Stockholms universitet

Fernando JaramilloUniversitetslektor, Docent



I urval från Stockholms universitets publikationsdatabas

  • Distinctive Patterns of Water Level Change in Swedish Lakes Driven by Climate and Human Regulation

    2024. Saeid Aminjafari (et al.). Water resources research 60 (3)


    Despite having approximately 100,000 lakes, Sweden has limited continuous gauged lake water level data. Although satellite radar altimetry (RA) has emerged as a popular alternative to measure water levels in inland water bodies, it has not yet been used to understand the large-scale changes in Swedish lakes. Here, we quantify the changes in water levels in 144 lakes using RA data and in situ gauged measurements to examine the effects of flow regulation and hydroclimatic variability. We use data from several RA missions, including ERS-2, ENVISAT, JASON-1,2,3, SARAL, and Sentinel-3A/B. We found that during 1995–2022, around 52% of the lakes exhibited an increasing trend and 43% a decreasing trend. Most lakes exhibiting an increasing trend were in the north of Sweden, while most lakes showing a decreasing trend were in the south. Regarding the potential effects of regulation, we found that unregulated lakes had smaller trends in water level and dynamic storage than regulated ones. While the seasonal patterns of water levels in the lakes in the north are similar in regulated and unregulated lakes, in the south, they differ substantially. This study highlights the need to continuously monitor lake water levels for adaptation strategies in the face of climate change and understand the downstream effects of water regulatory schemes.

    Läs mer om Distinctive Patterns of Water Level Change in Swedish Lakes Driven by Climate and Human Regulation
  • Hydroclimatic Vulnerability of Wetlands to Upwind Land Use Changes

    2024. Simon Felix Fahrländer (et al.). Earth's Future 12 (3)


    Despite their importance, wetland ecosystems protected by the Ramsar Convention are under pressure from climate change and human activities. These drivers are altering water availability in these wetlands, changing water levels or surface water extent, in some cases, beyond historical variability. Attribution of the effects of human and climate activities is usually focused on changes within the wetlands or their upstream surface and groundwater inputs. However, the reliance of wetland water availability on upwind atmospheric moisture supply is less understood. Here, we assess the vulnerability of 40 Ramsar wetlands to precipitation changes caused by land use and hydroclimatic change occurring in their upwind moisture-supplying regions. We use moisture flows from a Lagrangian tracking model, atmospheric reanalysis data, and historical land use change (LUC) data to assess and quantify these changes. Our analyses show that historical LUC has decreased precipitation and terrestrial moisture recycling in most wetland hydrological basins, decreasing surface water availability (precipitation minus evaporation). The most substantial effects on wetland water availability occurred in the tropic subtropical regions of Central Europe and Asia. Overall, we found wetlands in Central Asia and South America to be the most vulnerable by a combination of LUC-driven effects on runoff, high terrestrial precipitation recycling, and recent decreases in surface water availability. This study stresses the need to incorporate upwind effects of land use changes in the restoration, management, and conservation of the world's wetlands.

    Läs mer om Hydroclimatic Vulnerability of Wetlands to Upwind Land Use Changes
  • Tracking Centimeter-Scale Water Level Changes in Swedish Lakes Using D-InSAR

    2024. Saeid Aminjafari (et al.). Water resources research 60 (2)


    Lakes are valuable water resources that support aquatic and terrestrial ecosystems and supply fresh water for the agricultural, industrial, and urban sectors worldwide. Although water levels should be tracked to monitor these services, conventional gauging is unfeasible in most lakes. This study applies Differential Interferometric Synthetic Aperture Radar (D-InSAR) to estimate small water level changes, less than 2 cm, in Swedish lakes over 6-day intervals. We validated the method across the shores of 30 Swedish lakes with gauged observations in 2019. We used Sentinel-1A/B images with a 6-day temporal separation to construct consecutive interferograms and accumulated the phase changes in pixels of high coherence to build a time series of water levels. We find that the accumulated phase change obtained by D-InSAR replicates the magnitude of water levels in seven lakes in Southern Sweden, where water levels change slowly, less than 2 cm per 6-day period, as validated by in-situ gauges. In addition, this study demonstrates the application of D-InSAR to estimate the long-term direction of water level change (i.e., increase or decrease) in all 30 lakes. This work reveals the utility of high temporal resolution water level observations in support of other satellite water level instruments such as conventional altimeters and the recently launched Surface Water and Ocean Topography Mission.

