Profiles

Arjan Bik

Adrianus Bik

Forskare

View page in English
Arbetar vid Institutionen för astronomi
Telefon 08-553 785 49
E-post arjan.bik@astro.su.se
Besöksadress Roslagstullsbacken 21, C 6 & D 6
Rum C6:3041
Postadress Institutionen för astronomi 10691 Stockholm

Om mig

My name is Arjan Bik and I am a researcher in the Galaxy group of the Astronomy department at Stockholm University. 

I am working on analysing inter stellar mater and star cluster feedback in nearby star forming galaxies using optical integral field spectroscopy. I also study massive star clusters in our own galaxy by analyzing their stellar content with infrared spectroscopy to derive their formation history.

Undervisning

2017: Introduction to Astronomy (AS5001)

2016: Introduction to Astronomy (AS5001)

 

Forskning

An update and summary of my latest papers can be found here.

Publikationer

I urval från Stockholms universitets publikationsdatabas
  • 2019. Adrianus Bik (et al.). Astronomy and Astrophysics 624

    Context. The interplay between the formation of stars, stellar feedback and cloud properties strongly influences the star formation history of giant molecular clouds. The formation of massive stars leads to a variety of stellar clusters, ranging from low stellar density OB associations to dense, gravitationally bound starburst clusters.

    Aims. We aimed at identifying the massive stellar content and reconstructing the star formation history of the W51 giant molecular cloud.

    Methods. We performed near-infrared imaging and K-band spectroscopy of the massive stars in W51. We analysed the stellar populations using colour-magnitude and colour-colour diagrams and compared the properties of the spectroscopically identified stars with stellar evolution models.

    Results. We derive the ages of the different sub-clusters in W51 and, based on our spectroscopy derive an age for W51 of 3 Myr or less. The age of the P Cygni star LS1 and the presence of two still forming proto-clusters suggests that the star formation history of W51 is more complex than a single burst.

    Conclusions. We did not find evidence for triggered star formation and we concluded that the star formation in W51 is multi seeded. We finally concluded that W51 is an OB association where different sub-clusters form over a time span of at least 3-5 Myr.

  • 2019. Veronica Menacho (et al.). Monthly notices of the Royal Astronomical Society 487 (3), 3183-3198

    We have used the capability of the Multi-Unit Spectroscopic Explorer (MUSE) instrument to explore the impact of stellar feedback at large scales in Haro 11, a galaxy under extreme starburst condition and one of the first galaxies where Lyman continuum (LyC) has been detected. Using H alpha, [O III] lambda 5007, and [O I]) lambda 6300 emission lines from deep MUSE observations, we have constructed a sequence of velocity-dependent maps of the H alpha emission, the state of the ionized gas, and a tracer of fast shocks. These allowed us to investigate the ionization structure of the galaxy in 50 km s(-1) bins over a velocity range of -400 to 350 km s(-1). The ionized gas in Haro 11 is assembled by a rich arrangement of structures, such as superbubbles, filaments, arcs, and galactic ionized channels, whose appearances change drastically with velocity. The central star-forming knots and the star-forming dusty arm are the main engines that power the strong mechanical feedback in this galaxy, although with different impact on the ionization structure. Haro 11 appears to leak LyC radiation in many directions. We found evidence of a kpc-scale fragmented superbubble that may have cleared galactic scale channels in the ISM. Additionally, the Southwestern hemisphere is highly ionized in all velocities, hinting at a density hound scenario. A compact kpc-scale structure of lowly ionized gas coincides with the diffuse Ly alpha emission and the presence of fast shocks. Finally, we find evidence that a significant fraction of the ionized gas mass may escape the gravitational potential of the galaxy.

  • 2019. L. M. Oskinova (et al.). Astronomy and Astrophysics 627

    Context. X-ray radiation from accreting compact objects is an important part of stellar feedback. The metal-poor galaxy ESO 338-4 has experienced vigorous starburst during the last <40 Myr and contains some of the most massive super star clusters in the nearby Universe. Given its starburst age and its star-formation rate, ESO 338-4 is one of the most efficient nearby manufactures of neutron stars and black holes, hence providing an excellent laboratory for feedback studies. Aims. We aim to use X-ray observations with the largest modern X-ray telescopes XMM-Newton and Chandra to unveil the most luminous accreting neutron stars and black holes in ESO 338-4. Methods. We compared X-ray images and spectra with integral field spectroscopic observations in the optical to constrain the nature of strong X-ray emitters. Results. X-ray observations uncover three ultraluminous X-ray sources (ULXs) in ESO 338-4. The brightest among them, ESO 338 X-1, has X-ray luminosity in excess of 10(40) erg s(-1). We speculate that ESO 338-4 X-1 is powered by accretion on an intermediate-mass (greater than or similar to 300 M-circle dot)black hole. We show that X-ray radiation from ULXs and hot superbubbles strongly contributes to He II ionization and general stellar feedback in this template starburst galaxy.

