 8
∫ 1

k
dξ

∫ k

0
dτ(ξ − τ)3 exp(−ξ4)

β2 = 16
∫ 1

k
dξ

∫ 1

k
dη

∫ k

0
dτ(τ − ξ)3(τ − η)3 exp(−ξ4) exp(−η4)

To calculate the value of dispersion we can act in two manners. The first
way is to calculate dispersion at the point of extremum of β. Now we shall
show a dependence βinitial on k at fig. 20.

Calculations give βinitial = 0.18 and for the final dispersion

D∞

3 = 2Ñ∞0.65

This value practically coincides with a previous approach.
It is necessary to stress that one can not directly use extremal properties

of γ to get p which provides β extremum. In reality the final characteristic
is γ, but the calculations show that γ has no extremum. Certainly, this is
the weak point of approach based on extremal properties.
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Figure 20: βinitial as a function of k

Another way is to use k which provides the most precise value for the
total number of droplets in this model. Having compared the mean total
number of droplets in TAC calculated in this model one can see that this
number has minimum 0.927 which is greater than the precise value and the
value 0.90 given in the first iteration. This extremum is attained at k = 0.55.
Namely this value will be chosen as k and this leads to

D∞

4 = 0.62

which lies in frames of precision of numerical simulation.
One can add that there is no need to use k corresponding to extremum of

the number of droplets calculated up to 1 instead of ∞. Then the minimum
is 0.852 and it is attained at k = 0.45. Actually there is no reasons to take
this value because here the value of minimum is strongly less than the precise
value and it corresponds to the maximum of deviation from the precise value.
So, there are no reasons to take this value.
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One has to stress that the procedure adopted here is really necessary.
The two-period model with a fixed boundary in time scale used in [1] can
not be the base of the correct calculation of dispersion. The reasons are the
following

• The behavior of supersaturation here is the model behavior (MB) with
parameters, which characterize the influence of the first part of spec-
trum. In investigation of stochastic effects the fluctuations of these pa-
rameters are the source of fluctuations of the total number of droplets.
The fuctional form of MB is chosen to ensure the correct number of
droplets in frames of TAC. The change of parameters in MB leads to
the imaginary change of external conditions in TAC which corresponds
to the MB with given parameters.

• The change of external parameters in TAC has to lead to the change
of the boundary between parts. But this can not be done in the model
with a fixed boundary.

In our approach the summation of geometric progression and all other
approaches ensure the possibility to overcome the restrictions of the two parts
approach with a fixed boundary. The summation of geometric progression
describes the equivalence of all points which is prescribed by the property of
similarity of spectrums.

The relative smallness of numerical errors in [1] is caused by the following
reasons

• The moderate possibility of linearization (the non-linearity isn’t too
big) in kinetics of decay

• The weak dependence Ntot on p in frames of TAC

• The weak dependence of Ntot on N(p) in frames of TAC

• The effects of stabilization are very strong. Really, instead of addition
0.5 the benefit of the second part to dispersion is only 0.64−0.5 = 0.14
(or even less if we use p ∼ 0.55 instead of p ∼ 0.5)

• The existence of the special buffer part of nucleation period which will
be described later
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4.5 Numerical results

Numerical simulation of nucleation can be done by the following method. We
split the nucleation interval into many parts (steps). At every step a droplet
will be formed or not. The probability to appear must be rather low, then we
ensure the smallness of probability to have two droplets at the same interval.
This means that the interval is ”elementary”.

The process of formation is simulated by a random generator in a range
[0, 1]. If a generated number is smaller than a threshold parameter u, then
there will be no formation of a droplet. If it is greater than a threshold, we
shall form a droplet. As a result we have spectrum f̂ of droplets sizes. Now
it is a chain of 0 and 1. The parameter u descends according to macroscopic
law [3]

u = u0 exp(−ΓG/Φ)

from a theory with averaged characteristics (it is based only on a conservation
law without any averaging and can be used). Here

Γ ∼ dFc

dΦ
∼ νc (6)

Φ is the initial supersaturation, Fc is a free energy of critical embryos forma-
tion, νc is a number of molecules inside a critical embryo, G is the number
of molecules in a new phase taken in units of a molecules number density
in a saturated vapor. By renormalization one can take away all parameters
except G.

To simplify calculations radically one can use the following representation
[3] for G:

G = z3G0 − 3z2G1 + 3zG2 −G3

where z is a coordinate of a front of spectrum, and Gi are given by

Gi =
∫ z

0
f̂(x)xidx

We needn’t to recalculate Gi, but can only ascend the region of integration,
having added to integrals the functions zif̂(z)dx at every step.

Our results are given below. The interval is split into 30000 parts. Pa-
rameter u0 have been varied from 0 up to 1 which leads to a different number
of droplets. It is clear that the limit values are not good: at 0 there are no
droplets in the system, at 1 our intervals are not elementary. At every u0

results were averaged over 1000 attempts.
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Figure 21: Shifts of droplets numbers as a function of ln ˜N (∞)

Shifts of droplets numbers are drawn at fig.21 as a function of ln ˜N (∞)

It is seen that an analytical result about negligible value of corrections is
correct.

Dispersion as a function of ln ˜N (∞) is shown in fig. 22.
It is seen that the analytical value of dispersion coincides with numerical

simulation. The ends of the curve correspond to a zero number of droplets
and to a giant number of droplets when the elementary intervals are not
elementary and have to be thrown out.

Stochastic effects in dynamic conditions [3] can be analyzed by the same
method. We needn’t to describe it here. Numerical results are drawn below.
Fig. 23 shows the shift in the number of droplets. It is small. Dispersion is
drawn in fig. 24 (i.e. the value of γ). It is greater than in the case of decay.

The physical reasons for the smallness of the droplet number shift for
decay and for dynamic conditions will be different.

For decay the reason is the following. The system wait the first droplet
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Figure 22: Relative dispersion γ as a function of ln ˜N (∞)

as long as necessary. Actually the time for kinetics of this system is t(G)
with no connection with real time (certainly, the rate of nucleation has such
connection). This phenomena is the reason for a smallness.

In dynamic conditions there is a time dependent parameter - the intensity
of external source. So, there is no such a reason.

But here in the theory with averaged characteristics there is a property of
a weak dependence of the total number of droplets on microscopic corrections
for a free energy [3]. The same is valid also for fluctuation deviations. So
there will be a weak effect of stochastic nucleation.

Because the reasons for smallness of effect in decay and dynamic condi-
tions are different it is interesting to see whether they continue to act when
the supersaturation is stabilized at some moment. Analytical results shows
that the will be an overlapping of two reasons.

Really, if stabilization takes place at the period where the main consumers
of vapor are going to appear then the majority of droplets appear in the
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Figure 23: Shift in a droplets number as a function of ln ˜N (∞) for dynamic
conditions

situation when there is no influence on the system. Then the situation for
these droplets resembles decay conditions (and may be even better because
the external supersaturation [12] is going to decrease). So the reason for the
decay situation works here.

If stabilization takes place at the second cycle, then the behavior of su-
persaturation is governed by droplets formed in dynamic conditions and we
have here the reason for smallness in dynamic conditions. In both situations
the effect is small. Numerical results confirm this conclusion.

4.6 Conclusions

The main result of this publication is a correct definition of all main charac-
teristics of stochastic nucleation. It is shown that the main role in stochastic
effects belongs to all droplets, but not to the main consumers of vapor. Only
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Figure 24: Relative dispersion γ as a function of ln ˜N (∞) for dynamic con-
ditions

the property of the nucleation conditions similarity allows us to solve the
problem of account of all influences during the nucleation period.

When all disadvantages of [1], [10] are shown it is clear that these publi-
cations can not be considered as a solid base for nucleation investigation.

But why results obtained in [1], [10] are so close numerically to real values?
The reason is that on a level of averaged characteristics there is a universality
of nucleation process. So, the errors of [1], [10] cannot lead to a qualitatively
wrong results.

One has to stress that all corrections obtained in this paper are also
universal ones. Certainly, they are some coefficients in decompositions and
the functional form of decomposition is prescribed now.

There is also a second specific reason for the smallness of an error in
numerical values presented in [1]. The reason is the following

• The process of nucleation can be split in three sequential parts.
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• The first part is the part where the main consumers of vapor were
appeared. Here the vapor depletion is small

• The second (buffer) part is the part where conditions are ideal, the
vapor depletion is small, but the droplets formed in this part can not
attain big sizes even at the end of the whole nucleation period and, thus,
can not consume enough vapor and they are not the main consumers
of vapor

• The third part is the part where the depletion isn’t small and droplets
appeared in this part aren’t the main consumers of vapor in the nucle-
ation period.

• All parts have the lengths of one and the same scale.

Certainly this structure was not declared in [1] which made the derivation in
[1] illegal.

The existence of the buffer part is necessary to balance the errors appeared
from the fact that the fluctuations leads to to the absence of applicability of
functional approximations for the nucleation kinetics. More correctly is to
use the property of the ”internal time of decay” which will be done separately.

It seems that all effects considered here are negligible. For simple systems
it is really true. But for systems with more complex kinetic behavior these
effects can be giant. One of such systems is already described theoretically
and this description will be presented soon in a separate publication.

To compare results given here with the previous approach one can simply
recall that the real error is the error in the relative deviation of dispersion
from the standard value. In [1] this error is more than one quarter. Here the
error is practically absent.

In diffusion regime of droplets growth one has to use another approach
based on [4], [14]. In [14] an explicit description of nucleation with account
of stochastic effects was constructed.
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Late periods of the condensation process
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Abstract

The full evolution during the late periods of the condensation pro-

cess is described in the analytical form. The process is split into several

periods and for every period the simple approximate solution is given.

1 Introduction

The first order phase transition is characterized by the temporal duration -
the process of the condensation lasts in time and consists of several charac-
teristic periods. The kinetics of the first order phase transition is one of the
actual problems in the phase transformations.

Ordinary it is supposed that the final stage (period) of the phase tran-
sition is the stage of coalescence. This name goes from the theory given by
Lifshic and Slezov [1]. This terminology is not absolutely correct - formally
the coalescence means the adhesion of the embryos. But the Lifshic-Slezov
(LS) consideration does not take into account the adhesion, the evolution in
the LS picture is the competition between the embryos through the exhaus-
tion of the vapor environment. One has to clarify this difference. In the case
of adhesion we shall speak about the coagulation and when the Lifshic-Slezov
mechanism takes place we shall speak about the over-condensation.

The over-condensation means the competition between the already formed
embryos when the embryos of the relatively big sizes eat the embryos of
the relatively small sizes not directly but through the exhaustion of the

∗Victor Kurasov@yahoo.com
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metastable old phase until such a degree that the mentioned small embryos
become the pre-critical ones and begin to eject the molecules in the vapor.
These embryos begin, thus, to disappear.