    Läs mer om Tracking Centimeter-Scale Water Level Changes in Swedish Lakes Using D-InSAR
  • Groundwater recharge is sensitive to changing long-term aridity

    2024. Wouter R. Berghuijs (et al.). Nature Climate Change 14, 357-363


    Sustainable groundwater use relies on adequate rates of groundwater recharge, which are expected to change with climate change. However, climate impacts on recharge remain uncertain due to a paucity of measurements of recharge trends globally. Here we leverage the relationship between climatic aridity and long-term recharge measurements at 5,237 locations globally to identify regions where recharge is most sensitive to changes in climatic aridity. Recharge is most sensitive to climate changes in regions where potential evapotranspiration slightly exceeds precipitation, meaning even modest aridification can substantially decrease groundwater recharge. Future climate-induced recharge changes are expected to be dominated by precipitation changes, whereby changes in groundwater recharge will be amplified relative to precipitation changes. Recharge is more sensitive to changes in aridity than global hydrological models suggest. Consequently, the effects of climatic changes on groundwater replenishment and their impacts on the sustainability of groundwater use by humans and ecosystems probably exceed previous predictions.

    Läs mer om Groundwater recharge is sensitive to changing long-term aridity
  • DEEPAQUA: Semantic segmentation of wetland water surfaces with SAR imagery using deep neural networks without manually annotated data

    2024. Francisco J. Peña (et al.). International Journal of Applied Earth Observation and Geoinformation 126


    Deep learning and remote sensing techniques have significantly advanced water surface monitoring; however, the need for annotated data remains a challenge. This is particularly problematic in wetland detection, where water extent varies over time and space, demanding multiple annotations for the same area. In this paper, we present DeepAqua, a deep learning model inspired by knowledge distillation (a.k.a. teacher–student model) to generate labeled data automatically and eliminate the need for manual annotations during the training phase. We utilize the Normalized Difference Water Index (NDWI) as a teacher model to train a Convolutional Neural Network (CNN) for segmenting water from Synthetic Aperture Radar (SAR) images. To train the student model, we exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces. DeepAqua represents a significant advancement in computer vision techniques for water detection by effectively training semantic segmentation models without any manually annotated data. Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 3%, Intersection Over Union by 11%, and F1-score by 6%. This approach offers a practical solution for monitoring wetland water extent changes without the need of ground truth data, making it highly adaptable and scalable for wetland monitoring.

    Läs mer om DEEPAQUA
  • Identifying the main factors driving groundwater stress in a semi-arid region, southern Iran

    2023. Mehri Tabarmayeh (et al.). Hydrological Sciences Journal 68 (6), 840-855


    Groundwater resources are the most reliable freshwater supply in arid regions where many aquifers face dramatic depletion due to natural and anthropogenic causes. The annual average rate of decline of groundwater level is about 1.65 m. This research focuses on an aquifer that suffers from severe groundwater stress, and it aims to identify the main causes of the stress and to understand the effects of climate change and human activity. Monthly data on groundwater level, precipitation, temperature, river discharge, evapotranspiration, soil moisture, and vegetation cover were collected from 2000 to 2020. The results indicate that declining groundwater levels mainly resulted from the expansion of vegetation cover rather than changes in hydro-climatic variables. Finally, this work highlights how significant financial investment in improving irrigation efficiency in the absence of socio-economic plans, education, awareness, and monitoring programmes unproductively resulted in the expansion of agricultural activities rather than preserving groundwater storage.

