Stockholms universitet logo, länk till startsida

Bengt MannervikProfessor

Undervisning

Doktorand

Aram Ismail
Helena Lindström

Forskare

Birgitta Sjödin
Urvi Majhi

Publikationer

I urval från Stockholms universitets publikationsdatabas

  • Expression of a Drosophila glutathione transferase in Arabidopsis confers the ability to detoxify the environmental pollutant, and explosive, 2,4,6-trinitrotoluene

    2017. Kyriakos Tzafestas (et al.). New Phytologist 214 (1), 294-303

    Artikel

    The explosive 2,4,6-trinitrotoluene (TNT) is a significant, global environmental pollutant that is both toxic and recalcitrant to degradation. Given the sheer scale and inaccessible nature of contaminated areas, phytoremediation may be a viable clean-up approach. Here, we have characterized a Drosophila melanogaster glutathione transferase (DmGSTE6) which has activity towards TNT. Recombinantly expressed, purified DmGSTE6 produces predominantly 2-glutathionyl-4, 6-dinitrotoluene, and has a 2.5-fold higher Maximal Velocity (Vmax), and five-fold lower Michaelis Constant (Km) than previously characterized TNT-active Arabidopsis thaliana (Arabidopsis) GSTs. Expression of DmGSTE6 in Arabidopsis conferred enhanced resistance to TNT, and increased the ability to remove TNT from contaminated soil relative to wild-type plants. Arabidopsis lines overexpressing TNT-active GSTs AtGST-U24 and AtGST-U25 were compromised in biomass production when grown in the absence of TNT. This yield drag was not observed in the DmGSTE6-expressing Arabidopsis lines. We hypothesize that increased levels of endogenous TNT-active GSTs catalyse excessive glutathionylation of endogenous substrates, depleting glutathione pools, an activity that DmGST may lack. In conclusion, DmGSTE6 has activity towards TNT, producing a compound with potential for further biodegradation. Selecting or manipulating plants to confer DmGSTE6-like activity could contribute towards development of phytoremediation strategies to clean up TNT from polluted military sites.

    Läs mer om Expression of a Drosophila glutathione transferase in Arabidopsis confers the ability to detoxify the environmental pollutant, and explosive, 2,4,6-trinitrotoluene
  • Blood-Brain Barrier-Penetrating 6-Halogenopurines Suitable as Pro-Probes for Positron Emission Tomography are Substrates for Human Glutathione Transferases

    2016. Bengt Mannervik, Birgitta Sjödin. Pharmaceutical Bioprocessing 4 (2), 25-30

    Artikel

    6-Chloro- and 6-bromopurines can cross the blood-brain barrier and in situ give rise to substrates of multidrug resistance-associated proteins (MRPs). The electrophilic purines form glutathione conjugates in reactions catalyzed by intracellular glutathione transferases (GSTs), and the conjugates are subsequently exported from the cells by ATP-dependent membrane transporters. In rodent model systems it has been demonstrated that suitably radiolabeled 6-halogenopurines by this scheme are pro-probes useful in monitoring the functionality of MRPs in intact brains using positron emission tomography. Prior to applications in human subjects it is imperative to establish the purine pro-probes as effective substrates for human GSTs occurring in brain and other tissues. We have developed a spectrophotometric assay for the glutathione conjugation and determined specific activities with a range of human GSTs as well as some rat GSTs for comparison. The ubiquitous GST P1-1 showed the highest activities with the 6-halogenopurines, which bodes well for the application of pro-probes for human investigations.