Beside this opportunity it is possible to see in the open systems the situ-
ation when all embryos continue to grow until all volume of the system will
be transformed into a new phase. Certainly this situation takes place when
there is an effective source of the substance in the old phase. This is also an
alternative possibility for the final of the phase transition. So, we see that
the final stages of the phase transformation can be very different.

Here we shall speak about the over-condensation and consider the closed
system. The effect of coagulation is not taken here into account. The tem-
perature of the system is supposed to be fixed. The mentioned restrictions
are not the crucial ones.

The methodology of analysis of such systems is given by Lifshic and Slezov
in [1]. Strictly speaking the results of Lifshic and Slezov can not be directly
applied for the systems with the diffusion regime of the substance exchange
(as it was done in [1]) because in this case around every embryo there will
be a profile of the metastable (old) phase substance. The profiles around
different embryos overlap. This changes the rates of growth. Then one has
to consider an interaction between the density profiles. So, one can not
directly take the integral form of the balance equation as it is done in the
theory of Lifshic-Slezov. The last task to describe the interaction of profiles
is extremely difficult and the precise analytical solution of this problem is
hardly possible.

The ignorance of the diffusion profiles leads to the necessity to consider
the situation with the free molecular regime of interaction when there is no
profiles. This was done by Wagner [2] and we shall follow this regime of the
substance exchange below.

The fundamental fact is that the LS asymptotics was confirmed exper-
imentally (see [3], [4], [5]). Here one has to stress that according to the
notation made in [6] the accuracy is not very high - one can speak only
about the qualitative confirmation of the form of the spectrum and about
the precise confirmation of the power-like law of evolution of parameters of
the spectrum (in some sense the power-like law is rather evident and it can
be derived from some simple qualitative remarks). Also it is necessary to
stress that according to the references from [6] the form of the size spectrum
is more sharp than it follows from the leading term of the LS theory.

The next step in modification of the LS approach was done by Osipov and
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Kukushkin in [6] where the ”regular asymptotic” was constructed. Since the
first two terms in asymptotic decomposition in the LS theory are universal
(independent from the initial size spectrum) it is possible to introduce such
variables (coordinates) where already the initial approximation is equivalent
to the first two terms of the LS decomposition. So, the modification of Osipov
and Kukushkin seems to be natural. But this modification is important
because it allows to speak on the level of the regular asymptotics already
from the very beginning.

The LS asymptotics has an amazing feature - it allows to establish the uni-
versal form of the size spectrum. One can admit that the power of metasta-
bility has some universal asymptotics, but one can hardly believe that the
spectrum of the embryos sizes is universal. This will be the matter of dis-
cussion is this paper. Below it will be shown how the real spectrum of sizes
approaches the form given by LS theory.

2 Some remarks initiated by technique of Lif-

shic and Slezov

Now we shall consider the simplest model leading to the over-condensation.
At first we shall consider the embryos with linear sizes which strongly exceed
the critical size. We shall call them as the supercritical embryos. The growth
of the supercritical embryo in time t is given by the following equation

dρ

dt
=

ζ

t1

Here ρ is the cubic root of the number of molecules inside the embryo (it plays
the role of the linear size), ζ is the supersaturation of the metastable phase,
t1 is some characteristic time (this is simply the constant coefficient). The
supersaturation is defined as the ratio of the surplus density of the metastable
phase (with respect to the saturated phase) to the density of the saturated
phase or the ratio of the real density of metastable phase to the density of
the saturated phase minus one.

The simplest asymptotic correction to the asymptotic law of growth will
be the following

dρ

dt
=

ζ

t1
(1− u−1)
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Here
u =

ρ

ρc

is the ratio of ρ to the critical size ρc to have the zero rate of growth for
the critical embryo. It is quite possible that this ratio has been changed
by an analogous ratio in some power but this does not lead to the essential
reconsideration of this approach.

One can give the interpretation of the last correction term as the lead-
ing term in the asymptotic expansion in inverse powers of the linear size.
It is possible that this decomposition starts from the non-integer power as
it takes place in construction of series for solutions of the linear second or-
der differential equations. It is also possible that the law of growth for the
supercritical embryos has some power of the linear size which grows with a
constant velocity. Namely this situation takes place in the diffusion regime of
the metastable phase exchange. In both cases the technique described below
can be applied.

So, since one can see that

(dρ/dt)

(dρ/dt)asymp
= (1− 1/u)

or there is some function of u in the rhs it is convenient to consider du/dt
instead of dρ/dt. For the derivative du/dt we get an additional term

dρ

dt
= ρc

du

dt
+ u

dρc
dt

which is linear on u. So,

du

dt
=

ζ

t1
(1− u−1)− u

dρc
dt

In the LS theory there exists a hidden supposition that ρc depends on time
droningly. This supposition was reexamined in approach which predicts the
periodic formation of the tail of the size spectrum and then the consumption
of this tail. But nevertheless this supposition is rather natural at least at the
asymptotics. If we adopt this supposition then all values depending on time
are the values depending on the critical size. At least one can consider the
intervals of the monotonous dependence.
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The generalization of this law on other regimes of growth leads to

du

dt
= φ1(t)u

α(1− u−1)− uφ2(t)

The functions φ1, φ2 are the functions of time. The function φ1 can be
excluded by transition to the rescaled time τ . The same can be done with
uα.

The right hand side of the last equation (let it be Γ) can not attain
asymptotically the positive value at some argument - then the substance
balance will be violated. The balance equation will be violated also when
the rhs is negative at all values of argument u. Hence, the unique possibility
is to touch the zero level at the main maximum. Then it is necessary that the
rhs as a function of u has a maximum and then by the correct choice of ϕ one
can put the maximum to the zero level. The class of functional dependencies
which allow this operation forms the class of dependencies where the LS
technique can be applied at least formally. The fine unjustified supposition
here is the monotonous approach (in time) of the maximum to the zero level.
It is quite possible that this maximum oscillates near zero - at some moments
is it greater than zero, at some times it is less than zero. This possibility is
considered in [8]. Here we do not consider the oscillating scenarios.

For the function ϕ we get
ϕ = γ0

where γ0 is some constant. Even when this supposition is adopted the velocity
at the maximum is zero and the balance equation is violated. Then it is
necessary to be:

ϕ = γ0(1 + ε2(τ))

with ε → 0 at τ → ∞.
The reason that γ0 is a constant lies in the form of equation for du/dτ .

It would be interesting to consider equations which do not belong to the
established form and to get the evolution analogous to the over-condensation.

Let the argument of the main maximum be um. One can see that at
ϕ = γ0 the embryos with u > um can be dissolved only at the infinite time
(the diffusion is not considered here).

Now we shall establish the function ε(τ). To find this function one has
to analyze the solution near the maximum of Γ. We introduce the variable

z = (u− um)/ε
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Then we see that

du/dτ = d(u− um)/dτ = dzε/dτ = εdz/dτ + zdε/dτ

and

ε
dz

dτ
= Γ(γ0(1 + ε2))− zk1

where k1 is the coefficient equal to dε/dτ . In the last equation it is necessary
to express u in the function Γ through z and ε. Then we rescale the time to
exclude the coefficient in the rhs and then we get an equation which allows
(or does not allow according to the reasons mentioned above) the analysis
analogous to the already made one. If equation allows such analysis one can
get the correction term of the asymptotic.

One has to get the equation binding dε/dτ and ε. In the power-like laws
of growth this equation is trivial and has the form f(ε)dε/dτ = const with
some known function f . It is interesting whether one can get any more
complex form of this equation. It is quite possible that some more complex
form can lead to some new physical effects. Here we do not consider this
question and assume that the dependence ε on τ for the correction term is
established.

Having calculated one correction term after another we establish all asymp-
totic series until the step when we can not perform the procedure described
above because the obtained equation does not allow to put maximum to the
zero level. In the natural physical situations only the initial and the first
correction term can be established. It is worth seeking the situations where
one can make more steps.

In the Osipov-Kukushkin approach we get the correction term already
as the initial approximation since one can choose such variables where the
correction term can be treated as the initial one. Certainly, it is possible
to continue this procedure but it appears that under the natural regimes of
the substance exchange it is impossible to choose parameters in equations
for correction terms that the main maximum will touch the zero level. It is
interesting to find situations where all corrections are the universal ones.

One can see that the account of the diffusional term in the evolution
equation can not lead to another asymptotics because the diffusion process
along u becomes negligible at the infinitely big time. In correction terms it is
necessary to check that the diffusion process is really negligible in account of
corrections. It would be interesting to seek the situations where the account
of the diffusion process changes the correction terms.
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The unpleasant fact for the LS theory is the following one. In the zero
approximation the time of the dissolution of the embryo with u > um is
infinite and has to be refined. But in the first approximation the time of
dissolution of every finite embryo is the finite one and it means that every
finite size spectrum will be dissolved (dissolved at the finite time). After the
spectrum is dissolved the balance equation will be certainly violated.

The mentioned difficulty has a fundamental character which is confirmed
by further constructions in frames of the LS theory. It is reasonable to
connect the finite time of dissolution with the possibility to find the universal
form of the size spectrum. The authors of the LS approach treat the universal
distribution as the distribution which is the limit of the relaxation process.
But it evident that namely the initial form of the size spectrum determines
the whole further evolution. Under the regular and only under the regular
law of growth we have

p(ρ, t)dρ = f(ρ′, t′)dρ′

where p and f are the old spectrum and the new spectrum of sizes and ρ at
the moment t has to come by the regular growth into ρ′ at t′. Then

p(ρ, t)
dρ

dt
= f(ρ′, t′)

dρ

dt
|t=t′,ρ=ρ′

Since for dρ/dt we have the concrete given expression it is hardly possible to
change the form of the size spectrum to come to the universal form of the
LS theory. If one determines the velocity of growth from comparison of the
initial form of spectrum and the final universal form of spectrum it leads to
the unpleasant contradiction.

The alternative is the following: to have the size spectrum prescribed by
the initial distribution or to see the leading role of diffusion (at least at some
time).

It appears that the universal form of the size spectrum has absolutely
another sense - this form of spectrum is such a form which corresponds to
the already established asymptotics for the critical size precisely or at least
ensures the optimal relaxation to the established asymptotics for the velocity
of growth. With the real form of the size spectrum this asymptotic form of
the size spectrum has no direct connection. Then the asymptotic for the
velocity of growth corresponding to the ideal size spectrum will be never
attained at finite time.
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3 Asymptotic form of the size spectrum

One can get the universal form of the size spectrum in the LS formalism
rather simply. In the LS approach it is supposed that the main quantity of
the substance is in the region u < um. Then the balance of the substance
leads to ∫ umρc

0
ρ3f(ρ, t)dρ = const

where f(ρ, t) is the distribution function. From this function we come to the
distribution over u, namely to φ(u, τ). Then

φ(u, τ)du = f(ρ, t)dρ

The substance balance can be rewritten as

ρ3c

∫ um

0
u3φ(u, τ)du = const

The form of the function φ can be determined from the continuity equation

∂φ

∂τ
= −∂φvu

∂u

where vu is the velocity of the growth for u. The solution of this equation is
rather simple

φ(u, τ) = θ(τ − τ(u))/vu

where τ(u) is the time for the embryos to attain u. Instead of the last function
one can write the function of u− u(τ), where u(τ) is the size attained at the
given time. The sense of solution is that the dependence over two variables
is performed through the dependence over one variable. The concrete form
of this dependence is determined by initial conditions (in the LS approach it
is detemined by asymptotic relations).