    Läs mer om Identifying the main factors driving groundwater stress in a semi-arid region, southern Iran
  • Water-Energy-Food integrated management model under Uncertainty-A case study of Yulin City

    2023. Jiaqi Sun (et al.). Journal of Hydrology 625


    Water, energy, and food are indispensable human survival and development resources. With the rapid development of the social economy, the systematic risk of water, energy, and food is becoming increasingly prominent. Water, energy, and food security are threatened to varying degrees. At the same time, water, energy, and food are interrelated, restricted, and interdependent. It is of great scientific significance to reveal and optimize the WEF (Water-Energy-Food) nexus. This study relied on Chance constrained programming and Fuzzy credibility constrained programming to deal with randomness and fuzziness in the WEF nexus. Meanwhile, based on Bi-level programming, aiming at minimizing water allocation and maximizing system benefits, a Water-Energy-Food Integrated Management Model to deal with multiple Uncertainties, called IMMU-WEF model was constructed. The model solved the critical effects of the randomness of water supply and the subjective fuzziness of water demand on water resources allocation, power generation, primary energy extraction, and food planting area. The results showed that the IMMU-WEF model could efficiently deal with the game between different departments in the resource management system, the random uncertainty expressed by probability density, and the fuzzy uncertainty caused by subjective factors. It can develop a stable management scheme for resource management. Applying the mode to Yulin City, China, it is found that water supply and demand fluctuation dramatically impacts on the WEF system benefit, water resources allocation, energy and food production. Specifically, the system benefit will increase over time, with a total benefit of 1974.04 × 108-1998.06 × 108 yuan (2021–2025), 3065.69 × 108-3100.50 × 108 yuan (2026–2030), and 4128.80 × 108-4191.07 × 108 yuan (2031–2035). Additionally, the system water allocation, primary energy extraction, power generation, and food planting are expected to increase over three time periods. With the increase of water supply in the future, the energy and food production in Yulin City show an increasing trend. It indicates that water shortage will continue to be a major problem in Yulin in the three periods, and that the city still needs to increase water supply and diversion projects to ensure energy security and food security. The results can provide an optimal management scheme for ensuring Yulin City’s water, energy, and food security.

    Läs mer om Water-Energy-Food integrated management model under Uncertainty-A case study of Yulin City
  • Compensating Effects Between Climate and Underlying Characteristics on Watershed Water Loss

    2023. Zhiyong Liu (et al.). Journal of Geophysical Research - Atmospheres 128 (6)


    Identifying climate impacts on watershed water loss (evapotranspiration) generally involves the interactions with land surface change (e.g., vegetation dynamics and anthropogenic disturbances). Here, we seek to understand the compensating effects of climate and underlying characteristics on watershed evapotranspiration. In this regard, an analytical solution was derived by using a simple water-energy partitioning framework for separating the individual contributions of climate and underlying characteristics to changes in watershed actual evapotranspiration between 1930-1970 and 1971-2008 over global 87 basins. We found that for the basins with larger increases in the total evapotranspiration, a positive underlying characteristic-related contribution is dominant, rather than the climate-related contribution. Tradeoffs (i.e., the compensating effects) between the contributions of climate and underlying characteristics to evaporative water loss were also identified in a few basins where there were relatively large changes in the underlying characteristic-related evapotranspiration but only a slight change in the total evapotranspiration. This suggests that the climate contribution in evapotranspiration may offset the effect of underlying characteristic-related changes over these basins, associated with stronger hydrological resilience under the double impacts of both climate and underlying factors. The results also indicate that the underlying characteristics exert greater contributions to the changes in the total evapotranspiration rather than the climate variation, and the underlying characteristic-related evapotranspiration variations are closely related to the changes in reservoirs and land-use types of the basins. The presented findings may provide an insightful understanding of interactions among climate, water, and underlying characteristics over global basins.