    Läs mer om Blood-Brain Barrier-Penetrating 6-Halogenopurines Suitable as Pro-Probes for Positron Emission Tomography are Substrates for Human Glutathione Transferases
  • Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants

    2017. Yaman Musdal, Sridhar Govindarajan, Bengt Mannervik. Protein Engineering Design & Selection 30 (8), 543-549

    Artikel

    Exploring the vicinity around a locus of a protein in sequence space may identify homologs with enhanced properties, which could become valuable in biotechnical and other applications. A rational approach to this pursuit is the use of 'infologs', i.e. synthetic sequences with specific substitutions capturing maximal sequence information derived from the evolutionary history of the protein family. Ninety-five such infolog genes of poplar glutathione transferase were synthesized and expressed in Escherichia coli, and the catalytic activities of the proteins determined with alternative substrates. Sequence-activity relationships derived from the infologs were used to design a second set of 47 infologs in which 90% of the members exceeded wild-type properties. Two mutants, C2 (V55I/E95D/D108E/A160V) and G5 (F13L/C70A/G122E), were further functionally characterized. The activities of the infologs with the alternative substrates 1-chloro-2,4-dinitrobenzene and phenethyl isothiocyanate, subject to different chemistries, were positively correlated, indicating that the examined mutations were affecting the overall catalytic competence without major shift in substrate discrimination. By contrast, the enhanced protein expressivity observed in many of the mutants were not similarly correlated with the activities. In conclusion, small libraries of well-defined infologs can be used to systematically explore sequence space to optimize proteins in multidimensional functional space.

    Läs mer om Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants
  • Mapping of Amino Acid Substitutions Conferring Herbicide Resistance in Wheat Glutathione Transferase

    2015. Sridhar Govindarajan (et al.). ACS Synthetic Biology 4 (3), 221-227

    Artikel

    We have used design of experiments (DOE) and systematic variance to efficiently explore glutathione transferase substrate specificities caused by amino acid substitutions. Amino acid substitutions selected using phylogenetic analysis were synthetically combined using a DOE design to create an information-rich set of gene variants, termed infologs. We used machine learning to identify and quantify protein sequence-function relationships against 14 different substrates The resulting models were quantitative and predictive, serving as a guide for engineering of glutathione transferase activity toward a diverse set of herbicides Predictive quantitative models like those presented here have broad applicability for bioengineering.

    Läs mer om Mapping of Amino Acid Substitutions Conferring Herbicide Resistance in Wheat Glutathione Transferase
  • Five Decades with Glutathione and the GSTome

    2012. Bengt Mannervik. Journal of Biological Chemistry 287 (9), 6072-6083

    Artikel

    Uncle Folke inspired me to become a biochemist by demonstrating electrophoresis experiments on butterfly hemolymph in his kitchen. Glutathione became the subject for my undergraduate project in 1964 and has remained a focal point in my research owing to its multifarious roles in the cell. Since the 1960s, the multiple forms of glutathione transferase (GST), the GSTome, were isolated and characterized, some of which were discovered in our laboratory. Products of oxidative processes were found to be natural GST substrates. Examples of toxic compounds against which particular GSTs provide protection include 4-hydroxynonenal and ortho-quinones, with possible links to the etiology of Alzheimer and Parkinson diseases and other degenerative conditions. The role of thioltransferase and glutathione reductase in the cellular reduction of disulfides and other oxidized forms of thiols was clarified. Glyoxalase I catalyzes still another glutathione-dependent detoxication reaction. The unusual steady-state kinetics of this zinc-containing enzyme initiated model discrimination by regression analysis. Functional properties of the enzymes have been altered by stochastic mutations based on DNA shuffling and rationally tailored by structure-based redesign. We found it useful to represent promiscuous enzymes by vectors or points in multidimensional substrate-activity space and visualize them by multivariate analysis. Adopting the concept molecular quasi-species, we describe clusters of functionally related enzyme variants that may emerge in natural as well as directed evolution.