The transformation to the variable u is made to ensure the constant value
of the upper limit of integration.

Ordinary the concrete form of the functional dependence of θ has to be
determined from the initial conditions. But in the LS formalism this form is
determined from the asymptotic balance equation which can be written as

ρ3c

∫ um

0
u3θ(τ − τ(u))/vudu = const
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The function vu depends only on u, but not on τ . This is the consequence
of the fact that in the zero approximation for du/dτ one can take γ0 which
excludes the dependence on time.

The function ρ3c at the already established asymptotic is the known func-
tion of time. This dependence has to be cancelled by the true choice of the
functional dependence for θ. Namely this cancellation is the recipe to choose
the true form of the function θ.

The simple dependence (but may be not the unique one) is the following
one

θ(τ − τ(u)) = g(exp(τ − τ(u)))

where the function g satisfies the relation

g(ab) = g1(a)g2(b)

for any a b. As this function one can take the power function. Since we have
to cancel only the leading term in asymptotic the choice of the power-like
function is quite satisfactory.

So, the solution is announced. But is it well justified?
Really, the ordinary solution of the problem (not the asymptotic one) is

very simple it is already presented in the form of the function θ, i.e. in the
fact that θ is the function of only one variable. Certainly, this function has
to coincide with the initial spectrum of sizes at the initial moment of time.
It is sufficient to calculate the origin of the given embryo taking into account
the known supersaturation, then to take the initial distribution and divide it
on the velocity of growth in the given point (or on the ratio of the velocities
of growth in corresponding points).

We shall speak here about the evolution scenario. This scenario is in
contradiction with the LS scenario. It conserves the explicit dependence
on the initial distribution. It is clear that the evolution scenario is more
correct in comparison with the LS scenario. The LS scenario has at least two
disadvantages

• -The absence of the spectrum at u > um

• -The spectrum is determined to ensure the asymptotic, but it is more
reasonable to get the asymptotic on the base of spectrum.

The first disadvantage can be ignored by notation that every finite spec-
trum sooner or later will leave the region u > um.
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The second disadvantage is more serious because it destroys the method-
ology of the LS approach. It seems that it is the crucial point and the real
size spectrum will differ from the result of the LS theory.

But one can see the amazing fact - the similarity between the form of the
LS spectrum and the results of experiment. We shall explain this similarity
below.

4 Approximate similarity between the real

size spectrum and the results of the LS ap-

proach

We start to consider the strange fact - why the form of the size spectrum
prescribed by initial conditions will resemble the universal result of the LS
theory?

At first one has to stress the low accuracy in the experimental determina-
tion of the size spectrum form. As an example one can consider the style of
discussion in [6]. In [6] one can see not only the account of the initial approx-
imation but already of the first correction in the form of the size spectrum.
The form of the size spectrum with the first correction essentially differs from
the form in the zero approximation. This fact is very important and leads
at least to two essential conclusions

• - the correction term in the asymptotic expansion is not small at least
for the size spectrum - one can not see the parameter with a property:
the small value of this parameter leads to the size spectrum in the zero
approximation. Moreover, one can state that there is no such parameter
because the size spectrum in the first approximation is universal one.
This shows that there is no reliable way to determine the size spectrum
because the next correction can change the form of the size spectrum
radically.

One can also give an interpretation which is not favorable for the LS ap-
proach - the modified zero (Osipov-Kukushkin) approximation is only
the starting point and all further terms of decomposition depend on
the initial size spectrum. So, there is no reason to speak about the
universality.
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• - the accuracy of the experimental results is rather low. Really, the
difference between the size spectrum in the zero (LS theory) and in the
first approximation is very essential. Earlier the experimental results
confirmed the LS spectrum in the zero approximation. Now experi-
ments confirm the Osipov-Kukushkin result. It can be only when the
accuracy is low. So, one can speak only about the experimental obser-
vation of some tendencies in the form of the size spectrum.

In the analysis of experimental results one has to note that some au-
thors speak about the diffusional blurring of the size spectrum which
corresponds to experiment.

But one can show analytically that it is possible to neglect the diffu-
sional term in the LS technique. It does not mean that in the evolution
scenario one can neglect the diffusion - at least there are some periods
when the diffusion is the driving force of evolution. Also one can see
that in the case of the finite size spectrum one has to include diffusion.

As the result of these facts one has to conclude that there exists a tail of
the size spectrum (it is the exponential one - this is explained by the diffusion
process) at u > um (in any other region it can not be noticed). This tail is
observed experimentally. What is the reason for this tail? The LS formalism
can not give an answer. Below this answer will be given.

Kinetics of the new phase embryos formation has some characteristic
features which help to determine the characteristic features of the over-
condensation. Roughly speaking, the ”initial” size spectrum belongs to a
narrow class of functional dependencies. So, we use the evolution approach
and construct the sequence of stages for the process of condensation and
over-condensation.

The process of condensation (the periods before the over-condensation) is
investigated in [7]. This investigation gave the total number of the embryos
and the form of the size spectrum. For the further regular evolution it is
necessary to know the first three (and the zero) momenta of the size spectrum

µi =
∫ ∞

−∞
f(x)xidx

or of the distribution function f(x) of the variable x, defined as the deviation
of the coordinate ρ from the size z of the maximal value of this variable cor-
responding to the embryo formed at the very beginning of the condensation
process.
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4.1 The period of the initial relaxation

The relatively intensive formation of droplets stops at the relative decrease
of the supersaturation equal to the value reciprocal to the quantity of the
molecules in the critical embryo.

The number of molecules in the critical value is a big value. The relatively
small decrease of the supersaturation stops the nucleation (formation of new
embryos) and later the size spectrum moves along the ρ-axis without any
change of the form. To ensure the essential exhaustion of the metastable
phase the spectrum has to move along ρ-axis for a rather long distance. So,
at the end of this evolution the spectrum of sizes can be considered as the
monodisperse one.

The balance equation can be written in the following form

Φ = ζ +
3

∑

j=0

3!|
i!(3− i)!

z(3−i)µi

or

Φ = t1
dz

dt
+

3
∑

j=0

3!|
i!(3− i)!

z(3−i)µi

which is the ordinary first order differential equation without the explicit
dependence on the argument. So, it can be easily integrated. The result is
the monodisperse spectrum and the relaxation of the spectrum coordinate
to the critical size (or more correct the relaxation of the critical size to the
coordinate of the spectrum).

Here we use the law of growth for the supercritical embryos. It can be
replaced by the precise law of embryos growth. Really, in the law

dz

dt
=

ζ

t1
(1− z3ζ

2a
)

we replace ζ by Φ−∑3
j=0

3!|
i!(3−i)!

z(3−i)µi and get equation

dz

dt
=

Φ−∑3
j=0

3!|
i!(3−i)!

z(3−i)µi

t1
(1−

z3(Φ−∑3
j=0

3!|
i!(3−i)!

z(3−i)µi)

2a
)

which can be easily integrated. Here it is ignored that during the evolution
the momenta µi will be changed which is considered as a correction. In any
case we need only the initial approach to the critical size where the rough
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monodisperse approximation is sufficient. Then there will be no problem
with changing momenta.

One can show that the account of the diffusional term will be essential
only when the coordinate of the size spectrum is rather close to the critical
size. This is the end of the relaxation stage and the beginning of the new
period.

4.2 The period of the diffusional blurring of the size

spectrum

The result of the previous period is the relaxation of the spectrum coordinate
to the critical size. The spectrum resembles the delta-like function, The
spectrum width δρ is many times less than the coordinate ρ or ρc which is
the spectrum coordinate.

If there would be no diffusion then the spectrum will remain near the
critical coordinate until the end of the whole evolution. But after the time
of relaxation at the previous period the diffusion becomes the main driving
force of the process.

Kinetics of the diffusion blurring is rather simple and it is described in
[8]. It is possible to approximate evolution by diffusion blurring without any
regular growth with a boundary condition

f(ρ = 0) = 0

and the initial condition

f(t = tinitial) ∼ δ(ρ− ρc)

The method to solve this problem is the combination of the Green func-
tions at the infinite interval. The method of images allows to construct
solution by addition of the negative gaussian in the symmetrical point.

So, we write the diffusional equation in the following form

∂f

∂t
= Wc

∂2f

∂ρ2

Here W = W+ + W− is the generalized kinetic coefficient equal to the
weighted sum of the adsorption coefficient W+ and the ejection coefficient
W−. One can take these coefficients in the critical point marked by the index
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c. Then one can assume that Wc = 2W+
c . Taking into account the evident

relation
W+ = Svt/4 = 3ρ2(ζ + 1)/t1

where vt is the mean thermal velocity, S is the surface square of the embryo
one can determine the dependence of Wc on ρ. Then it is necessary to go
from ρ to a new variable r which is ρ in some constant power, i.e. ρconst. This
transition excludes the dependence of the diffusion coefficient on the size at
least asymptotically. It occurs at ρdρ ∼ ds = dρ2.

The Green function at the infinite interval is written in the following form

G(s, t|s0, t0) ∼ exp(− (s− s0)
2

4D(t− t0)
)

where D is the diffusion coefficient (this is the known constant value), s0 is
the point of appearance of elementary disturbance at the moment t0, s is the
point of observation at the moment t.

Here one can take as s0 the critical size and the time t0 has to correspond
to the time of the end of relaxation (actually it is the time of relaxation).

To observe the boundary condition f(s = 0) = 0 it is necessary to take
the combination

f0 = f+ + f−, f+ = G(s, t|s0, t0), f− = G(s, t| − s0, t0)

This gives the solution of this problem.
Consider the behavior of the critical size ρc. It is important to know ρc

because u = ρ/ρc. One can propose the equilibrium critical size ρce which
can be determined on the base of the size spectrum as

∫ ∞

−∞
f(ρ, t)3ρ2(1− ρc

ρ
)dρ = 0

This corresponds the stationary value of the critical size, i.e. dρc/dt = 0.
It is clear that never ρc equals ρce because this means the stationary

value of ρc and of the supersaturation ζ . But approximation ρc ≈ ρce is
rather good. Namely, at the beginning of the diffusion blurring this equality
takes place. So, the critical radius ρc (we shall mark it ρc0 for initial time) is
given by condition

∫ ∞

0
f0(ρ)vρ(ρc0)dr = 0
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Here vρ is the velocity of growth of the variable ρ. It is supposed that the
size spectrum is relatively narrow. Another variant taking into account the
different volumes of embryos is the following

∫ ∞

0
f0(ρ)ρ

2vρ(ρc0)dr = 0

Also one can propose to extract the deviation of ρc from ρce

y = (ρc − ρce)/ρce

and see that ordinary y is small. Then one can analyze the evolution of the
system through decomposition on y.