    Läs mer om Compensating Effects Between Climate and Underlying Characteristics on Watershed Water Loss
  • A planetary boundary for green water

    2022. Lan Wang-Erlandsson (et al.). Nature Reviews Earth & Environment 3 (6), 380-392


    Green water — terrestrial precipitation, evaporation and soil moisture — is fundamental to Earth system dynamics and is now extensively perturbed by human pressures at continental to planetary scales. However, green water lacks explicit consideration in the existing planetary boundaries framework that demarcates a global safe operating space for humanity. In this Perspective, we propose a green water planetary boundary and estimate its current status. The green water planetary boundary can be represented by the percentage of ice-free land area on which root-zone soil moisture deviates from Holocene variability for any month of the year. Provisional estimates of departures from Holocene-like conditions, alongside evidence of widespread deterioration in Earth system functioning, indicate that the green water planetary boundary is already transgressed. Moving forward, research needs to address and account for the role of root-zone soil moisture for Earth system resilience in view of ecohydrological, hydroclimatic and sociohydrological interactions.

    Läs mer om A planetary boundary for green water
  • Causes and consequences of recent degradation of the Magdalena River basin, Colombia

    2022. Jorge Salgado (et al.). Limnology and Oceanography Letters


    The Magdalena River in Colombia is one of the world's largest (discharge = 7100 m3 s−1) tropical rivers, hosting > 170 aquatic vertebrate species. However, concise synthesis of the current ecological and environmental status is lacking. By documenting the anthropogenic stressors impacting the river on time scales ranging from centuries to decades, we found that the river system is subject to the compounding impacts of climate change, river impoundment, invasive alien species (IAS), catchment deforestation, and water pollution. We show that the Magdalena is a woefully understudied ecosystem relative to its critical importance to Colombia's economy, culture, and biodiversity compared with other similarly sized tropical rivers. We emphasize the need for research on (1) IAS population and ecological dynamics, (2) river damming and its links with IAS and climate change, and (3) land-use changes as well as identifying sources of water pollution and strategies for mitigation. 

    Läs mer om Causes and consequences of recent degradation of the Magdalena River basin, Colombia
  • Investing in sustainable intensification for smallholders: quantifying large-scale costs and benefits in Uganda

    2022. Luigi Piemontese (et al.). Environmental Research Letters 17 (4)


    In Uganda, upgrading smallholder agriculture is a necessary step to achieve the interlinked sustainable development goals of hunger eradication, poverty reduction and land degradation neutrality. However, targeting the right restoration practices and estimate their cost-benefit at the national scale is difficult given the highly contextual nature of restoration practices and the diversity of small-scale interventions to be adopted. By analysing the context-specific outcomes of 82 successful case studies on different sustainable land and water management (SLWM) in Uganda, we estimated that out-scaling of existing successful practices to 75% of agricultural land would require a one-time investment of US$ 4.4 billion from smallholders. Our results show that, besides the many social and environmental benefit commonly associated to SLWM, a wide outscale of SLWM could generate US$ 4.7 billion every year, once the practices are fully operational. Our context-specific estimates highlight the profitability of investing in smallholder farming to achieve the sustainable development goals in Uganda, with geographical differences coming from specific social-ecological conditions. This study can guide sustainable intensification development by targeting the most suitable SLWM practices and plan for adequate financial support from government, investors and international development aids to smallholder farming.

    Läs mer om Investing in sustainable intensification for smallholders
  • Nordic hydrological frontier in the 21st century

    2022. H. Marttila (et al.). Hydrology Research 53 (5), 700-715


    The 21st century has brought new challenges and opportunities and has also increased demands on the Nordic hydrological community. Our hydrological science focus and approaches need rethinking and adaptation to the changing requirements of society in response to climate change and human interventions, in search of more comprehensive and cross-disciplinary solutions. This commentary highlights new possibilities and suggests vital steps forward for the scientific discipline within Nordic hydrological research. By providing a common direction, we hope to increase awareness, accelerate progress in the hydrological community, and emphasize the importance of hydrological knowledge for serving other fields of science and society at large. We hope that our vision and the opportunities we identify will raise awareness of the scientific discipline and assist in the long-term development of the Nordic hydrological frontier in the 21st century.

