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Challenge: data-hungriness of deep
learning

Dataset/Tool | Application | Datatype Size Year
(examples)

MovieLens Movie Text 2016
reviews

ImageNet Object Image 14M 2014
recognition

AlphaFold 2  Protein Protein 3D 100K 2020
structure structures

Moleculenet  Drug Molecules 700K 2018
discovery

UPTSO-50K Chem. Chemical 50K 2016
Synthesis reactions

A,, Aalto University
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Molecular representations for ML

« Molecular fingerprints/descriptors (right): fixed

sets of features, based either on chemical
knowledge or combinatorial algorithms

« Large language model (LMM) representations —
learned from SMILES strings of large set of

molecules

« Graph Neural Networks —embeddings learned

from molecular graphs
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Molecular representations for ML

« Two general ways in making use of
representation learning (MRL)
« Use pretrained features as a plugin to your
task-specific model (e.g. ChemBERTa)
 End-to-end learning: integrate MRL into
your task-specific model
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Molecular representations for ML

« ChemBERTA-2 is atransformer model based on the BERT
architecture

* It uses SMILES strings as the input representation of
molecules

« Uses masked training and multi-task regression

« Trained with 77M molecular structures from PubChem

« Theoretically limited by the many-to-one mapping from strings
to graphs — but big training data may diminish this risk
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2022. Chemberta-2: Towards chemical foundation models. arXiv preprint
arXiv:2209.01712.
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Molecular representations for ML

« Graph Neural Networks (GNN- embeddings
learned from molecular graphs)

 Theoretically superior to sequence-based
representations, also practical evidence of the
same

« Wide variety GNNs exist for molecular
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Chemical Reaction Enhanced Graph
Learning for
Molecule Representation




D

Reaction-aware molecular e
representation learning by RXGL  anchen Li

« Motivation: molecular representation learning is typically
focussing on the molecular structure

« We wish to leverage additional data sourse, in particular the
context given by the chemical reactions the molecules are
known to participate
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Cross-view

Reaction-aware molecular =

‘X\v
%

representation learning by RXGL  anchen L

« Cross-view contrastive learning: Atom-level and Network-
level representations of molecules should be in agreement

« Cross-relation: representations of reactants should be
similar to there presentations of the products

Cross-relation contrastive learning

contrastive
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|. Cross-view contrastive learning

Cross-view contrastive learning relies on two representations
(views) of molecules

Atom-level representation as a molecular graph
similar molecular structures give similar representations

Reaction-aware representation computed from the reaction
network composed of a large set of reactions (below)

molecules are nodes and reactants and products of a reaction

are connected by edges.
A=>F+G+H @ hop
B=>F+H +J :>® o @ © =7
D+C=>G+1 | © De==z
...... ) 1 ¢ ==
(a:) Reaction Set (az) Reaction-aware Graph

99 Aalto University Anchen Li, Elena Casiraghi, Juho Rousu. Chemical Reaction Enhanced Graph
Learning for Molecule Representation. Bioinformatics, 2024, to appear



|. Cross-view contrastive learning

 Learning accross two levels of representation is
achieved by contrastive learning

* Principle: latent representation learned from atom-
level (xg,) and network level representations (xy,) of
the same reactant (R;) should be more similar than

the representations of a pair of two different
molecules (R; and R))

* This is encoded in the loss function below

exp (c(xh,  x%,)/7)
Lo, = — log i i .
2T e (el 0, ) 77)

99 Aalto University Anchen Li, Elena Casiraghi, Juho Rousu. Chemical Reaction Enhanced Graph
Learning for Molecule Representation. Bioinformatics, 2024, to appear



ll. Cross-reaction contrastive learning

The representation of the
reactant set of a reaction
should be similar, but not
the same as the
representation of the
product set

The term eg._,p, represents

the transformation made by
the reaction

We achieve this by another
contrastive learning task
where true reactant product
pairs (R; P;) are to be similar
and arbitrary pairs (R;,P)),
i#j are to be dissimilar
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Results: product prediction

 Prediction task: Choose a product from a set of candidate
products for areaction

« TXGL is competitive against state-of-the-art MoIR

Table 1. Results of the product prediction task on the two datasets.
The numbers in brackets are the standard deviations.

L USPTO-15K USPTO-50K
Datasets: USPTO chemical ~ " [TMRRTWwel | MRR _Hwel
: Mol2vec 0.519 0.468 0.835 0.801
reactions benchmarks MolBERT 0.790 0.734 0.913 0.874
_ MolR-GCN [ 0.88310.00s) 0-847(0.007) | 0-958(0.003) 0-944(0.006)
* USPTO 15K MolR-GAT 0‘881(0.003) 0.846(0_002) 0.952(0.002) 0.931(0'004)
° USPTO_SOK MolR-SAGE | 0.932(p.006) 0.905(0.003) | 0.972(0.005) 0-960(0.005)
. . MolR-TAG | 0.925(0.005) 0.898(0.004) | 0.974(0.010) 0.965(0.000)
Evaluation metrics: RXGL-GCN [ 0.927(0.003) 0-8990.005) | 0-965(0.007) 0-954(0.002)
_ . RXGL-GAT | 0.9250.007) 0.894(0.006) | 0.967(0.000) 0.958(0.011)
* MRR mean reC|procaI rank RXGL-SAGE|0.956(0.004) 0.936(0.007)|0-982(0.00s) 0-973(0.003)
o H”:@l — how often the correct RXGL-TAG [0.9410.006) 0.919¢0.009) | 0-9790.004) 0-974(0.009)
product has the highest predicted 1 &g
score MRR = — -
Q| — rank;

