Profiles

Alf Norkko, profilbild

Alf Norkko

Gästprofessor

View page in English
Arbetar vid Stockholms universitets Östersjöcentrum
E-post alf.norkko@su.se
Besöksadress Svante Arrhenius väg 20 F, plan 5
Postadress Stockholms universitets Östersjöcentrum 106 91 Stockholm

Om mig

I am a professor in Baltic Sea research and have worked with seabed ecology in Finland, Sweden, New Zealand and Antarctica. I am particularly interested in understanding the role of biodiversity for how the sea works. Me and my research team at the Zoological Station; Tvärminne at Helsinki University, specializes in carrying out large-scale experimental field studies, often by scuba-diving. 

Please use the following e-mail adress to contact me: alf.norkko@helsinki.fi

Publikationer

I urval från Stockholms universitets publikationsdatabas
  • 2020. Martin Jakobsson (et al.). Earth Surface Dynamics 8 (1), 1-15

    Submarine groundwater discharge (SGD) influences ocean chemistry, circulation, and the spreading of nutrients and pollutants; it also shapes sea floor morphology. In the Baltic Sea, SGD was linked to the development of terraces and semicircular depressions mapped in an area of the southern Stockholm archipelago, Sweden, in the 1990s. We mapped additional parts of the Stockholm archipelago, areas in Blekinge, southern Sweden, and southern Finland using high-resolution multibeam sonars and sub-bottom profilers to investigate if the sea floor morphological features discovered in the 1990s are widespread and to further address the hypothesis linking their formation to SGD. Sediment coring and sea floor photography conducted with a remotely operated vehicle (ROV) and divers add additional information to the geophysical mapping results. We find that terraces, with general bathymetric expressions of about 1 m and lateral extents of sometimes > 100 m, are widespread in the surveyed areas of the Baltic Sea and are consistently formed in glacial clay. Semicircular depressions, however, are only found in a limited part of a surveyed area east of the island of Asko, southern Stockholm archipelago. While submarine terraces can be produced by several processes, we interpret our results to be in support of the basic hypothesis of terrace formation initially proposed in the 1990s; i.e. groundwater flows through siltier, more permeable layers in glacial clay to discharge at the sea floor, leading to the formation of a sharp terrace when the clay layers above seepage zones are undermined enough to collapse. By linking the terraces to a specific geologic setting, our study further refines the formation hypothesis and thereby forms the foundation for a future assessment of SGD in the Baltic Sea that may use marine geological mapping as a starting point. We propose that SGD through the submarine sea floor terraces is plausible and could be intermittent and linked to periods of higher groundwater levels, implying that to quantify the contribution of freshwater to the Baltic Sea through this potential mechanism, more complex hydrogeological studies are required.

  • 2019. Eva Ehrnsten (et al.). Journal of Marine Systems 196, 36-47

    Benthic macrofauna is an important component linking pelagic and benthic ecosystems, especially in productive coastal areas. Through their metabolism and behaviour, benthic animals affect biogeochemical fluxes between the sediment and water column. Mechanistic models that quantify these benthic-pelagic links are imperative to understand the functioning of coastal ecosystems. In this study, we develop a dynamic model of benthic macrofauna to quantify the relationship between organic matter input and benthic macrofaunal biomass in the coastal zone. The model simulates the carbon dynamics of three functional groups of benthic macrofauna and their sediment food sources and is forced by a hydrodynamic-biogeochemical model simulating pelagic physical and biological dynamics. The model reproduces measured time-series of macrofaunal biomass from two coastal sites with contrasting sedimentation in the Baltic Sea in 1993-2005 with comparatively high accuracy, including a major increase at one of the sites dominated by the bivalve Limecola (Macoma) balthica. This shift in community composition suggests altered pathways of organic matter degradation: 39% of simulated sedimentation was mineralised by macrofauna in 2005 compared to 10% in 1995. From the early 2000s onward macrofaunal biomass seems to be food-limited, as ca 80% of organic carbon sedimentation was processed by the deposit-feeding macrofauna at both sites. This model is a first step to help quantify the role of macrofauna in marine coastal ecosystem functioning and biogeochemical cycles and build predictive capacity of the effects of anthropogenic stressors, such as eutrophication and climate change, on coastal ecosystems.