    Läs mer om Nordic hydrological frontier in the 21st century
  • Retrieval of Simultaneous Water-Level Changes in Small Lakes With InSAR

    2022. S. Palomino-Ángel (et al.). Geophysical Research Letters 49 (2)


    Monitoring water level changes is necessary to manage, conserve and restore natural, and anthropogenic lake systems. However, the in-situ monitoring of lake systems is unfeasible due to limitations of costs and access. Furthermore, current remote sensing methods are restricted to large lakes and low spatial resolutions. We develop a novel approach using subsequential pixel-wise observations of the Sentinel-1B sensor based on interferometric synthetic aperture radar to detect water level changes in small lakes. We used 24 small ungauged lakes of the Cajas Massif lake system in Ecuador for development and validation. We found Differential Interferometric Synthetic Aperture Radar (DInSAR)-derived water level changes across lakes to be consistent with precipitation, capturing the peak of the wet seasons. Furthermore, accumulated water level changes could be explained by differences in lake area among lakes. Although with limitations, this study shows the underutilized potential of DInSAR to understand water level changes in small lakes with current radar data availability.

    Läs mer om Retrieval of Simultaneous Water-Level Changes in Small Lakes With InSAR
  • Fewer Basins Will Follow Their Budyko Curves Under Global Warming and Fossil-Fueled Development

    2022. Fernando Jaramillo (et al.). Water resources research 58 (8)


    The Budyko framework consists of a curvilinear relationship between the evaporative ratio (i.e., actual evaporation over precipitation) and the aridity index (i.e., potential evaporation over precipitation) and defines evaporation's water and energy limits. A basin's movement within the Budyko space illustrates its hydroclimatic change and helps identify the main drivers of change. On the one hand, long-term aridity changes drive evaporative ratio changes, moving basins along their Budyko curves. On the other hand, historical human development can cause river basins to deviate from their curves. The question is if basins will deviate or follow their Budyko curves under the future effects of global warming and related human developments. To answer this, we quantify the movement in the Budyko space of 405 river basins from 1901-1950 to 2051-2100 based on the outputs of seven models from the Coupled Model Intercomparison Project - Phase 6 (CMIP6). We account for the implications of using different potential evaporation models and study low- and high-emissions scenarios. We find considerable differences of movement in Budyko space regarding direction and intensity when using the two estimates of potential evaporation. However, regardless of the potential evaporation estimate and the scenario used, most river basins will not follow their reference Budyko curves (>72%). Furthermore, the number of basins not following their curves increases under high greenhouse gas emissions and fossil-fueled development SP585 and across dry and wet basin groups. We elaborate on the possible explanations for a large number of basins not following their Budyko curves.

    Läs mer om Fewer Basins Will Follow Their Budyko Curves Under Global Warming and Fossil-Fueled Development
  • Scaling relations reveal global and regional differences in morphometry of reservoirs and natural lakes

    2022. Ylva Sjöberg (et al.). Science of the Total Environment 822


    Water bodies provide essential ecosystem services linked to morphometric features that might differ between natural lakes and reservoirs. We use the HydroLAKES global dataset to quantitatively compare large (area > 1 km2) reservoirs and natural lakes in terms of scaling exponents between morphometric measures (volume, area, shore length). These exponents are further compared to those expected from geometrical assumptions and constraints. Lakes cover a larger range of volumes for the same range of surface areas than reservoirs, and have a larger volume-area scaling exponent. The volume-area scaling exponent for reservoirs (but not natural lakes) and the area-shore length exponent for all water bodies follow the predictions for self-affine surfaces. Land cover and terrain influence the scaling relations more for lakes than for reservoirs. These morphometric differences may be used to model the impact of reservoirs and lakes on hydrological processes and associated ecosystem services at regional to global scales.