A,, Aalto University
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Results: molecular property prediction

Prediction task: classify molecules based on their molecular

properties

RXGL compares favourably against existing deep learning

methods

« Benchmark datasets from

MoleculeNet:

« BBBP. The Blood—brain barrier
penetration (BBBP): >2000
compounds classified by
permeability

BACE: binding of molecules to
human beta-secretase 1

« Tox21: 8014 compounds on 12
different toxicological target
classes

* ClinTox: FDA approved drugs vs.

failed in clinical trials, ca 1500
compounds

Table 4. Property prediction results (split type: scaffold split).
The numbers in brackets are the standard deviations. The results of

symbols % and & are taken from GraphMVP and ReaKE.

Methods BBBP BACE Tox21 ClinTox
EdgePred* [ 0.6450.031) 0.646(0.047y 0.745(0.004) 0-558(0.062)
AttrMask* | 0.7020.005) 0.772(0.014) 0-742(0.008) 0.686(0.006)
GPT-GNN* [0.64500.011) 0.776(0.005) 0.753(0.005) 0-578(0.031)
InfoGraph* 0.692(0.008) 0.739(0.025y 0.730(0.007) 0.751(0.050)

ContextPred* 0.712(0.009) 0.786(0.014) 0.733(0.005) 0.737(0.040)
G-Contextual* 0.703(0.016) 0.-792(0.003) 0.752(0.003) 0-599(0.082)

G-Motif* 0.664(0.034y 0.734(0.020) 0-732(0.008) 0-778(0.020)

JOAOX* 0.660(0.006) 0.729(0.020y 0.744(0.007) 0.663(0.039)
GraphMVP* [ 0.724(9.016) 0.812(0.000) 0.744(0.002) 0.775(0.042)

MolR* - 0.774 0.670 0.830

ReaKE* - 0.781 0.713 0.862

RXGL 0.7290.015) 0.825(0.006) 0.736(0.003) 0.912(0.011)

A,, Aalto University

Anchen Li, Elena Casiraghi, Juho Rousu. Chemical Reaction Enhanced Graph
Learning for Molecule Representation. Bioinformatics, 2024, to appear



Predicting Atom-Atom
mappings in Chemical
Reactions




Predicting Atom-Atom mappings In
Chemical Reactions

Task: predict the

correspondence of reactant e S
and product atoms in chemical S C et %
reactions o

Data: 15000 chemical reactions

from USPTO

Input: the reactants and
products of a reaction

Output: a mapping matrix
predicting for each reaction the
corresponding pairs of atoms
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J9 Aalto University Astero, M. and Rousu, J., 2024. Learning symmetry-aware atom mapping in
A chemical reactions through deep graph matching. Journal of
Cheminformatics, 16(1), p.46.
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Atom-mapping Network (AMNet)

AMNet is composed of two graph neural networks (resp. for
reactants and products) (i)

The outputs of the two networks are trained so that they give
high similarity to the corresponding atoms and low similarity for

@iv) W)

M M

i< ik

Softmax
[Eq.4]

J9 Aalto University Astero, M. and Rousu, J., 2024. Learning symmetry-aware atom mapping in
A chemical reactions through deep graph matching. Journal of 2.10.2015
Cheminformatics, 16(1), p.46.



Symmetry-aware training

Symmetries in molecules is a
potential difficulty for predictive
models

AMNet recognizes topologically
equivalent atoms and uses this
Information to train more accurate
models

Significant improvements are
obtained in overall accuracy (%
correctly mapped atoms) and
%top@k ranking (how often
ground truth at given rank of
better)

A,, Aalto University

Cheminformatics, 16(1), p.46.

NH3 NH3

N:8H, N:8H,
Cl 3 C1 C1

Table 3 Performance of the AMNet with and without molecule
symmetry identification

Symmetry Avg.Acc. %Top@1 %Top@3 Y%Top@5 %Top@10
(%) £std (%) £std (%) £std (%) £std (%) £std

Yes 973401 662+01 966+£00 9934+00 997+00
No 837£02 438£02 799401 9%2£00 987£00

The highest average accuracy and Top@k are highlighted in bold font

Astero, M. and Rousu, J., 2024. Learning symmetry-aware atom mapping in
chemical reactions through deep graph matching. Journal of

2.10.2015



Summary




Summary

* Public molecular datasets have grown in recent years to a
size that enables deep representation learning on them

 Molecular representation learning uses these data to arrive
at accurate predictive models

« RXGL is our recent MLR method that leverages large
reaction datasets such as USPTO data

« AMNet is a method for predicting atom-atom mappings in
chemical reactions based on graph matching

A’, Aalto University
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