  • 2019. Anna Villnäs (et al.). Marine Ecology Progress Series 622, 31-48

    Benthic macrofaunal communities have a profound impact on organic matter turnover and nutrient cycling in marine sediments. Their activities are of particular importance in the coastal filter, where nutrients and organic matter from land are transformed and/or retained before reaching the open sea. The benthic fauna modify the coastal filter directly (through consumption, respiration, excretion and biomass production) and indirectly (through bioturbation). It is hard to experimentally quantify faunal contribution to the coastal filter over large spatial and temporal scales that encompass significant environmental and biological heterogeneity. However, estimates can be obtained with biological trait analyses. By using benthic biological traits, we explored how the potential contribution of macrofaunal communities to the coastal filter differ between inner and outer sites in an extensive archipelago area and examine the generality of the observed pattern across contrasting coastal areas of the entire Baltic Sea. Estimates of benthic bioturbation, longevity and size (i.e. 'stability') and total energy and nutrient contents differed between coastal areas and inner versus outer sites. Benthic traits indicative of an enhanced nutrient turnover but a decreased capacity for temporal nutrient retention dominated inner sites, while outer sites were often dominated by larger individuals, exhibiting traits that are likely to enhance nutrient uptake and retention. The overarching similarities in benthic trait expression between more eutrophied inner vs. less affected outer coastal sites across the Baltic Sea suggest that benthic communities might contribute in a similar manner to nutrient recycling and retention in the coastal filter over large geographical scales.

  • 2019. Lukas Meysick (et al.). Journal of Sea Research 150, 8-23

    Foundation species host diverse associated communities by ameliorating environmental stress. The strength of this facilitative effect can be highly dependent on the underlying biotic and abiotic context. We investigated community level patterns of macrofauna associated with and adjacent to the marine foundation species eelgrass (Zostera marina) along a hydrodynamic stress gradient. We could demonstrate that the relative importance of this foundation species for its infaunal community increases with environmental variables associated with increasing hydrodynamic stress (depth, sand ripples formation, sediment grain size and organic content). Faunal assemblages in proximity to the Zostera patch edges, however, showed no (infauna) or negative (epifauna) response to hydrodynamic stress. Our study highlights that the facilitative outcome of a foundation species is conditional to the faunal assemblage in question and can be highly variable even between positions within the habitat.

  • 2019. Joanna Norkko (et al.). Journal of Sea Research 153

    Marine ecosystems world-wide are threatened by oxygen deficiency, with potential serious consequences for ecosystem functioning and the goods and services they provide. While the effects of hypoxia on benthic species diversity are well documented, the effects on ecosystem function have only rarely been assessed in real-world settings. To better understand the links between structural changes in macro- and meiofaunal communities, hypoxic stress and benthic ecosystem function (benthic nutrient fluxes, community metabolism), we sampled a total of 11 sites in Haystensfjord and Askerofjord (Swedish west coast) in late summer, coinciding with the largest extent and severity of seasonal hypoxia in the area. The sites spanned oxic to anoxic bottom water, and a corresponding gradient in faunal diversity. Intact sediment cores were incubated to measure fluxes of oxygen and nutrients (NO3-, NO2-, NH4+, PO43-, SiO4) across the sediment-water interface. Sediment profile imaging (SPI) footage was obtained from all sites to assess structural elements and the bioturbadon depth, and additional samples were collected to characterise sediment properties and macro- and meiofaunal community composition. Bottom-water O-2 concentration was the main driver of macrofauna communities, with highest abundance and biomass, as well as variability, at the sites with intermediate O-2 concentration. Meiofauna on the other hand was less sensitive to bottom-water O-2 concentration. Oxygen was the main driver of nutrient fluxes too, but macrofauna as well meiofauna were also significant predictors; DistLM analyses indicated that O-2 concentration, macrofaunal abundance or biomass, and meiofaunal abundance collectively explained 63%, 30% and 28% of the variation in sediment O-2 consumption, NH4+ flux and PO43+ flux, respectively. The study provides a step towards a more realistic understanding of the link between benthic fauna and ecosystem functioning, and the influence of disturbance on this relationship, which is important for management decisions aimed at protecting the dwindling biodiversity in the coastal zones around the world.