When y is big it means that the size spectrum is essentially greater than
ρc. But this corresponds to the evolution via supercritical embryos where
we have extremely simple law of growth dρ/dt = ζ/t1. So, the combination
of the consideration of supercritical embryos and decompositions on y with
restriction in the first several terms (actually the first non-zero term) can be
very effective.

Now we return to the diffusion blurring. The result of the diffusion blur-
ring is very optimistic for the final conclusions. It sounds as following: The
distribution function is the universal one and does not undergo the change
of the form any more. So, one can see that the asymptotic solution is found.
But the situation is not so simple.

Really the function f0 after scaling in units of ρce will be the universal
function without any parameters.

On the base of distribution we can calculate the behavior of the critical
radius. Note that it is impossible to find the critical size directly from the bal-
ance equation 2a/3ρc+

∫∞
0 ρ3f(ρ, t)dρ = const because here

∫∞
0 ρ3f(ρ, t)dρ ≈

const and the error radically increases. Instead of the direct balance equation
one can use the differentiated variant 2(a/3ρ2c)(dρc/dt) = 3

∫∞
0 ρ2f(ρ, t)dρ

which allows to find ρc
If the size spectrum will be the universal function then the critical size

will be also the universal function.
The special question is the correct boundary condition at small sizes.

The velocity of the dissolution of the small embryos is a rather complex
function of size and the regular dissolution exists. One can not neglect this
regular dissolution. But fortunately the small embryos are dissolved very
quickly with the growing velocity. So, one can suppose that they disappear
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immediately at ρ = ρf = (0.6÷ 0.8)ρc. So, the zero boundary condition has
to be put at ρf and all further considerations remain without reconsideration.
Certainly, to keep the boundary condition we have to put the negative Green
function symmetrical to s with respect to sf .

In the situation with sf we have also the universal spectrum and the
universal behavior of the critical size.

But this universal asymptotics is only the intermediate asymptotics.
Now we shall introduce the regular growth and destroy this universality.
It is necessary to put some boundary of the type

ρr = (2÷ 3)ρc

and for the sizes greater than ρr one has to consider the regular motion with
the asymptotic velocity. The choice of ρr can be made also on the base of
the LS analysis.

It is trivial to refine the solution by investigation of the transition zone
explicitly.

The growth of the supercritical tail leads to the growth of the size ρc which
can be calculated in approximation of the following iteration procedure: On
the base of initial ρc0 we find the tail ftail of the size spectrum

ftail(ρ, t) = f0(ρr, t
′)vρ(ρr)/vρ(ρ)

where

t− t′ =
∫ ρ

ρr

1

vρ(ρ′)
dρ′

(the explicit dependence of vρ on t is weak or it can be expressed via t
iteratively).

The new distribution function f1 will be the superposition of the initial
part f0 and the tail. Then from the balance equation

∫ ∞

0
f1(ρ)ρ

2vρ(ρ|ρc1)dρ = 0

we find ρce1. This will be the new equilibrium critical size. It will be near the
real critical size unless the tail begins to play the main role in the metastable
phase consumption.

The period of the diffusion blurring come to the end when the velocity
of the growth for the critical embryo becomes to be comparable with the
velocity of the growth for the tail.
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One has to analyze an attractive possibility to consider the process of
diffusion in the region s < sr with the linear on s−sc rate of growth. Here sr
has to be determined as the boundary between the linear and the asymptotic
rates of the embryos growth. It seems from the first point of view that the
linear rate of growth in the near critical region is preferable instead of the
absence of the regular growth considered above.

The Fokker-Planck equation under the linear rate of growth has the fol-
lowing form

∂p

∂t
= γ

∂yp

∂y
+D

∂2p

∂y2

Here the zero value of the coordinate as the critical size is taken, γ and D
are some constants. Here γ is negative. The Green function for the positive
γ at the infinite interval is well known and has the following form

G(x, t|x′, t′) =

√

γ

2πD(1− e−2γ(t−t′))
exp(−γ(x− e−γ(t−t′)x′)2

2D(1− e−2γ(t−t′))
)

Now it is necessary to take the combination of two Green functions and the
answer is ready. The further analysis is absolutely the same.

This approach seems to be more precise than the previous one but it has
many disadvantages. The first disadvantage is the following: one can see
that here γ has to be negative and then at some time the half width of the
gaussian goes to infinity. So, the solution becomes illegal.

The second disadvantage is how to take into account the drift of the
critical size. Now it appears in the rate of growth and then in the final
formulas. The solution with a moving critical size is illegal also.

But the idea to consider the law of growth as a combination of the linear
dependence at ρ < ρr and the asymptotic law at ρ>ρr is very attractive.
Really the term 1 − u−1 in the traditional law of growth can be treated as
a correction term in the asymptotic decomposition. Here this asymptotic
is taken over the positive powers of ρr. The decomposition on the positive
powers is not less justified in comparison with the decomposition on inverse
powers. But the last approximate rate of growth allows an explicit integration
and then the LS technique can be analyzed explicitly.

One can try to construct the approximate Green function for the case of
the presence of the regular growth in the following manner. We construct
this function for initial perturbation at x0 = 0 which is an equilibrium value
for the regular growth vx(x = 0) = 0. We suppose that there are no other
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points where vx = 0 and vx(x) = −vx(−x). Then we seek the Green function
in the ordinary form

G(x, t|t0) = A(t, t0) exp(−
x2

∆(t, t0)2
)

where the amplitude A can be reconstructed on the base of normalizing
equation

∫

Gdx = 1 and the width ∆ is found by relation

∆ =
√

4D(t− t0) +
∫ t

t0
vx(∆(t′))dt′

or

∆ =

√

4
∫ t

t0
D(∆(t′))dt′ +

∫ t

t0
vx(∆(t′))dt′

for varying D. The last equation can be easily solved iteratively

∆i+1 =

√

4
∫ t

t0
D(∆i(t′))dt′ +

∫ t

t0
vx(∆i(t

′))dt′

∆0 = ∆(t0)

To ensure the correct boundary condition it is necessary to add the sym-
metrical negative Green function.

To refine the solution one can also use here the values of effective diffusion
coefficient and effective law of the regular growth velocity from consideration
made in [9].

4.3 The period of the dissolution of the head of the

size spectrum

The tail of the size spectrum grows and earlier or later the main role of the
metastable phase consumption will belong to the tail. This opens the period
of dissolution of the head of the spectrum.

This period allows a rather trivial description since the high accuracy is
not important here. Inevitably the head of the spectrum will be dissolved
and this marks the end of this period.

The most primitive description is the following. We split the substance
between the tail Gtail and the head Ghead. The spectrum in the head is
described by f0. The spectrum in the tail ftail is the direct translation of
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the blurring part of the head which comes to the zone ρ > ρr by the regular
growth with the known supersaturation. The supersaturation corresponds in
the first iteration loop to the stationary position of the critical size. Then we
can calculate the dissolution of the head, the growth of the tail and replace
the critical size on the base of the balance equation. We know a new value
of supersaturation. This closes the iteration loop.

Here it is impossible to use the model of the growth with a zero value
of growth for ρ > ρf and the zero value of ρ for all ρ < ρf (otherwise
it produces the jumps in the supersaturation value). One has to use the
explicit law dρ/dt = (2a/3ρc)(1− (ρc/ρ)).

Another style of description is to use the methods from description of the
dissolution of the tail of the size spectrum which is analyzed below. Since
the method is the same we do not consider it here explicitly. Certainly, the
exponential tail like exp(−const ρ) has to be changed to the head of the size
spectrum f0.

This period is rather short and it is not very important for the further
evolution. Details of this period description can be found in [8]. But one can
see that in the theory presented here the new head at the tail is not formed.
Here lies the main difference between this theory and the theory from [8].
The question whether the new head is formed is rather complex. This is the
question of applicability of the gaussian tails of the Green function of diffusion
equation. If we adopt the model with a finite upper limit of the size spectrum
then we have a new head at the tail and have to use scenarios proposed in
[8]. If we believe in long gaussian tails we come to the theory presented here.
To solve this question we must go ahead of the level of description taken
in the diffusion approximation. Otherwise there is no sufficient statistics
to solve this question. We prefer to stop here at the statement that there
is no sufficient statistics. It means that concrete details will determine the
scenario. For example, we adopt that the act of the molecule consumption by
the embryo requires a certain elementary time and we come to the finite upper
limit of the spectrum. In the opposite situation we come to the gaussian tail.
Certainly this question is out of the level of consideration adopted in the
nucleation theory.

4.4 The period of the gradual consumption of the tail

Now we come to the period which in some sense resembles the LS results.
The result of the previous period is the formation of the exponential tail
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at ρ > ρr. Now we consider the process of the tail dissolution. Here one can
see the true competition between the embryos with different sizes. So, here
it is convenient to go to the LS coordinates.

To investigate this period we simplify the rate of the embryos growth.
We assume the following rate of growth

du

dτ
∼ (1− u−1)− γu

If there is a sufficient tail and the heat is already dissolved then at the
moment of the end of the previous period

max{du
dτ

} ≡ vm < 0

So, we assume that vm is negative.
We split the whole region of u into three small regions. In the region of

big u we suppose
du

dτ
∼ (1− 0)− γu

This law allows integration even under the variation of γ.
The next region is the region of the intermediate u. Here we assume

du

dτ
= vm

In the region of small u we neglect γu and get

du

dτ
∼ (1− u−1)

This law does not contain parameters and can be easily integrated. It means
that the dissolution here is so fast that we can neglect the change of the
critical size.

The boundaries u1 and u2 between these regions can be established from
the continuity of the rate of growth.

One can also put an effective boundary of the total dissolution instead of
the zero size.

It is possibly to refine the law of growth having introduced instead of vm
some other effective value of the flat region.

20



When the size spectrum is known then the balance of the substance be-
comes the transcendental equation on γ. After we found γ we can get ρc by
integration.

One can easily follow the dissolution of the spectrum on the base of the
approximate rate of growth.

We accumulate the approximate law of growth in the following formula

du/dτ ≈ (du/dτ)appr

This law of of growth allows to know u(τ) on the base of some u0(τ0) for
every arbitrary curve γ(τ ′)

u(τ) = u0(τ0) +
∫ τ

τ0
(du/dτ)appr ≡ Fappr(τ |u0, τ0; γ(τ

′))

For the law of growth we write

du/dτ = ϕ(u, γ(τ))

Here we can take both approximate or precise law of growth.
The substance balance equation

dρc
dτ

2a

3ρ2c(τ)
= ρ3c(τ)

∫ ∞

0
3F 2

appr(τ |u0, τ0; d ln ρc(τ
′)/dτ ′)

ϕ(Fappr(τ |u0, τ0; d lnρc(τ
′)/dτ ′), d ln ρc/dτ)f0(u0, τ0)du0

+3ρ2c(τ)
dρc
dτ

∫ ∞

0
F 3
appr(τ |u0, τ0; d ln ρc(τ

′)/dτ ′)f0(u0, τ0)du0

is now the closed equation on ρc(τ). Here instead of a one can put the
appropriate constant in accordance of normalization of the size spectrum.

