

Paradigm shift in synthesis planning: how to exploit artificial intelligence

Samuel Genheden

MolecularAI, Discovery Sciences, AstraZeneca R&D, Gothenburg

2024-09-16

Acknowledgements

Annie Westerlund

Lakshidaa Saigiridharan

Mikhail Kabeshov

Thierry Kogej

Christos Kannas

Ola Engkvist

Varvara Peter Hartog Voinarovska

Supriya Siva Kancharla Manohar Rocío Mercado

Emma Rydholm

Synthetic Chemistry in Pharma

- Medicinal chemistry:
 - Invent a molecule to treat human disease
 - Design & synthesize new molecules: 1000s per p
 - Small scale: <0.005 g to 50 g
 - Diversity-oriented
 - Speed is key
- Process chemistry:
 - Make large quantities of that molecular for studies and clinic
 - Deliver large quantities of API for studies
 - 50 g to >1,000,000 g scale
 - Purity, sustainability and cost are key

Computer-aided synthesis planning

- Retrosynthesis analysis
 - One-step retrosynthesis
 - Multi-step retrosynthesis or route prediction

- Database searches
 - Support for predictions
 - Experimental details

Software landscape

Free solutions

Commercial solutions

Reaxys

IBM RXN for Chemistry

+ Many GitHub repositories

CAS

Reaction data landscape

Proprietary sources

Reaxys®

- > 30 M reactions
- 90% from research articles
- > 10 M reactions
- US, European and Asian patents

- Closed company resource
- AZ ELN is > 2 M reactions

- > 100 M reactions
- Rarely used for ML

Public-domain sources

ORD

- > 2M reactions
- Open-source extract from US patents
- Questionable quality
- Up to 2016
- > 2M reactions
- Initiative from academia with industry support
- Open data format
- Contains US patents and HTE datasets

AiZynthFinder and template-based retrosynthesis

Reaction templates

One-step retrosynthesis

Monte-Carlo tree search

Update

1. Databases provide atom-mapped reactions

2. Extract chemical transformation rules: templates

Template-free model: Chemformer

pubs.acs.org/icim

Do Chemformers Dream of Organic Matter? Evaluating a Transformer Model for Multistep Retrosynthesis

Published as part of the Journal of Chemical Information and Modeling virtual special issue "Modeling Reactions from Chemical Theories to Machine Learning."

Annie M. Westerlund,* Siva Manohar Koki, Supriya Kancharla, Alessandro Tibo, Lakshidaa Saigiridharan, Mikhail Kabeshov, Rocío Mercado, and Samuel Genheden

ABSTRACT: Synthesis planning of new plarmaceutical compounds is a vellknown bottleneck in modern drug design. Template-free methods, such as transformers, have recently been proposed as an alternative to template-based methods for single-step retrosynthetic predictions. Here, we trained and evaluated a transformer model, called the Chemformer, for retrosynthesis predictions within drug discovery. The proprietary data set used for training comprised ~18 M reactions from literature, patents, and electronic lab notebooks. Chemformer was evaluated for the purpose of both single-step and multistep retrosynthesis. We found that the single-step performance of Chemformer was especially good on reaction classes common in drug discovery, with most reaction classes howing a

Article

top-10 round-trip accuracy above 0.97. Moreover, Chemformer reached a higher round-trip accuracy compared to that of a template-based model. By analyzing multistep retrosynthesis experiments, we observed that Chemformer found synthetic routes.

Westerlund et al. J. Chem. Inf. Model. 2024, 64, 3021–3033

Template-free / Generative models

- Treat retrosynthesis as a language problem
- Translating from product to reactants

- centra nature Moleci COMMUNICATIONS Chemi Philippe S Costas Be Check for u ARTICLE IBM Resea Departmen OPEN https://doi.org/10.1038/s41467-020-19266-y Departmen State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis
 - Igor V. Tetko[®] ^{1,2⊠}, Pavel Karpov^{1,2}, Ruud Van Deursen[®] ³ & Guillaume Godin[®] ^{3⊠}
- Model will learn chemical rules and the prioritization of those rules

1. Pretrain a *transformer* model (BART) to learn SMILES

230 M parameters

2. Fine-tune a model to perform retrosynthesis

On the promises of template-free models

- Template-free retrosynthesis models do not need
 - Reactions with atom-mapping
 - Extracted templates
- Better scaling to larger chemical spaces
- Possibility to extrapolate outside known space