  • 2019. Johanna Gammal (et al.). Ecosystems (New York. Print) 22 (1), 137-151

    The ongoing loss of biodiversity and global environmental changes severely affect the structure of coastal ecosystems. Consequences, in terms of ecosystem functioning, are, however, difficult to predict because the context dependency of the biodiversity–ecosystem function relationships within these heterogeneous seascapes is poorly understood. To assess the effects of biological and environmental factors in mediating ecosystem functioning (nutrient cycling) in different natural habitats, intact sediment cores were collected at 18 sites on a grain size gradient from coarse sand to silt, with varying organic matter content and vegetation. To assess ecosystem functioning, solute fluxes (O2, NH4+, PO43−, Si) across the sediment–water interface were measured. The macrofaunal communities changed along the grain size gradient with higher abundance, biomass and number of species in coarser sediments and in habitats with more vegetation. Across the whole gradient, the macrofauna cumulatively accounted for 25% of the variability in the multivariate solute fluxes, whereas environmental variables cumulatively accounted for 20%. Only the biomass and abundance of a few of the most dominant macrofauna species, not the number of species, appeared to contribute significantly to the nutrient recycling processes. Closer analyses of different sediment types (grouped into coarse, medium and fine sediment) showed that the macrofauna was an important predictor in all sediment types, but had the largest impact in fine and medium sediments. The results imply that even if the ecosystem functioning is similar in different sediment types, the underpinning mechanisms are different, which makes it challenging to generalize patterns of functioning across the heterogeneous shallow coastal zones.

  • 2019. Christoph Humborg (et al.). Frontiers in Marine Science 6

    The summer heat wave in 2018 led to the highest recorded water temperatures since 1926 - up to 21 degrees C - in bottom coastal waters of the Baltic Sea, with implications for the respiration patterns in these shallow coastal systems. We applied cavity ring-down spectrometer measurements to continuously monitor carbon dioxide (CO2) and methane (CH4) surface-water concentrations, covering the coastal archipelagos of Sweden and Finland and the open and deeper parts of the Northern Baltic Proper. This allowed us to (i) follow an upwelling event near the Swedish coast leading to elevated CO2 and moderate CH 4 outgassing, and (ii) to estimate CH4 sources and fluxes along the coast by investigating water column inventories and air-sea fluxes during a storm and an associated downwelling event. At the end of the heat wave, before the storm event, we found elevated CO2 (1583 mu atm) and CH4 (70 nmol/L) concentrations. During the storm, a massive CO2 sea-air flux of up to 274 mmol m(-2) d(-1) was observed. While water-column CO2 concentrations were depleted during several hours of the storm, CH4 concentrations remained elevated. Overall, we found a positive relationship between CO2 and CH4 wind-driven sea-air fluxes, however, the highest CH4 fluxes were observed at low winds whereas highest CO2 fluxes were during peak winds, suggesting different sources and processes controlling their fluxes besides wind. We applied a box-model approach to estimate the CH4 supply needed to sustain these elevated CH4 concentrations and the results suggest a large source flux of CH4 to the water column of 2.5 mmol m(-2) d(-1). These results are qualitatively supported by acoustic observations of vigorous and widespread outgassing from the sediments, with flares that could be traced throughout the water column penetrating the pycnocline and reaching the sea surface. The results suggest that the heat wave triggered CO2 and CH4 fluxes in the coastal zones that are comparable with maximum emission rates found in other hot spots, such as boreal and arctic lakes and wetlands. Further, the results suggest that heat waves are as important for CO2 and CH4 sea-air fluxes as the ice break up in spring.