It is necessary to stress that all functional dependencies here are explicit
ones and except ρc(τ) all other dependencies are known. The best way to
solve this equation is to use the steepest descent method. The methods to
solve this equation will be discussed below.

This equation can be approximately simplified. Since the last term of the
rhs is many times greater than the lhs one can approximately write

ρc(τ)
∫ ∞

0
3F 2

appr(τ |u0, τ0; d lnρc(τ
′)/dτ ′)

ϕ(Fappr(τ |u0, τ0; d ln ρc(τ
′)/dτ ′), d ln ρc/dτ)f0(u0, τ0)du0 =

−3
dρc
dτ

∫ ∞

0
F 3
appr(τ |u0, τ0; d ln ρc(τ

′)/dτ ′)f0(u0, τ0)du0

21



or
∫∞
0 3F 2

appr(τ |u0, τ0; d ln ρc(τ
′)/dτ ′)ϕ(Fappr(τ |u0, τ0; d ln ρc(τ

′)/dτ ′), d ln ρc/dτ)f0(u0, τ0)du0

3
∫∞
0 F 3

appr(τ |u0, τ0; d ln ρc(τ ′)/dτ ′)f0(u0, τ0)du0

= −d ln ρc
dτ

≡ −γ

This equation can be solved by the same methods but it is more simple
than the previous one. We outline again that except γ(τ) all other depen-
dencies here are known.

Another possible approximate variant of the balance equation is the fol-
lowing

ρ−3
c = const−1

∫ ∞

0
F 3
appr(τ |u0, τ0; d ln ρc(τ

′)/dτ ′)f0(u0, τ0)du0

It seems to be the most simple variant of the balance equation.
Now we shall discuss the asymptotic properties of the balance equation.
Generally speaking the problem is solved since we know the good approx-

imation
d ln ρc/dt = γ0 + some positive small value.

We can solve this equation by decomposition in series or by some effective
linearizations.

But below we shall analyze the properties of solution in order to see that
the size spectrum here resembles the LS theory for the size distribution.

First of all we have to note that the tail has the exponential character.
Really, the translation of the gaussian at some shift from the maximum leads
to

ftail ∼ exp(−const/t)

which can be easily approximated by the standard exponent of the argument
linear on the size. Here the const is some fixed value proportional to (sr−sc)

2.
Here we have to recall that in the original paper by Lifshic and Slezov

there is a reference on the exponential tail of the size spectrum. It is quite
natural to check the theory on example of the exponential tail.

The exponential on r spectrum is exponential on u also in the asymptotic
limit.

In frame of the steepest descent methods the utilization of the exponential
tails is quite justified. One can simply refer to the steepest descent method
instead of the explicit consideration made above. But one has to stress
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that we follow the explicit determination of the size spectrum instead of the
formal methods. Explicit decompositions also give the exponential tail of the
spectrum.

If the characteristic width of the tail is many times greater than the
critical size then vm is far from zero and there appears the rapid dissolution
of the size spectrum. If the width of the spectrum is many times less than
the critical size then vm is close to zero. It is evident that earlier or later
the last situation will take place. One can give the qualitative picture of the
process - The evolution at the big finite time is the slow monotonous increase
of vm up to zero.

The situation of the wide tail can be investigated rather elementary. The
behavior of supersaturation is governed by the consumption of the substance
by the wide tail. To see this consumption one can use the regular growth.
This is described in [8] under the investigation of the oscillating regime.
Evidently, the consumption of the substance leads to the growth of the critical
embryo and the dissolution of the tail. This process will take place until the
tail (or the rest of the tail) can be considered as the wide one.

The rest of the tail earlier or later will become the narrow tail and then
we can use the theory of the narrow tail.

Now we consider the situation of the narrow tail.
We consider the form of the size spectrum. We use the known formula

f(u, τ) ∼ −ξ(τ − τ(u))

vu

where vu is the velocity in u-axis, τ(u) is the time for the embryo to attain
u.

One can note that

τ(u) =
∫ u

0

du

vu
→ ln(u)

This asymptotics makes the size u inconvenient for analysis. It is more
convenient to act in the ρ-scale where the asymptotic rate of growth is the
constant one. In experiment under the instantaneous observation the variable
u is proportional to ρ and there is practically no difference between them.

So, it is preferable to consider at big u the ρ-scale. In the variable ρ
the picture is rather simple - the exponential tail begins to be transformed
according to the variation in the velocity of growth

f(ρ) ∼ exp(−constρ)

(1− ρc/ρ)
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The amplitude of the spectrum and the width are determined from the
behavior of ρc(t). Because of the asymptotic neighborhood of the behavior
of the critical size to its behavior is the LS model these characteristics are
close to the results of the LS technique.

Now we turn to the justification of the similarity of the form of the size
spectrum in the LS technique and the spectrum established in this theory.
Until u ≈ um or ρ0 ≈ umρc there is no spectrum in the LS theory. In the
current theory the situation is analogous - the tail is very short.

Now we investigate the region u ≈ um. Since um is big the rate of growth
dρ/dt is close to the asymptotic value, i.e. to the constant velocity and the
tail in the current model will be close to the exponential one. But what will
be in the LS theory? We turn to the formula

θ(τ − τ(u)) = g(exp(τ − τ(u)))

which can be rewritten with account of an initial form of the size spectrum
as

θ(τ − τ(u)) = exp(const(τ − τ(u)))

Having recall that

τ(u) = −
∫ u

0

du

vu
+ const

which gives under the constant value of vu the evident relation near the
maximum

τ(u) ∼ u+ const

we see that the dependence of θ on u (τ is fixed but it is excluded) becomes
the exponential one.

Certainly here the derivation differs from the LS analysis and we ignore
the change of vm in time which can be very essential. But qualitatively we
come to the same results.

The distributions in the region with small u are formed both in the LS
theory and here by the dissolution of the exponential spectrum. They are,
hence, similar.

When one neglects γu in comparison with (1 − u−1) it means that we
neglect the change of the height of the original spectrum because the time
of the dissolution of the given embryo from the size u ∼ um is small and the
change of the critical size during this time is small. This simplification is
quite possible.
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So, both distributions (in the LS theory and the derived here) are similar
in their dorm. The similarity is ensured by the narrowness of the tail of the
size spectrum. Namely the situation of the narrow tail is the dominating
one in the evolution scenario. So, the similarity is the occasional coincidence
corresponding to the initial exponential form of the size spectrum tail. But
namely this coincidence leads to the experimental confirmation of the LS
technique.

Later we return to the situation of the wide tail. Every wide tail as the
narrow tail is also local in the size axis and, hence, there is the backlash
in dependence of vu on time. The tail can be approximated in frames of
the steepest descent method by an exponent. So, the style to construct the
solution will remain the same. Hence, everything is reduced to the already
analyzed situation.

One can see the following stabilizing property - the wider is the tail, the
wider is the backlash and the local character is approximately conserved.
This property is very important - it is responsible for the observation of the
LS-like spectrum already at the moderate time.

Here the free molecular regime is adopted, this allows to write the balance
equation in the integral form. The opposite case is the case of the profiles of
metastability around the embryos. In this case one has to take into account
the interactions between these profiles. The task seems to be extremely
complex. Nevertheless the answer for the form of the size distribution is very
simple. Certainly this answer is rather approximate.

Really, one can propose the following model. Since the profiles are sharp
functions of the space coordinate one can imagine only the pair interactions.
Such a pair battle will end by defeat on one of partners. The winner will
continue to be the embryo of a new phase, the looser disappears. At the
asymptotics of evolution the remaining embryo had to win many battles.
With probability p1 it wins the first battle, with probability pi it wins the
i-th battle. The total probability Ptot to win all battles is the product Πipi
of all probabilities. Since pi are independent stochastic values we have for
Ptot the log-normal distribution.

Certainly this approach can be spread to the group interactions (triple,
etc.) which will give the same final result.
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5 Development of the model

Now we can note several important properties of the size spectrum. The first
property concerns the influence of the boundary condition on the tail of the
size spectrum. Consider

f = −f− + f+

f− ∼ exp(−(x+ x0)
2/4Dt)

f+ ∼ exp(−(x− x0)
2/4Dt)

Then
f− ∼ exp(−x2/4Dt) exp(−2xx0/4Dt) exp(−x2

0/4Dt)

f+ ∼ exp(−x2/4Dt) exp(2xx0/4Dt) exp(−x2
0/4Dt)

f+/f− ∼ exp(4xx0/4Dt)

and one can take into account in the tail only the term f+.
One can add that the regular growth can not destroy the tail - one can

speak only about the shift of the tail and the sequential cut-off of the regions
preceding the tail.

The second property is the possibility to sweep out the boundaries be-
tween stages in the sequential description of the evolution. Really, does the
diffusion stop after the end of diffusional blurring? Certainly, it continues and
the time of diffusional blurring depends on the amplitude of the spectrum,
i.e. of the rest of the tail.

One can note the following important feature - The tail blurring is so fast
that it can not be overcome by the regular growth. So, the time of diffusion
blurring is important and the diffusion process occurs during the whole time
of evolution.

Now we specify the recipe of calculations for concrete case. We shall ex-
plicitly see what effect has the relatively small backlash in the law of growth.

5.1 Explicit calculations

We start from the law of growth

dρ

dt
=

ζ

t1
(1− u−1)
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for u = ρ/ρc. Since
dρ

dt
=

dρcu

dt
= ρc

du

dt
+ u

dρc
dt

we see that
du

dt
=

1

ρc

ζ

t1
(1− u−1)− u

ρc

dρc
dt

Since

ζ =
2a

3ρc
we come to

du

dt
=

2a

3ρ2ct1
(1− u−1)− u

ρc

dρc
dt

or
3ρ2ct1
2a

du

dt
= (1− u−1)− 3ρct1

2a

dρc
dt

u

We introduce τ to have
2a

3ρ2c(t)t1
dt = dτ

and then
du

dτ
= (1− u−1)− 1

ρc

dρc
dτ

u

or
du

dτ
= (1− u−1)− d ln ρc

dτ
u

So,

γ =
d ln ρc
dτ

Now we find the argument um which provides maximum for the rate
of growth du/dτ , i.e. the maximum of the curve (1 − u−1) − γu. Having
differentiated du/dτ on u we have

d

du
[(1− u−1)− γu] = u−2 − γ

Then
um = γ−1/2

The height of the curve (1− u−1)− γu will be

du

dτ
|max = 1− 2u−1

m
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It has to be zero or some small negative value −δ. Namely δ is the backlash.
Then

1− 2u−1
m = −δ

and

um =
2

1 + δ

γ =
(1 + δ)2

4

Now we reconstruct the dependence of ρc on t based on the known value
of γ. We have

(1 + δ)2

4
=

d ln ρc
dτ

or
3t1
4a

dρ2

dt
=

(1 + δ)2

4

Then
ρ2c ∼

a

3t1
(1 + δ)2t

or

(
2a

3ζ
)2 ∼ a

3t1
(1 + δ)2t

Then the supersaturation satisfies the asymptotic behavior

ζ ≈
√

4at1
3(1 + δ)2t

5.2 Contradiction in asymptotics

Now we can see the concrete picture for the approximate law of growth.
The asymptotics 1− γu at big u crosses the axis du/dτ = 0 at

u = γ−1 =
4

(1 + δ)2

The level of the backlash −δ it crosses at

ur = (1 + δ)γ−1 =
4

(1 + δ)
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The asymptotics 1 − u−1 for the rate of u growth at small u crosses the
axis at

u = 1

and crosses the level of the backlash at

ul = (1 + δ)−1

So, the approximate rate of growth is constructed. One has to take into
account that the backlash −δ can be also the function of time t or τ .