Data sources and trained models

Reaxys

- > 30 M reactions
- 90% from research articles

- > 10 M reactions
- US, European and Asian patents

• AZ ELN is > 2 M reactions

18M unique reactions

Chemformer vs Template-based: Multi-step performance

- Evaluate route prediction on 5K compounds designed by AZ chemists
- Stock is AstraZeneca internal building block collection (5M)
- Run 100 iteration of retrosynthesis
- Implement novel algorithms for speeding-up Chemformer performance

Solvability case	Percentage
Solved by both	71.6
Only solved by chemformer	23.4
Only solved by template-based	0.74
Solved by none	4.2
Solved by any	95.8

Do Chemformers dream of organic matter?

Are the suggested reactions feasible?

Round-trip accuracy calculated with forward Chemformer, showing how feasible the predicted reactions are

Are the models exploring different chemical space?

Extract templates from predicted reaction and look at space of unique templates

b) Chemformer vs. library

What is ahead of us?

- Chemformer appears to be a viable option to template-based retrosynthesis
- Hallucination occurs, but is perhaps acceptable
 - Hard to evaluate plausibility on a large scale
- Two major issues
 - Computational speed (engineering)
 - Interpretability and experimental support (science)
- Possible solution: a two-staged approach
 - 1. Predict with template-based retrosynthesis
 - 2. If fails to find synthetic route, try again with Chemformer

Constrained retrosynthesis

Constrained synthesis planning with disconnection-aware transformer and multi-objective search

24 May 2024, Version 1

Working Paper

Annie M. Westerlund 🧔, Lakshidaa Saigiridharan 🧐, Samuel Genheden

Show author details ~

🚯 This content is a preprint and has not undergone peer review at the time of posting.

Download 66 Cite	O Comment
------------------	-----------

Abstract

Designing synthesis routes with shared intermediates for a set of target compounds is a common task in drug tep retrosynthesis tools such as AiZynthFinder are frequently used by chemists to generate Although these tools can find solved routes for a majority of target compounds, they may not vhich comply with specific bond constraints. Such bond constraints could be defined in the synthesis routes with common intermediates for the set of compounds. Here, we present a novel proach which aims to generate routes in the feasible region defined by these constraints. The ivided into bonds to break and bonds to freeze. First, we introduce a filter in the search which

Synthesis of compound series

- In drug discovery you often explore series of related compounds
- Investigate structure-activity relationship for one or more vectors

- Advantageous to synthesis these compounds in similar fashion
- This is not supported by available retrosynthesis tools

Guo et al. Eur. J. Med. Chem. 2019, 178, 767–781. https://doi.org/10.1016/j.ejmech.2019.06.035.

Constrained synthesis planning

Novel techniques for enhancing bond-breaking

Selecting and scoring routes with multiple objectives

Picking node based on Pareto front

Enriching templated-based model with direct bond breaking

Benchmarking on synthetic data

- Extracted synthesis routes from patents and J Med Chem
- Constructing bonds to break or freeze
- Compare five approaches to treating bonds to break
- We can increase the score for bond breaking by steering the search with multi-objective search
- We can increase the number of routes satisfying the constrained with a Chemformer model

Future outlook

Challenge 1: route scoring and comparison

- AiZynthFinder has been used for 4 years in production and have predicted synthetic routes for hundred of thousands of compounds
- ... but we don't know if the various improvements made have had a significant effect
- Comparing routes are difficult and mean different things to different people
- What is the best reference set to use for benchmarking?
- Should one compare routes, or should one just score new predictions and monitor an improvement in the score over time?

Challenge 2: human-like routes

- The end-goal is that we predict human-like routes with a high confidence of success that can directly taken to the lab
- Currently, we use retrosynthesis as an idea generation
- Currently, route predictions overuse protection/deprotection steps in an unbalanced way, order of steps are non-optimal, steps does not make sense from a forward synthesis perspective, etc.
- To bridge this gap, we need novel algorithms, scores, models etc

Acknowledgements

Annie Westerlund

Saigiridharan

Mikhail Thierry Kabeshov

Christos Kannas

Ola Engkvist

Peter Hartog Varvara Voinarovska

Supriya Siva Kancharla Manohar

Rocío Mercado

Kogej

Emma Rydholm

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com