  • 2019. Elina A. Virtanen (et al.). Biogeosciences 16 (16), 3183-3195

    Hypoxia is an increasing problem in marine ecosystems around the world. While major advances have been made in our understanding of the drivers of hypoxia, challenges remain in describing oxygen dynamics in coastal regions. The complexity of many coastal areas and lack of detailed in situ data have hindered the development of models describing oxygen dynamics at a sufficient spatial resolution for efficient management actions to take place. It is well known that the enclosed nature of seafloors and reduced water mixing facilitates hypoxia formation, but the degree to which topography contributes to hypoxia formation and small-scale variability of coastal hypoxia has not been previously quantified. We developed simple proxies of seafloor heterogeneity and modeled oxygen deficiency in complex coastal areas in the northern Baltic Sea. According to our models, topographical parameters alone explained similar to 80 % of hypoxia occurrences. The models also revealed that less than 25 % of the studied seascapes were prone to hypoxia during late summer (August-September). However, large variation existed in the spatial and temporal patterns of hypoxia, as certain areas were prone to occasional severe hypoxia (O-2 < 2 mg L-1), while others were more susceptible to recurrent moderate hypoxia (O-2 < 4.6 mg L-1). Areas identified as problematic in our study were characterized by low exposure to wave forcing, high topographic shelter from surrounding areas and isolation from the open sea, all contributing to longer water residence times in seabed depressions. Deviations from this topographical background are probably caused by strong currents or high nutrient loading, thus improving or worsening oxygen status, respectively. In some areas, connectivity with adjacent deeper basins may also influence coastal oxygen dynamics. Developed models could boost the performance of biogeochemical models, aid developing nutrient abatement measures and pinpoint areas where management actions are most urgently needed.

  • 2019. Hanna Sinkko (et al.). Scientific Reports 9

    Coastal hypoxia is a major environmental problem worldwide. Hypoxia-induced changes in sediment bacterial communities harm marine ecosystems and alter biogeochemical cycles. Nevertheless, the resistance of sediment bacterial communities to hypoxic stress is unknown. We investigated changes in bacterial communities during hypoxic-anoxic disturbance by artificially inducing oxygen deficiency to the seafloor for 0, 3, 7, and 48 days, with subsequent molecular biological analyses. We further investigated relationships between bacterial communities, benthic macrofauna and nutrient effluxes across the sediment-water-interface during hypoxic-anoxic stress, considering differentially abundant operational taxonomic units (OTUs). The composition of the moderately abundant OTUs changed significantly after seven days of oxygen deficiency, while the abundant and rare OTUs first changed after 48 days. High bacterial diversity maintained the resistance of the communities during oxygen deficiency until it dropped after 48 days, likely due to anoxia-induced loss of macrofaunal diversity and bioturbation. Nutrient fluxes, especially ammonium, correlated positively with the moderate and rare OTUs, including potential sulfate reducers. Correlations may reflect bacteria-mediated nutrient effluxes that accelerate eutrophication. The study suggests that even slightly higher bottom-water oxygen concentrations, which could sustain macrofaunal bioturbation, enable bacterial communities to resist large compositional changes and decrease the harmful consequences of hypoxia in marine ecosystems.