Now we analyze the asymptotic behavior of big u We have

du

dτ
∼ 1− γu ∼ −γu

Then
ln u ∼ −γτ u ∼ exp(−γτ)

Now we can explicitly express τ on t based on the known asymptotics ρc.
Really,

2a

3ρ2ct1
dt = dτ

or
2a

3( at
3t1

)t1
dt = dτ

Then
2

t
dt = dτ

and
2 ln t ∼ τ

Then the asymptotics for u in t−scale will be

u ∼ exp(−γτ) ∼ t−2γ ∼ t−1/2

Now we can see what will be the diffusional blurring exp(−const s2/t).
We see that

exp(−const s2/t) ∼ exp(−const ρ2cu
2/t) ∼ exp(−const

a

3t1
tt−1/t)

and it seems that the diffusion blurring is the main effect. It is no more
than an error. The reason is that s does not grow here. Really, ρ = ρcu ∼
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t1/2t−1/2 = const does not grow. This occurs because we throw away the
negligible constant in the law du/dτ = 1 − γu. But the effect of non-zero
growth of ρ manifests in the constant 1 in this law. Certainly, it will be lost
in comparison with the leading term. So, we see that the variables in LS
theory are very dangerous. It is forbidden to choose new irregular variables
and then fulfill the asymptotic analysis.

As for the smallness of diffusional blurring one can easily see it directly.
Since dρ/dt = ζ/t1 and we already know that ζ ∼ t−1/2 then the integration
gives ρ ∼ t1/2 and s2 ∼ t2 ≫ t. This shows the smallness of diffusional
blurring.

One can take into account the modifications of the model

• At the tail of the diffusion gaussian the regular shift is not very impor-
tant.

• The initial diffusional blurring does not stop at the beginning of the
regular dissolution of the tail but takes place all time long.

In the LS approach it is used that all substance is in the region less
than um without justifications. Here we shall show the analogous fact (all
substance is near um) explicitly. This fact has to correspond to the smallness
of the diffusion blurring. We have to show this smallness. Really, the width
s2 ∼ t of the diffusion blurring is many times less than the critical size
ρc ∼ t1/2 since s ∼ ρ2.

5.3 Modifications of the model

The balance equation is the main instrument to determine the evolution of
the system. It can be written in the following form

ρ3c

∫ ∞

0
u3φ(u, τ)du = const

Precisely speaking one has to add the the supersaturation as 2a/3ρc and get

2a

3ρc
+ ρ3c

∫ ∞

0
u3φ(u, τ)du = const

but the first term goes to zero. In any case it is impossible to determine
the critical size from the last equation having calculated the integral term in
some approximation.
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We see that in analysis of the balance equation lies a dangerous pos-
sibility to get wrong results. This possibility is extremely high in the LS
analysis where the size spectrum has to cancel divergence of the critical size
asymptotic behavior.

To see the behavior of ρc we have to establish the form of φ at least in
the asymptotics. We write

φ(u, τ) → φas(u, t)

where φas is defined at big u from the gaussian (one can show that the back
side gaussian is not important here). Namely, we have the following chain of
equalities

φas(u, τ)du = f(ρ, τ)dρ

f(ρ, τ)dρ = Ψ(s, τ)ds

Ψ(s, τ) ∼ exp(− s2

4Dst(τ)
)

where s is ρ2, Ds is the diffusion coefficient over s (known value).
Roughly speaking the problem is solved. But we can not combine the

values of u, ρc and τ until we integrate the law du/dτ = (1 − u−1) − γu
of growth. Fortunately we can not do this with γ varying in time. So, it
is necessary to introduce approximations for this law of growth. This has
been done above. Actually we are interested now in the size spectrum for
the values u > ur. Then we have

u = ũ+
∫ τ(t)

τ(t0)
(
du

dτ
)dτ = ũ+

∫ τ(t)

τ(t0)
(1− γu)dτ

where ũ is the size of u at t0. Here t0 is the time when the diffusion transforms
into the regular motion and ũ is the corresponding size. The value of ũ can
be found on the base of u, τ and the initial value, then we take the initial
size spectrum at ũ and get the size spectrum for u at τ .

Very approximately we can substitute the law

du

dτ
= 1− γu

by
du

dτ
= −γu
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This gives

u = ũ exp(−
∫ τ(t)

τ(t0)
γ(τ)dτ)

or

ũ = u exp(
∫ τ(t)

τ(t0)
γ(τ)dτ)

But as we have seen earlier this leads to an error. Fortunately we can inte-
grate already du/dτ = 1 − γ(τ)u explicitly without simplification (formulas
will be long).

On the base of ũ one can find

ρ̃ = ũρc(t0)

and then s̃ equal to ρ̃2.
For the distribution in ρ̃-scale it is very easy to write the gaussian

G ∼ exp(− ρ̃4

Dst(τ)
)
dρ

ds
≈ exp(− ρ̃4

Dst(τ)
)

Here we ignore the jacobians arrived from transition from s to ρ scale because
exp(−constx4) at the tail is a very sharp function. We shall ignore them
below also.

We are interested now in behavior at u ≈ ur. Here the true approximation
will be

du

dt
= c1 − γu

c1 = 1− u−1
r

Let us take γ ≈ γB = γ(tB) (tB is the time when ur is attained).
Then

ln[
u− c1/γB
ũ− c1/γB

] = −[τ(t)− τ ]γB

So,
u− c1/γB = (ũ− c1/γB) exp(−γB(τ(t)− τ(t0)))

and ũ is u at t0. As the result we know ũ as a function of u, i.e. ũ = F (u).
In any case we can integrate the equation with γ = γ(τ) since we have

the first order linear differential equation. This will give the real true result
with rather long formulas. So, we use the previous formulas keeping in mind
the necessity to apply the formulas with varying γ.
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Now we can see the asymptotics for the distribution function

φ(u, τ) ∼ exp(− ũ(u)4ρ4c
Dst

)
c1 − γBũ(u)

c1 − γBu

This result is for u ≥ ur.
One of important properties of this solution is the weak dependence of

the form (after scaling) of the size spectrum on τ . The quantity of substance
in the region [ur,∞) can be found as

G> = ρ3c

∫ ∞

ur

u3φ(u, τ)du

Now we shall analyze the region [ul, ur]. The values at this region are
marked by the subscript =. Here

du

dτ
= −δ

Then

φ(u, τ) = φ=(u, τ) = φ(ur, τ̂)
dur(τ̂)
dτ

du(τ)
dτ

where τ̂ is defined as
u = û−

∫ τ

τ̂
δ(τ ′)dτ ′

which is a rather complex closure. The previous equation can be rewritten
as

φ(u, τ) = φ=(u, τ) = φ(ur, τ̂)
δ(τ̂)

δ(τ)

More rigorous is to make a shift of ur to exclude a slow evolution right of
ur. But this does not change the qualitative behavior.

The quantity of substance G= in this region is given by

G= = ρ3c

∫ ur

ul

u3φ=(u, τ)du = ρ3c

∫ ur

ul

u3φ(ur, τr)
δ(τr)

δ(τ)
du

Here
ur = u+

∫ τ

τr
δ(τ”)dτ”
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Now we investigate the region [0, ul]. The values at this region will be
marked by the subscript <. Here the size spectrum can be given by

φ(u, τ) = φ(ul, τ
′)

δ(τ ′)

1− u−1

The quantity of substance is given by

G< = ρ3c

∫ ul

0
u3φ(ul, τ

′)
δ(τ ′)

1− u−1
du

Here

τ − τ ′ =
∫ ul

u

du

1− u−1

The unknown function is δ(t).
All quantities of substance G<, G=, G> have to be substituted into the

balance equation which gives the equation on δ(t) with the known coefficients.

5.4 Steepest descent procedure

Now we shall discuss the ways to solve this equation. At first we have to get
a true algebraic equation. We differentiate the balance equation on time and
get

d(G< +G= +G>)

dτ
= 0

Then we use concrete approximations to get dG>/dτ , dG</dτ , dG=/dτ .
For dG>/dτ we see that the subintegral function is the product of the

three functions:

1. the moderate function 3u2,

2. the rapidly growing function for the absolute value of the rate of growth
du/dτ . This function becomes very small at ur (practically it is zero).

3. the rapidly decreasing function for the initial size spectrum. This func-
tion decreases in the main term even faster than exp(−x4) and even
being multiplied by the accelerating rate of growth and by u2 the prod-
uct goes to zero at big u.
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So, one can effectively use the steepest descent method.
For dG=/dτ we have a simple expression which is approximately propor-

tional to the size spectrum multiplied on 3u2δ and due to the rapid decrease
of the size spectrum we see that the subintegral function is the rapidly de-
creasing function of u. This is the ideal situation for the application of the
steepest descent method with the maximum at the boundary point (here it
is ul).

For dG</dτ we have the integral with the subintegral function at the
interval ]0, ul], which is the product of three rapidly varying functions:

1. The function 3u2 which goes to zero at u = 0,

2. The function du/dτ ∼ 1 − u−1 which goes to infinity at u = 0 while
u2(du/dτ) goes to zero at u = 0,

3. the rapidly decreasing size spectrum.

This provides good conditions for the application of the mentioned steep-
est descent method with the point of decomposition inside the interval.

The problem which can appear here is a too sharp form of the size spec-
trum which can cause the maximum of the subintegral function at ρ = uρc
which is too small. Fortunately when such sharp size spectrum will come
to the region [0, ul] the decrease of the substance in embryos will cause the
decrease of ρc. It means that until the diffusion blurring the spectrum will
not be dissolved. This situation is typical for the formation of the new head
which has been discussed in [8].