  • 2018. Adrianus Bik (et al.). Astronomy and Astrophysics 619

    Context. Stellar feedback strongly affects the interstellar medium (ISM) of galaxies. Stellar feedback in the first galaxies likely plays a major role in enabling the escape of LyC photons, which contribute to the re-ionization of the Universe. Nearby starburst galaxies serve as local analogues allowing for a spatially resolved assessment of the feedback processes in these galaxies. Aims. We aim to characterize the feedback effects from the star clusters in the local high-redshift analogue ESO 338-IG04 on the ISM and compare the results with the properties of the most massive clusters. Methods. We used high quality VLT/MUSE optical integral field data to derive the physical properties of the ISM such as ionization, density, shocks, and performed new fitting of the spectral energy distributions of the brightest clusters in ESO 338-IG04 from HST imaging. Results. We find that ESO 338-IG04 has a large ionized halo which we detect to a distance of 9 kpc. We identify four Wolf-Rayet (WR) clusters based on the blue and red WR bump. We follow previously identified ionization cones and find that the ionization of the halo increases with distance. Analysis of the galaxy kinematics shows two complex outflows driven by the numerous young clusters in the galaxy. We find a ring of shocked emission traced by an enhanced [O-I]/H alpha ratio surrounding the starburst and at the end of the outflow. Finally we detect nitrogen enriched gas associated with the outflow, likely caused by the WR stars in the massive star clusters. Conclusions. Photoionization dominates the central starburst and sets the ionization structure of the entire halo, resulting in a density bounded halo, facilitating the escape of LyC photons. Outside the central starburst, shocks triggered by an expanding super bubble become important. The shocks at the end of the outflow suggest interaction between the hot outflowing material and the more quiescent halo gas.

  • 2017. H. Sana (et al.). Astronomy and Astrophysics 599

    Aims. The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near main-sequence stars (sigma(1D) = 5.6 +/- 0.2 km s(-1)) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects.

    Methods. We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained sigma(1D) distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems.

    Results. Simulated populations with low binary fractions (f(bin) = 0.12(-0.09)(+0.16)) or with truncated period distributions (P-cutoff > 9 months) are able to reproduce the low sigma(1D) observed within their 68%-confidence intervals. Furthermore, parent populations with f(bin) > 0.42 or P-cutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks.

    Conclusions. If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period distribution observed in few Myr-old OB binaries.

  • 2017. M. C. Ramirez-Tannus (et al.). Astronomy and Astrophysics 604

    The formation process of massive stars is still poorly understood. Massive young stellar objects (mYSOs) are deeply embedded in their parental clouds; these objects are rare, and thus typically distant, and their reddened spectra usually preclude the determination of their photospheric parameters. M17 is one of the best-studied H i i regions in the sky, is relatively nearby, and hosts a young stellar population. We have obtained optical to near-infrared spectra of previously identified candidate mYSOs and a few OB stars in this region with X-shooter on the ESO Very Large Telescope. The large wavelength coverage enables a detailed spectroscopic analysis of the photospheres and circumstellar disks of these candidate mYSOs. We confirm the pre-main-sequence (PMS) nature of six of the stars and characterise the O stars. The PMS stars have radii that are consistent with being contracting towards the main sequence and are surrounded by a remnant accretion disk. The observed infrared excess and the double-peaked emission lines provide an opportunity to measure structured velocity profiles in the disks. We compare the observed properties of this unique sample of young massive stars with evolutionary tracks of massive protostars and propose that these mYSOs near the western edge of the H i i region are on their way to become main-sequence stars (similar to 6-20 M-circle dot) after having undergone high mass accretion rates ((M) over dot(acc) similar to 10(-4)-10(3) M-circle dot yr(-1)). Their spin distribution upon arrival at the zero age main-sequence is consistent with that observed for young B stars, assuming conservation of angular momentum and homologous contraction.

  • 2017. Edmund Christian Herenz (et al.). Astronomy and Astrophysics 606

    We report on the discovery of ionised gas filaments in the circum-galactic halo of the extremely metal-poor compact starburst SBS 0335-052E in a 1.5 h integration with the MUSE integral-field spectrograph. We detect these features in H alpha and [O III] emission down to a limiting surface-brightness of 5 x 10(-19) erg s(-1) cm(-2) arcsec(-2). The filaments have projected diameters of 2.1 kpc and extend more than 9 kpc to the north and north-west from the main stellar body. We also detect extended nebular He II lambda 4686 emission that brightens towards the north-west at the rim of a starburst driven super-shell. We also present a velocity field of the ionised gas. The filaments appear to connect seamlessly in velocity space to the kinematical disturbances caused by the shell. Similar to high-z starforming galaxies, the ionised gas in this galaxy is dispersion dominated. We argue that the filaments were created via feedback from the starburst and that these ionised structures in the halo may act as escape channels for Lyman continuum radiation in this gas-rich system.