  • 2019. Anna Villnas, Alf Norkko, Kari K. Lehtonen. Journal of Experimental Marine Biology and Ecology 510, 64-72

    The frequency of seasonal and short-term hypoxia is increasing in coastal seas. How such repeated disturbances affect key species that have important roles for ecosystem processes and functions remains, however, unknown. By performing a field experiment we explored if the bivalve Macoma balthica can cope with short-term, recurring hypoxic stress, and investigated how hypoxia affects the condition of surviving bivalves. By combining data on different levels of biological organization, i.e., on physiology (biomarker response), behaviour and demography, we identified stress responses before the population declined. One pulse of hypoxic disturbance (3 days) resulted in behavioural alterations, as adult M. balthica extended their siphons, emerged towards the sediment surface and expressed decreased reburial rates. However, the demographic structure of the population remained unaltered. Several pulses of recurring hypoxic stress resulted in physiological response with changes in glutathione reductase and acetylcholinesterase enzyme activities. The recurring hypoxic disturbance was observed to affect juvenile bivalves before adults, while pro-longed hypoxia reduced the entire bivalve population. Our results clearly show that hypoxic stress changes the behaviour and physiology of M. balthica before demographic changes occur, which is likely to have severe implications for the contribution of this key species to ecosystem functioning. That a combination of measures at different levels of organization can detect disturbances at an early stage suggests that such an approach would be useful for assessing the effects of disturbances on marine ecosystems that are increasingly affected by anthropogenic change.

  • 2019. Mats Westerbom (et al.). Frontiers in Marine Science 6

    Examining changes in abundance and demographic rates at species distribution margins may provide the first signs of broader species responses to environmental change. Still, the joint impact of space and time have remained relatively unstudied in most marginal regions. In order to examine the influence of climate variability on mussel distribution patterns, we monitored three sublittoral and marginal blue mussel (Mytilus trossulus) populations, spaced along a salinity gradient. Densities and biomasses peaked toward the saltier parts of the study area and showed relatively larger variations toward the low saline edge. Temporally, the areas showed a consistent increase in abundance after a synchronized large-scale recruitment event, which was followed by a decline in population size, occurring much faster toward the very range edge. Salinity, temperature, winter severity, and wave exposure explained most of the spatiotemporal variation in mussel abundances and adults showed positive effects on recruit abundance. We show empirically that the dynamics of edge populations are not driven by large changes in climate variables but that small spatial and temporal changes in key environmental variables have large and non-linear population level effects. Our results also show that fluctuating recruitment is a key factor for population stability affecting the storage potential of marginal populations, which dramatically decrease toward the edge. Our study provides a window into future population patterns and processes that drive marginal mussel populations in an altered sea characterized by rising temperature and declining salinity.

  • 2019. Guillaume Bernard (et al.). Journal of Sea Research 152

    Bioturbation by benthic macrofauna communities plays a significant role in the setting and maintenance of important ecosystem functions and the delivery of associated ecosystem services. We investigated the context dependence of bioturbation performed by natural benthic communities in the coastal northern Baltic Sea by quantifying three bioturbation metrics (particle mixing intensity, surface sediment reworking and bioturbation depth) across 18 sites ranging from cohesive muddy sediments to non-cohesive coarse sands, while accounting for the complexity of natural communities and habitat characteristics. We identified two distinct patterns of bioturbation; in fine sediments bioturbation rates were highly variable and in coarse sediments bioturbation rates were less variable and characterized by lower maximal values. Using distance-based linear multiple regressions, we found that 75.5% of the variance in bioturbation rates in fine sediment could be explained by key functional groups/species abundance and/or biomass (i.e. biomass of the gallery-diffusors and abundances of biodiffusors, surface modifiers, conveyors and gallery diffusors, respectively). In coarse sediment, 47.8% of the variance in bioturbation rates could be explained by a combination of environmental factors (grain size, organic matter content, buried plant material) and faunal functional groups, although fauna alone explained only 13% of this variance. Bioturbation in fine sediments was therefore more predictable based on the composition of benthic fauna. In coarse sediment, the bioturbation activities of benthic fauna were strongly modified by habitat characteristics (including the presence of buried plant material, sediment organic content and grain size) whereas in fine sediments this was not the case. Our results therefore highlight that variability in spatial patterns of bioturbation is a result of complex relationships between macrofauna community structure, sediment type and other habitat characteristics, likely modifying bioturbation performance of individual fauna.