The mentioned approximations lead to the algebraic equation on δ. This
equation allows the further simplification if we decompose δ(τ) in Taylor’s
series on inverse time ξ = τ−1

γ(ξ) = γ0 +
∑

j

ajξ
j

with coefficients aj . The choice of ξ as a variable is recommended by the
structure of the correction term in the LS procedure. Also one can use
decomposition near some value ξ0

γ(ξ) = γ(ξ0) +
∑

j

aj(ξ − ξ0)
j

The last modifications make the analysis of the evolution a technical task.
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6 Situation of wide tails

Now we shall analyze the situation of the wide tails of the size spectrum. It
means that the half-width of the size spectrum in the region ρ > ρr is many
times greater than ρc. It is clear that the approximate law of growth du/dτ =
1 − γu corresponds to the law of growth dρ/dt = ζ/t1 and the distribution
function moves as a whole along ρ-axis. The critical size ρ moves faster (but
with the same time dependence t1/2) and eats the spectrum sequentially.
For all distribution tails (here we take the tail multiplied by the number of
molecules in the droplet ρ3) which decrease like 1/ρi with i greater than 1 the
relative half-width will decrease. But the situation with i < 1 do not ensure
the finite substance, it is forbidden situation. So, earlier or later the tail will
be narrow. One can speak, thus, only about the intermediate asymptotics.

Since here the width remains greater than the critical radius one can speak
about another asymptotic behavior, at least the intermediate asymptotic
corresponding to the wide spectrum can be observed.

Kinetics of the process here will differ from the LS case. All the time the
main consumers of the metastable phase substance will be the big embryos
and the backlash here is very wide. The asymptotic

τ(u) = γ ln u

ensures the infinite time of the embryos dissolution for the infinitely big
embryos. Then the main supposition in the LS theory fails. This argument
states that to keep the balance of the substance it is impossible that some
relative size will only grow and it is impossible that all relative sizes will
decrease. But now it is possible to see here the situation where all sizes
decrease rather intensively but the main consumers of the vapor are the big
embryos with u many times greater than um. In the zero approximation the
evolution is very simple - the size spectrum is cut-off by the critical size (for
the sizes less than the critical one the dissolution is so rapid that we can
speak about the instantaneous dissolution and neglect this region). This cut
off corresponds to the conservation of the substance in the system.

Define that here the size spectrum flong(ρ) has the characteristic width
∆(flong) determined in the integral way as

∫ ∞

0
flong(ρ)dρ = fmax

long ∆(flong)
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where fmax
long is the amplitude of the size spectrum, or in the differential way

as
fmax
long (ρm +∆(flong)) = fmax

long / exp(1)

where ρm is the argument for the amplitude value of spectrum. This width
satisfies the strong inequality

∆(flong) ≫ ρc

The substance balance here is written as

Φ = ζ + q+

where Φ is the supersaturation without the embryos formation, q+ is the
substance in the tail which can be calculated as

q+ =
∫ ∞

ρc
flong(ρ)ρ

3dρ ≈
∫ ∞

(2÷3)ρc
flong(ρ)ρ

3dρ

Then in the last integral we can take for flong the size spectrum fully deter-
mined by the supercritical law of growth from the ”initial” spectrum f0 (at
the time tinit):

flong(ρ, t) = (ζ(tinit)/ζ(t))f0(ρ̂(t, tinit))

where ρ̂(t, tinit) is determined from

ρ =
∫ t

tinit

ζ(t′)/t1dt
′ + ρ̂(t, tinit)

It is more convenient to study the initial spectrum and to see how much
this spectrum is cut off. So, we introduce the initial ρ-size variable s and
write a balance equation

Φ = ζ(t) +
∫ ∞

sc
ϕ(s)3f0(s)ds

Here sc is the initial size of the variable s which attains at t the size (2÷3)ρc,
ϕ(s) is the size which will be attained at t by the embryo with initial size s

ϕ(s) = s+
∫ t

tinit

ζ(t′)

t1
dt′

The balance equation can be rewritten as

Φ = ζ(t) +
∫

s+
∫ t

tinit

ζ(t′)
t1

dt′>(2÷3) 2a
3ζ(t)

ϕ(s)3f(s)ds
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or since (2 ÷ 3) 2a
3ζ(t)

has to be many times smaller than the width of the
spectrum then

Φ = ζ(t) +
∫

s+
∫ t

tinit

ζ(t′)
t1

dt′>0
ϕ(s)3f0(s)ds

Having noticed that s has to be at least positive we get the following modi-
fication of the balance equation

Φ = ζ(t) +
∫

s>0
ϕ(s)3f0(s)ds

This equation can be easily solved. Having introduced the explicit equation
for ϕ we come to

Φ = ζ(t) +
∫

s>0
(s+

∫ t

tinit

ζ(t′)

t1
dt′)3f0(s)ds

One can see that the integral term is the polynomial on

ρm =
∫ t

tinit

ζ(t′)

t1
dt′

Then

Φ = ζ(t) +
3

∑

i=0

3!

i!(3− i)!
aiρ

3−i
m

with known constants
ai =

∫ ∞

0
sif0(s)ds

It can be rewritten as

Φ = t1
dρm
dt

+
3

∑

i=0

3!

i!(3 − i)!
aiρ

3−i
m

The last equation is the differential Abel equation - the ordinary first oder
differential equation. Since there is no explicit dependence on the argument
this equation can easily integrated. This gives the solution of the problem.

Certainly, the last solution is not accurate because there all embryos
remain in the integral term - they remain supercritical ones. This leads to
the qualitatively wrong behavior. It is clear that the error will be essential
namely when the tail stops to be really the wide tail. But nevertheless it is
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possible to take into account the dissolution of the embryos. The balance
equation has to be written as

Φ = ζ(t) +
∫

s>(2÷3)2a/3ζ
(s+

∫ t

tinit

ζ(t′)

t1
dt′)3f0(s)ds

and conserves the polynomial structure on ρm.

Φ = ζ(t) +
∫

s>(2÷3)2a/3ζ
(s+ ρm)

3f0(s)ds

or

Φ = ζ(t) +
∑

j

ρjm
3!

j!(3− j)!

∫

s>(2÷3)2a/3ζ
s3−jf0(s)ds

Now the coefficients

aj =
3!

j!(3− j)!

∫

s>(2÷3)2a/3ζ
s3−jf0(s)ds

are known (since the initial size spectrum is known) functions of ζ . But it is
possible to solve this equation on ρm as the third power algebraic equation

ρm = F (ζ)

or

ρm = F (t1
dρm
dt

)

with a known function F With the help of the inverse function F−1 we can
write

dρm
dt

= t−1
1 F−1(ρm)

The last equation can easily solved.
Now we take into account the growth of the embryos. The balance equa-

tion has to be written as

Φ = ζ(t) +
∫

s+ρm>(2÷3)2a/3ζ
(s+

∫ t

tinit

ζ(t′)

t1
dt′)3f0(s)ds

and does not conserve the polynomial structure on ρm. It can be written
analogously

Φ = ζ(t) +
∑

j

ρjm
3!

j!(3− j)!

∫

s+ρm>(2÷3)2a/3ζ
s3−jf0(s)ds
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or in the standard form but with the coefficients

aj =
3!

j!(3− j)!

∫

s+ρm>(2÷3)2a/3ζ
s3−jf0(s)ds

depended (since the initial size spectrum is known) on ρm and ζ = t1dρm/dt.
So, we have the first order differential equation without explicit dependence
on the argument t

Ψ(ρm, dρm/dt) = 0

This equation can be integrated when we can express dρm/dt via ρm. This is
an algebraic problem which can be solved at least locally in a good approxi-
mation.

7 Approximations in the explicit construc-

tion the size spectrum

The first task in construction of the size spectrum is the construction of
initial distribution which will be later gradually dissolved during the over-
condensation. This task is very complex. Even the elementary approximate
blocks for solution do not allow the solution. We do not know the solution
of the diffusion equation for the diffusion blurring of the spectrum even with
the stationary value of the supersaturation. As the result of such difficulties
only very approximate methods can be formulated.

To see the initial distribution it is more easy to use the ρ-scale because
in this scale the asymptotic law of growth is rather simple and the velocity
of growth contrary to the u-scale does not go to infinity.

The first approximate model, which allows solution is ”the model of se-
quential evolution”. We consider the period of the initial diffusion blurring.
Here we have the stationary supersaturation (and the critical radius).

Consider the value of distribution at some ρf , time being fixed. Let the
initial distribution be δ-function at ρ = ρc. The route from ρc to ρf will be
split between the diffusion blurring and the regular growth. In this model
the blurring occurs up to ρ equal to some parameter ρb. Later there will be
the pure regular growth. Parameter ρb is reasonable to put equal to 2ρc.

The time of the regular growth up to ρf will be (ρf − ρb)t1/ζ or (ρf −
ρb)t13ρc/2a. Then the time to quit the diffusion blurring will be

tq = t− (ρf − ρb)t13ρc/2a
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The supercritical regular growth is the simple translation of the size spec-
trum, then we have to calculate the spectrum at ρb and tq after the pure
diffusion blurring (here for simplicity we do not consider the back side input
f−)

ϑ(ρf , t) ∼
2ρb√
4Dst

exp(− ρ4b
4Dstq

) =
2ρb√
4Dst

exp(− ρ4b
4Ds(t− (ρf − ρb)t13ρc/2a)

)

The function ϑ can be considered as the initial size spectrum. The prob-
lem is, thus, solved.

But the function ϑ has a certain disadvantage - the size spectrum is finite.
Really, for ρf greater than ρlim

ρlim = ρb + 2at/t13ρc

the spectrum is zero.
Actually the values of ρ near ρlim begin to dissolve (i.e. ρlim is near ρr)

when the amplitude of the rest of the spectrum is extremely small. So, the
relative quantity of droplets in negligibly small. It will be big only in the
systems of cosmological sizes.

Nevertheless one can refine this solution. Fortunately, the diffusion pro-
cess can be easily estimated even with the varying ρc because here ζ is
very small and the average number of collisions in the time unit will be
(2/t1)(3ρ

2(t)). Here we can take ρ on the base of the regular growth and get
the total number of collisions

ntot =
∫ t

0
6ρ2(t′)dt′/t1

The characteristic width ∆tot can be estimated as ∆tot =
√
2ntot with a

sufficient accuracy.
Then the resulting distribution will be proportional to

ϑ̂ =
∫ ∞

−∞
exp(−(ρ− ρf)

2

2ntot

)ϑ(ρf , t)dρf

or

ϑ̂ =
2ρb√
4Dst

∫ ∞

−∞
exp(−(ρ− ρf)

2

2ntot
) exp(− ρ4b

4Ds(t− (ρf − ρb)t13ρc/2a)
)dρf
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It is quite satisfactory here to consider only the right hand wing of the dis-
tribution, i.e. to put ρ > ρf . Since the subintegral function is the product of
exponents it is reasonable to use the steepest descent method.

