Stockholms universitet

Dominic Wyndham Alfred Heslin-ReesDoktorand

Publikationer

I urval från Stockholms universitets publikationsdatabas

  • Black carbon scavenging by low-level Arctic clouds

    2023. Paul Zieger (et al.). Nature Communications 14 (1)

    Artikel

    Black carbon (BC) from anthropogenic and natural sources has a pronounced climatic effect on the polar environment. The interaction of BC with low-level Arctic clouds, important for understanding BC deposition from the atmosphere, is studied using the first long-term observational data set of equivalent black carbon (eBC) inside and outside of clouds observed at Zeppelin Observatory, Svalbard. We show that the measured cloud residual eBC concentrations have a clear seasonal cycle with a maximum in early spring, due to the Arctic haze phenomenon, followed by cleaner summer months with very low concentrations. The scavenged fraction of eBC was positively correlated with the cloud water content and showed lower scavenged fractions at low temperatures, which may be due to mixed-phase cloud processes. A trajectory analysis revealed potential sources of eBC and the need to ensure that aerosol-cloud measurements are collocated, given the differences in air mass origin of cloudy and non-cloudy periods. Black carbon in the Arctic has pronounced climatic effects, whilst residing in the atmosphere or after being deposited. Here long-term observations of black carbon inside Arctic clouds are used to study their seasonality, sources and links to other meteorological parameters.

    Läs mer om Black carbon scavenging by low-level Arctic clouds
  • Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic

    2023. Gabriel Pereira Freitas (et al.). Nature Communications 14

    Artikel

    Primary biological aerosol particles (PBAP) play an important role in the climate system, facilitating the formation of ice within clouds, consequently PBAP may be important in understanding the rapidly changing Arctic. Within this work, we use single-particle fluorescence spectroscopy to identify and quantify PBAP at an Arctic mountain site, with transmission electronic microscopy analysis supporting the presence of PBAP. We find that PBAP concentrations range between 10−3–10−1 L−1 and peak in summer. Evidences suggest that the terrestrial Arctic biosphere is an important regional source of PBAP, given the high correlation to air temperature, surface albedo, surface vegetation and PBAP tracers. PBAP clearly correlate with high-temperature ice nucleating particles (INP) (>-15 °C), of which a high a fraction (>90%) are proteinaceous in summer, implying biological origin. These findings will contribute to an improved understanding of sources and characteristics of Arctic PBAP and their links to INP.

    Läs mer om Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic
  • From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties?

    2020. Dominic Heslin-Rees (et al.). Atmospheric Chemistry And Physics 20 (21), 13671-13686

    Artikel

    The study of long-term trends in aerosol optical properties is an important task to understand the underlying aerosol processes influencing the change of climate. The Arctic, as the place where climate change manifests most, is an especially sensitive region of the world. Within this work, we use a unique long-term data record of key aerosol optical properties from the Zeppelin Observatory, Svalbard, to ask the question of whether the environmental changes of the last 2 decades in the Arctic are reflected in the observations. We perform a trend analysis of the measured particle light scattering and backscattering coefficients and the derived scattering Angstrom exponent and hemispheric backscattering fraction. In contrast to previous studies, the effect of in-cloud scavenging and of potential sampling losses at the site are taken explicitly into account in the trend analysis. The analysis is combined with a back trajectory analysis and satellite-derived sea ice data to support the interpretation of the observed trends. We find that the optical properties of aerosol particles have undergone clear and significant changes in the past 2 decades. The scattering Angstrom exponent exhibits statistically significant decreasing of between -4.9 % yr(-1) and -6.5 % yr(-1) (using wavelengths of lambda = 450 and 550 nm), while the particle light scattering coefficient exhibits statistically significant increasing trends of between 2.6 % yr(-1) and 2.9 % yr(-1) (at a wavelength of lambda = 550 nm). The magnitudes of the trends vary depending on the season. These trends indicate a shift to an aerosol dominated more by coarse-mode particles, most likely the result of increases in the relative amount of sea spray aerosol. We show that changes in air mass circulation patterns, specifically an increase in air masses from the south-west, are responsible for the shift in aerosol optical properties, while the decrease of Arctic sea ice in the last 2 decades only had a marginal influence on the observed trends.

    Läs mer om From a polar to a marine environment
  • Sink, Source or Something In-Between? Net Effects of Precipitation on Aerosol Particle Populations

    2023. Théodore Khadir (et al.). Geophysical Research Letters 50 (19)

    Artikel

    Interactions between atmospheric aerosols, clouds, and precipitation impact Earth's radiative balance and air quality, yet remain poorly constrained. Precipitating clouds serve as major sinks for particulate matter, but recent studies suggest that precipitation may also act as a particle source. The magnitude of the sources versus sinks, particularly for cloud condensation nuclei (CCN) numbers, remain unquantified. This study analyzes multi-year in situ observations from tropical and boreal forests, as well as Arctic marine environment, showing links between recent precipitation and enhanced particle concentrations, including CCN-sized particles. In some cases, the magnitude of precipitation-related source equals or surpasses corresponding removal effect. Our findings highlight the importance of cloud-processed material in determining near-surface particle concentrations and the value of long-term in situ observations for understanding aerosol particle life cycle. Robust patterns emerge from sufficiently long data series, allowing for quantitative assessment of the large-scale significance of new phenomena observed in case studies.

    Läs mer om Sink, Source or Something In-Between? Net Effects of Precipitation on Aerosol Particle Populations

Visa alla publikationer av Dominic Wyndham Alfred Heslin-Rees vid Stockholms universitet