    Läs mer om Five Decades with Glutathione and the GSTome
  • Multidimensional epistasis and fitness landscapes in enzyme evolution

    2012. Wei Zhang (et al.). Biochemical Journal 445, 39-46

    Artikel

    The conventional analysis of enzyme evolution is to regard one single salient feature as a measure of fitness, expressed in a milieu exposing the possible selective advantage at a given time and location. Given that a single protein may serve more than one function, fitness should be assessed in several dimensions. In the present study we have explored individual mutational steps leading to a triple-point-mutated human GST (glutathione transferase) A2-2 displaying enhanced activity with azathioprine. A total of eight alternative substrates were used to monitor the diverse evolutionary trajectories. The epistatic effects of the imitations on catalytic activity were variable in sign and magnitude and depended on the substrate used, showing that epistasis is a multidimensional quality. Evidently, the multidimensional fitness landscape can lead to alternative trajectories resulting in enzymes optimized for features other than the selectable markers relevant at the origin of the evolutionary process. In this manner the evolutionary response is robust and can adapt to changing environmental conditions.

    Läs mer om Multidimensional epistasis and fitness landscapes in enzyme evolution
  • Structure and steroid isomerase activity of Drosophila glutathione transferase E14 essential for ecdysteroid biosynthesis

    2020. Jana Škerlová (et al.). FEBS Letters 594 (7), 1187-1195

    Artikel

    Ecdysteroids are critically important for the formation of the insect exoskeleton. Cholesterol is a precursor of ecdysone and its active form 20-hydroxyecdysone, but some steps in the ecdysteroid biosynthesis pathway remain unknown. An essential requirement of glutathione (GSH) transferase GSTE14 in ecdysteroid biosynthesis has been established in Drosophila melanogaster, but its function is entirely unknown. Here, we have determined the crystal structure of GSTE14 in complex with GSH and investigated the kinetic properties of GSTE14 with alternative substrates. GSTE14 has high-ranking steroid double-bond isomerase activity, albeit 50-fold lower than the most efficient mammalian GSTs. Corresponding steroid isomerizations are unknown in insects, and their exact physiological role remains to be shown. Nonetheless, the essential enzyme GSTE14 is here demonstrated to be catalytically competent and have a steroid-binding site.

    Läs mer om Structure and steroid isomerase activity of Drosophila glutathione transferase E14 essential for ecdysteroid biosynthesis
  • Characterization of equine GST A3-3 as a steroid isomerase

    2018. Helena Lindström (et al.). Journal of Steroid Biochemistry and Molecular Biology 178, 117-126

    Artikel

    Glutathione transferases (GSTs) comprise a superfamily of enzymes prominently involved in detoxication by making toxic electrophiles more polar and therefore more easily excretable. However some GSTs have developed alternative functions. Thus, a member of the Alpha class GSTs in pig and human tissues is involved in steroid hormone biosynthesis, catalyzing the obligatory double-bond isomerization of Δ5-androstene-3,17-dione to Δ4-androstene-3,17-dione and of Δ5-pregnene-3,20-dione to Δ4-pregnene-3,20-dione on the biosynthetic pathways to testosterone and progesterone. The human GST A3-3 is the most efficient steroid double-bond isomerase known so far in mammals. The current work extends discoveries of GST enzymes that act in the steroidogenic pathways in large mammals. The mRNA encoding the steroid isomerase GST A3-3 was cloned from testis of the horse (Equus ferus caballus). The concentrations of GSTA3 mRNA were highest in hormone-producing organs such as ovary, testis and adrenal gland. EcaGST A3-3 produced in E. coli has been characterized and shown to have highly efficient steroid double-bond isomerase activity, exceeding its activities with conventional GST substrates. The enzyme now ranks as one of the most efficient steroid isomerases known in mammals and approaches the activity of the bacterial ketosteroid isomerase, one of the most efficient enzymes of all categories known today. The high efficiency and the tissue distribution of EcaGST A3-3 support the view that the enzyme plays a physiologically significant role in the biosynthesis of steroid hormones.

    Läs mer om Characterization of equine GST A3-3 as a steroid isomerase

Visa alla publikationer av Bengt Mannervik vid Stockholms universitet