The required result is attained by a simple combination of the regular
growth and the pure diffusion. The cross effects when, for example, the
stochastic increase of the embryos size leads to increase of the regular rate
of growth are missed here. They can be included into consideration by con-
sideration of the effective half-width of the diffusion blurring and the shift in
regular growth proposed in [9]. Certainly, they have to be slightly reconsid-
ered since now we start not from the very beginning of the size axis.

Now we shall show the primitive approximate way to construct the explicit
form of the size spectrum for the narrow tail.

The initial distribution is supposed to be known.
We approximate the rate of growth for u in rescaled time τ by the fol-

lowing approximation

du

dτ
≈ vm ≡ max{du

dτ
} = −δ(τ)

for u ∈ [ul, ur]
du

dτ
≈ 1− γu

for u > ur,
du

dτ
≈ 1− u−1

for u < ul.
Parameters ul and ur have to be chosen to ensure the continuity of the

whole approximation.
Consider u > ur. The law of growth for ρ corresponding to du/dτ ∼

(1−γu) is dρ/dt = ζ/t1 (the r.h.s. is precisely taken into account by transition
from t to τ). So, the distribution in ρ-scale is moving as a whole without
changing of the form. We know this form - it is exponential form

f(ρ) ∼ exp(−αρ)

with some parameter α.
Then the distribution ϕ over u is connected with f by the following

relation

ϕ(u) = f(ρ)
dρ
dt
du
dt
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Having inserted the explicit relations for the derivatives we come to

ϕ(u) = f(ρ)
1− u−1

(1− u−1)− γu

or in the supercritical limit

ϕ(u) = f(ρ)
1

1− γu

Here the distribution function is even sharper than the distribution over
ρ.

Now at first we shall assume that the backlash is changing in time slowly
in comparison with the time of dissolution of an embryo from ur to ul. This
case will be at least the base approximation for iteration procedures to refine
the solution.

The known solution in the region u > ur leads to the known rate of
appearance Ψb(τ) at u = ur. This value is given by

Ψb(τ) = ϕ(u)|u=ur
(
du

dτ
|u=ur

) = ϕ(u)|u=ur
vm

Here ϕ is the distribution over u. Now it can be established. One can easily
show that Ψb(τ) at u = ur is sharp decreasing function of τ .

The last function is the source at the left side of the central interval
[ul, ur]. Now it is possible to solution at this interval. This solution is very
simple and it is given by

ϕ(u, τ) = Ψb(τ̃)/
du

dτ
|u=ur

or
ϕ(u, τ) = Ψb(τ̃)/vm

The time τ̃ satisfies relation

u− ur =
∫ τ

τ̃
vm(t

′)dt′ ≈ vm(τ − τ̃)

Hence, the solution in the central region is constructed.
Generalization for the varying δ is rather simple. The rate of appearance

Ψb(τ̃) at u = ur is given by

Ψb(τ̃ ) = ϕ(u|τ̃)|u=ur
vm(τ̃)
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Here ϕ is the distribution over u. Now it can be established.
The last function is the source at the left side of the central interval

[ul, ur]. Now it is possible to solution at this interval. This solution is very
simple and it is given by

ϕ(u, τ) = Ψb(τ̃)/vm(τ)

and
ϕ̃(u, τ) = ϕ(u|τ̃)|u=ur(τ̃)vm(τ̃)/vm(τ)

The time τ̃ satisfies relation

u− ur =
∫ τ

τ̃
vm(τ

′)dτ ′ 6= vm(τ − τ̃ )

Now only the last region - the region of small u < ul, has to be investi-
gated. Here the solution is also rather simple - it is the simple translation
of the source from ur under the law of growth independent on γ. Here all
constructions are analogous to the previous case but the transition over the
central region has to be taken into account.

The distribution ϕ is given by

ϕ(u, t) ∼ Ψa(τ̂)/(du/dτ) ∼ Ψa(τ̂)/(1− u−1)

where
Ψa(τ̂) = ϕ̃(ul(τ̂), τ̂)vm(τ̂)

Here t̂ is determined by the following way

τ̂ − τ̃ =
∫ ur

ul

1

vm
du

and

τ − τ̂ =
∫ ul

u

1

du/dτ
du

For δ = const one can simplify the last relation

τ − τ̃ =
∫ ul

u

1

du/dτ
du+ (ul − ur)/vm

or

τ − τ̃ =
∫ ul

u

1

1− u−1
du+ (ul − ur)/vm
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The integral can be easily taken analytically and we get the explicit expres-
sion for t̃.

If vm does not essentially depend on time one can simply solve all these
equations. The form of the size spectrum is determined, only parameter vm
(γ, ur, ul depend on vm) is unknown. The balance equation will be algebraic
equation on vm and can be easily solved since we know at least the zero
approximation (for example, one can take LS asymptotic).

It is clear that the backlash is not a constant value, it changes in time.
The effective way to investigate the situation of the varying backlash is to
consider this variation small, then to decompose vm(τ) in Taylor’s series, to
take few first derivatives and to fulfill the same program as was done above
in the case of the constant value vm.

8 Finite number of embryos

Under the finite spectrum of sizes the LS asymptotic will be also destroyed.
After the size of the greatest embryo attains the critical value and γ goes
to zero the diffusion blurring begins and we return to the section about the
diffusion blurring and the evolution will be described by the same formulas as
mentioned above. Here it is important that the diffusion term plays the main
role in evolution. Certainly, diffusion begins to play essential role earlier than
the biggest embryo attains the critical size.

We see that the further scenario is built on the doubtful alternative
whether the size spectrum finite or not. The diffusion process through the
formula for the Green function gives the infinite size spectrum. But is every
concrete system the spectrum is the finite one. The answer on this question
also determines the asymptotic. The type of asymptotic is determined by
the time of observation and the sizes of the system under the observation.
Fortunately this question is artificial because other effects (the change of the
regime of growth, the thermal effects, etc.) lead to the end of applicability
of the chosen physical model.

In every system the finite spectrum is the direct consequence of the finite
number of embryos. So, we have to develop methods to describe the evolution
with the finite number of embryos.

Suppose we have few embryos in the system. Then the evolution is deter-
mined by the laws of their regular growth (diffusion has also to be taken into
account but in the manner of some stochastic adsorption and ejection of the
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molecules by the embryo). The balance equation links these laws of growth
in the closed system of equations. The number of these equations equals the
number of embryos. When the number of embryos is less or equal to few
hundreds it is preferable to solve these equations by computers explicitly.

We rewrite the law of growth for a chosen embryo in the following form

dρi
dt

=
ζ

t1
(1− ρc

ρi
)

ρc ≡
2a

3 ln(ζ + 1)

(index i marks embryos), where a is the rescaled surface tension (it is a
constant) and ζ is the supersaturation. Namely through the supersaturation
one can link the laws of growth having written the balance equation

ζ = Φ−
∑

i

ρ3i

Here Φ is the initial value of supersaturation.
One can easily solve the system of these equations at least approximately.

The first method is very simple. At given initial sizes of embryos we find the
value of the supersaturation. Then we reconsider the sizes having moved
them according to the law of growth at the given supersaturation. The time
interval has to be small. Then we recalculate the supersaturation having
made one step of evolution. This method is the step by step procedure.

The stochastic adsorption and ejection of the molecules by the embryo
can be taken into account by the following simple procedure. We keep in the
memory of computer all coordinates of embryos ρi and for every embryo at
the given supersaturation we determine the rate of adsorption as

R+ = 3ρ2(ζ + 1)∆t/t1

Here ∆t is an elementary time step. The rate of ejection will be

R− = R+ − (dρ/dt)∆t

dρ

dt
=

ζ

t1
(1− 2a

3ζρ
)

The rate of staying still will be

R0 = 1−R− −R+
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We must choose ∆t enough small to have R0 > 0 even for the greatest
embryo.

Having put the point at the interval [0, 1] stochastically we determine
what action we have to do. If this point belong to interval [0, R−] we eject
the molecule, i.e. we make a transition ρi → ρi − 1. If this point belong to
interval [R−, R−+R+] we accumulate the molecule, i.e. we make a transition
ρi → ρi+1. If this point belong to interval [R−+R+, 1] we keep the coordinate
still, i.e. we make a transition ρi → ρi.

We have to repeat this action for every embryo. Then we recalculate the
supersaturation

ζ = Φ−
∑

i

ρi

and fulfill the step in time.
We see that these procedures can not give the analytical properties of

evolution with the finite number of embryos. Hence, the problem of the
system of several embryos exists and the effective solution is absent.

Now we turn to the simplest case - the case of small quantity of embryos.
The asymptotic of the process is the evident there will be the greatest embryo
which will be the critical one. This embryo is in the effective potential well.
Description here is analogous to the case of the several identical embryos.

Really, the law of growth

dρ

dt
=

Φ− ρ3

t1
(1− 2a

3 ln(Φ− ρ3 + 1)ρ
)

corresponds to the regular motion in the potential

U =
∫ ρ

0

Φ− ρ3

t1
(1− 2a

3 ln(Φ− ρ3 + 1)ρ
)dρ

which is very deep and only in the region of small ρ it has a barrier and
begins to decrease when ρ decreases.

If we ignore the fluctuational formation of the new embryos then the
evolution leads to the fluctuational disappearance of the last embryo. It
requires absolutely giant times and at these times new supercritical embryos
have to appear. So, the ignorance of the fluctuational formation of new
embryos (with extremely slow rate) is illegal.

The flow of disappearance of the last embryo is many times less than
the flow of appearance (formation) of the new embryo even in the system
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with the practically consumed metastable phase by the giant embryo. So,
one can see the formation of the second embryo. Later one can observe
the competition between these embryos. Practically inevitably the second
(new) embryo will be dissolved but with a small probability π which can
be estimated (very roughly because we keep the old potential U appropriate
only for one embryo) as

π ∼ exp(U(ρ = ρmin/2
1/3)− U(ρmin))

(here ρmin is the argument of the minimum of potential) the first embryo be-
comes the second one and it will be dissolved. Certainly, the above presented
picture is only the rough estimate.

9 Conclusions

In the theoretical constructions presented above we came to the following
results

• In Sections 2,3 we pointed out the weak features of the LS approach.
In section 2 the features concerning the behavior of the supersaturation
were outlined. In section 3 the weak features in construction of the size
spectrum were presented.

• In section 4 the sequential analysis of the evolution was given and it is
shown why the form of the size spectrum resembles the form given in
the LS approach

• In section 5 the details of the most difficult and the most important
period of the tail dissolution are given

• In section 6 the approximate way to construct the initial size spec-
trum for the period of the tail dissolution is given. This point is very
important for qualitative results.

• In section 7 the situation of the wide tail which allows essential simpli-
fication is presented

• Section 8 is devoted to the specifics of the case when only few embryos
remain in the system.
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Sections 7 and 8 are supplementary ones, the complete theory is given in
sections 4 - 6. This theory gives an answer on two important questions - why
LS spectrum of sizes can be really seen in nature and what is the difference
between the real situation and the LS approach.
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