  • 2016. Edmund Christian Herenz (et al.). Astronomy and Astrophysics 587

    We present integral field spectroscopic observations with the Potsdam Multi-Aperture Spectrophotometer of all 14 galaxies in the z similar to 0.1 Lyman Alpha Reference Sample (LARS). We produce 2D line-of-sight velocity maps and velocity dispersion maps from the Balmer alpha (H alpha) emission in our data cubes. These maps trace the spectral and spatial properties of the LARS galaxies' intrinsic Ly alpha radiation field. We show our kinematic maps that are spatially registered onto the Hubble Space Telescope H alpha and Lyman alpha (Ly alpha) images. We can conjecture a causal connection between spatially resolved H alpha kinematics and Ly alpha photometry for individual galaxies, however, no general trend can be established for the whole sample. Furthermore, we compute the intrinsic velocity dispersion sigma(0), the shearing velocity v(shear), and the v(shear)/sigma(0) ratio from our kinematic maps. In general LARS galaxies are characterised by high intrinsic velocity dispersions (54 km s(-1) median) and low shearing velocities (65 km s(-1) median). The v(shear/sigma 0) values range from 0.5 to 3.2 with an average of 1.5. It is noteworthy that five galaxies of the sample are dispersion-dominated systems with v(shear)/sigma(0) < 1, and are thus kinematically similar to turbulent star-forming galaxies seen at high redshift. When linking our kinematical statistics to the global LARS Ly alpha properties, we find that dispersion-dominated systems show higher Ly alpha equivalent widths and higher Ly alpha escape fractions than systems with v(shear)/sigma(0) > 1. Our result indicates that turbulence in actively star-forming systems is causally connected to interstellar medium conditions that favour an escape of Ly alpha radiation.

  • 2015. Sandberg Andreas (et al.). Astrophysical Journal Letters 814 (1)

    The leakage of Lyman continuum (LyC) photons from star-forming galaxies is an elusive parameter. When observed, it provides a wealth of information on star formation in galaxies and on the geometry of the interstellar medium, and puts constraints on the role of star-forming galaxies in the reionization of the universe. Hα-selected galaxies at  trace the highest star formation population at the peak of cosmic star formation history, providing a base for directly measuring LyC escape. Here we present this method and highlight its benefits as well as caveats. We also use the method on 10 Hα emitters in the Chandra Deep Field South at  also imaged with the Hubble Space Telescope in the ultraviolet. We find no individual LyC detections, and our stack puts a 5σ upper limit on the average absolute escape fraction of <24%, consistent with similar studies. With future planned observations, the sample sizes should rapidly increase and the method presented here should provide very robust constraints on the escape fraction.

  • 2015. Adrianus Bik (et al.). Astronomy and Astrophysics 576

    Context. The Lya line is an important diagnostic for star formation at high redshift, but interpreting its flux and line profile is difficult because of the resonance nature of Lya. Trends between the escape of Lya photons and dust and properties of the interstellar medium (ISM) have been found, but detailed comparisons between Lya emission and the properties of the gas in local high-redshift analogs are vital for understanding the relation between Lya emission and galaxy properties. Aims. For the first time, we can directly infer the properties of the ionized gas at the same location and similar spatial scales of the extended Lya halo around the local Lya emitter and Lyman-break galaxy analog ESO338-IG04. Methods. We obtained VLT/MUSE integral field spectra. We used ionization parameter mapping of the [S II]/[O III] line ratio and the kinematics of Ha to study the ionization state and kinematics of the ISM of ESO 338-IG04. Results. The velocity map reveals two outflows, one toward the north, the other toward the south of ESO338. The ionization parameter mapping shows that the entire central area of the galaxy is highly ionized by photons leaking from the HII regions around the youngest star clusters. Three highly ionized cones have been identified, of which one is associated with an outflow detected in the Ha. We propose a scenario where the outflows are created by mechanical feedback of the older clusters, while the highly ionized gas is caused by the hard ionizing photons emitted by the youngest clusters. A comparison with the Lya map shows that the (approximately bipolar) asymmetries observed in the Lya emission are consistent with the base of the outflows detected in Ha. No clear correlation with the ionization cones is found. Conclusions. The mechanical and ionization feedback of star clusters significantly changes the state of the ISM by creating ionized cones and outflows. The comparison with Lya suggests that especially the outflows could facilitate the escape of Lya photons.

  • 2014. S. -W Wu (et al.). Astronomy and Astrophysics 568, L13

    Context. Very massive stars (M > 100 M-circle dot) are very rare objects, but have a strong influence on their environment. The formation of this kind of objects is of prime importance in star formation, but observationally still poorly constrained. Aims. We report on the identification of a very massive star in the central cluster of the star forming region W49. Methods. We investigate near infrared K-band spectroscopic observations of W49 from VLT/ISAAC together with JHK images obtained with NTT/SOFI and LBT/LUCI. We derive the spectral type of W49nrl, the brightest star in the dense core of the central cluster of W49. Results. On the basis of its K-band spectrum, W49nrl is classified as an O2-3.5If* star with a K-band absolute magnitude of -6.27 +/- 0.10 mag. The effective temperature and bolometric correction are estimated from stars of similar spectral type. After comparison to the Geneva evolutionary models, we find an initial mass between 100 M-circle dot and 180 M-circle dot. Varying the extinction law results in a larger initial mass range of 90-250 M-circle dot

Visa alla publikationer av Adrianus Bik vid Stockholms universitet

Senast uppdaterad: 3 november 2019

Bokmärk och dela Tipsa