  • 2019. Camilla Gustafsson, Alf Norkko. Journal of Ecology 107 (1), 154-166

    1. Aquatic plant meadows are important coastal habitats that sustain many ecosystem functions such as primary production and carbon sequestration. Currently, there is a knowledge gap in understanding which plant functional traits, for example, leaf size or plant height underlie primary production in aquatic plant communities.

    2. To study how plant traits are related to primary production, we conducted a field survey in the Baltic Sea, Finland, which is characterized by high plant species and functional diversity. Thirty sites along an exposure gradient were sampled (150 plots), and nine plant morphological and chemical traits measured. The aim was to discern how community-weighted mean traits affect community production and whether this relationship changes along an environmental gradient using structural equation modelling (SEM).

    3. Plant height had a direct positive effect on production along an exposure gradient (r=0.33) and indirect effects through two leaf chemical traits, leaf delta N-15 and leaf delta C-13 (r=0.24 and 0.18, respectively) resulting in a total effect of 0.28. In plant communities experiencing varying exposure, traits such as root N concentration and leaf delta N-15 had positive and negative effects on production, respectively.

    4. Synthesis. Our results demonstrate that the relationship between aquatic plant functional traits and community production is variable and changes over environmental gradients. Plant height generally has a positive effect on community production along an exposure gradient, while the link between other traits and production changes in plant communities experiencing varying degrees of exposure. Thus, the underlying biological mechanisms influencing production differ in plant communities, emphasizing the need to resolve variability and its drivers in real-world communities. Importantly, functionally diverse plant communities sustain ecosystem functioning differently and highlight the importance of benthic diversity for coastal ecosystem stability.

  • 2019. Eero Asmala (et al.). Estuaries and Coasts 42 (7), 1882-1895

    Coastal ecosystems act as filters of nutrients from land to the open sea. We investigated the role of eelgrass (Zostera marina) metabolism in the coastal filter transforming nitrogen, phosphorus, and organic carbon. Field campaigns following identical methodologies were carried out at two contrasting coastal locations: the mesohaline and nutrient-rich Roskilde Fjord, Denmark, and the mesotrophic brackish Tvarminne archipelago, Finland. Over the 24-h in situ benthic incubations, we measured oxygen concentrations continuously and assessed changes in DOM characteristics and net fluxes of carbon, nitrogen, and phosphorus. Ecosystem metabolism modeled on the basis of the O-2 data showed that the systems were either net heterotrophic (Roskilde Fjord; - 1.6 and - 2.4 g O-2 m(-2) day(-1) in eelgrass meadow and bare sand, respectively) or had balanced primary production and respiration (Tvarminne; 0.0 and 0.2 g O-2 m(-2) day(-1)). Overall, initial nutrient stoichiometry was a key factor determining benthic-pelagic fluxes of nutrients, which exacerbated the deviations from Redfield ratios of N and P, indicating an efficient use of the limiting nutrient. A net diel uptake of dissolved inorganic N was observed at both locations (- 2.3 mu mol l(-1) day(-1) in Roskilde Fjord and - 0.1 mu mol l(-1) day(-1) in Tvarminne). Despite minor changes in dissolved organic carbon concentrations during the incubations, a marked increase of fluorescent DOM was observed at both locations, suggesting rapid heterotrophic processing of the DOM pool. Our results underline that the biogeochemical role of eelgrass in the coastal filter is not inherent, but strongly dependent on the environmental conditions.

  • 2019. Karl M. Attard (et al.).

    Shallow benthic habitats are hotspots for carbon cycling and energy flow, but metabolism (primary production and respiration) dynamics and habitat-specific differences remain poorly understood. We investigated daily, seasonal, and annual metabolism in six key benthic habitats in the Baltic Sea using similar to 2900h of in situ aquatic eddy covariance oxygen flux measurements. Rocky substrates had the highest metabolism rates. Habitat-specific annual primary production per m(2) was in the order Fucus vesiculosus canopy>Mytilus trossulus reef>Zostera marina canopy>mixed macrophytes canopy>sands, whereas respiration was in the order M. trossulus>F. vesiculosus>Z. marina>mixed macrophytes> sands>aphotic sediments. Winter metabolism contributed 22-31% of annual rates. Spatial upscaling revealed that benthic habitats drive >90% of ecosystem metabolism in waters <= 5 m depth, highlighting their central role in carbon and nutrient cycling in shallow waters.

  • 2019. K. M. Attard (et al.). Limnology and Oceanography 64 (1), 149-164

    The important role of macroalgal canopies in the oceanic carbon (C) cycle is increasingly being recognized, but direct assessments of community productivity remain scarce. We conducted a seasonal study on a sublittoral Baltic Sea canopy of the brown alga Fucus vesiculosus, a prominent species in temperate and Arctic waters. We investigated community production on hourly, daily, and seasonal timescales. Aquatic eddy covariance (AEC) oxygen flux measurements integrated similar to 40 m(2) of the seabed surface area and documented considerable oxygen production by the canopy year-round. High net oxygen production rates of up to 35 +/- 9 mmol m(-2) h(-1) were measured under peak irradiance of similar to 1200 mu mol photosynthetically active radiation (PAR) m(-2) s(-1) in summer. However, high rates > 15 mmol m(-2) h(-1) were also measured in late winter (March) under low light intensities < 250 mu mol PAR m(-2) s(-1) and water temperatures of similar to 1 degrees C. In some cases, hourly AEC fluxes documented an apparent release of oxygen by the canopy under dark conditions, which may be due to gas storage dynamics within internal air spaces of F. vesiculosus. Daily net ecosystem metabolism (NEM) was positive (net autotrophic) in all but one of the five measurement campaigns (December). A simple regression model predicted a net autotrophic canopy for two-thirds of the year, and annual canopy NEM amounted to 25 mol O-2 m(-2) yr(-1), approximately six-fold higher than net phytoplankton production. Canopy C export was similar to 0.3 kg C m(-2) yr(-1), comparable to canopy standing biomass in summer. Macroalgal canopies thus represent regions of intensified C assimilation and export in coastal waters.

  • 2019. Leena Virta (et al.). Ecology 100 (9)

    The current decrease in biodiversity affects all ecosystems, and the impacts of diversity on ecosystem functioning need to be resolved. So far, marine studies about diversity-ecosystem productivity-relationships have concentrated on small-scale, controlled experiments, with often limited relevance to natural ecosystems. Here, we provide a real-world study on the effects of microorganismal diversity (measured as the diversity of benthic diatom communities) on ecosystem productivity (using chlorophyll a concentration as a surrogate) in a heterogeneous marine coastal archipelago. We collected 78 sediment cores at 17 sites in the northern Baltic Sea and found exceptionally high diatom diversity (328 observed species). We used structural equation models and quantile regression to explore relationships between diatom diversity and productivity. Previous studies have found contradictory results in the relationship between microorganismal diversity and ecosystem productivity, but we showed a linear and positive basal relationship between diatom diversity and productivity, which indicates that diatom diversity most likely forms the lowest boundary for productivity. Thus, although productivity can be high even when diatom diversity is low, high diatom diversity supports high productivity. The trait composition was more effective than taxonomical composition in showing such a relationship, which could be due to niche complementarity. Our results also indicated that environmental heterogeneity leads to substantial patchiness in the diversity of benthic diatom communities, mainly induced by the variation in sediment organic matter content. Therefore, future changes in precipitation and river runoff and associated changes in the quality and quantity of organic matter in the sea, will also affect diatom communities and, hence, ecosystem productivity. Our study suggests that benthic microorganisms are vital for ecosystem productivity, and together with the substantial heterogeneity of coastal ecosystems, they should be considered when evaluating the potential productivity of coastal areas.

Visa alla publikationer av Alf Norkko vid Stockholms universitet

Senast uppdaterad: 30 mars 2020

Bokmärk och dela Tipsa