    Läs mer om Scaling relations reveal global and regional differences in morphometry of reservoirs and natural lakes
  • An Earth system law perspective on governing social-hydrological systems in the Anthropocene

    2021. Hanna Ahlström (et al.). Earth System Governance 10


    The global hydrological cycle is characterized by complex interdependencies and self-regulating feedbacks that keep water in an ever-evolving state of flux at local, regional, and global levels. Increasingly, the scale of human impacts in the Anthropocene is altering the dynamics of this cycle, which presents additional challenges for water governance. Earth system law provides an important approach for addressing gaps in governance that arise from the mismatch between the global hydrological cycle and dispersed regulatory architecture across institutions and geographic regions. In this article, we articulate the potential for Earth system law to account for core hydrological problems that complicate water governance, including delay, redistribution, intertwinements, permanence, and scale. Through merging concepts from Earth system law with existing policy and legal principles, we frame an approach for addressing hydrological problems in the Anthropocene and strengthening institutional fit between established governance systems and the global hydrological cycle. We discuss how such an approach can be applied, and the challenges and implications for governing water as a cycle and complex social-hydrological system, both in research and practice.

    Läs mer om An Earth system law perspective on governing social-hydrological systems in the Anthropocene
  • Barriers to scaling sustainable land and water management in Uganda: a cross-scale archetype approach

    2021. Luigi Piemontese (et al.). Ecology & Society 26 (3)


    In African small-scale agriculture, sustainable land and water management (SLWM) is key to improving food production while coping with climate change. However, the rate of SLWM adoption remains low, suggesting a gap between generalized SLWM advantages for rural development across the literature, and the existence of context-dependent barriers to its effective implementation. Uganda is an example of this paradox: the SLWM adoption rate is low despite favorable ecological conditions for agriculture development and a large rural population. A systemic understanding of the barriers hindering the adoption of SLWM is therefore crucial to developing coherent policy interventions and enabling effective funding strategies. Here, we propose a cross-scale archetype approach to identify and link barriers to SLWM adoption in Uganda. We performed 80 interviews across the country to build cognitive archetypes, harvesting stakeholders’ perceptions of different types of barriers. We complemented this bottom-up perspective with a spatial archetype analysis to contextualize these results across different social-ecological regions. We found poverty trap, overpopulation, risk aversion, remoteness, and post-conflict patriarchal systems as cognitive archetypes that synthesize the different dynamics of barriers to SLWM adoption in Uganda. Our results reveal both specific and cross-cutting barriers. Ineffective extension services emerges as a ubiquitous barrier, whereas gender inequality is a priority barrier for large supported farms and farms in drier lowlands in northern Uganda. The combination of cognitive and spatial archetypes proposed here can help to overcome ineffective “one-size-fits-all” solutions and support context-specific policy plans to scale up SLWM, rationing resources to support sustainable intensification of agriculture.

    Läs mer om Barriers to scaling sustainable land and water management in Uganda
  • Drivers and extent of surface water occurrence in the Selenga River Delta, Russia

    2021. Saeid Aminjafari (et al.). Journal of Hydrology 38


    Study region: Selenga River Delta (SRD), Russia.

    Study focus: How is water occurrence changing in the SRD, and what are the hydroclimatic drivers behind these changes? The presence of water on the surface in river deltas is governed by land use, geomorphology, and the flux of water to and from the Delta. We trained an accurate image classification of the Landsat satellite imagery during the last 33 years to quantify surface water occurrence and its changes in the SRD. After comparing our estimations with global-scale data sets, we determined the hydrological drivers of these changes.

    New hydrological insights for the region: We find mild decreases in water occurrence in 51% of the SRD's surface area from 1987-2002 to 2003-2020. Water occurrence in the most affected areas decreased by 20% and in the most water-gaining areas increased by 10%. We find a significant relationship between water occurrence and runoff (R-2 = 0.56) that does not exist between water occurrence and suspended sediment concentration (SSC), Lake Baikal's water level, and potential evapotranspiration. The time series of water occurrence follows the peaks in the runoff but not its long-term trend. However, the extremes in SSC do not influence surface water occurrence (R-2 < 0.1), although their long-term trends are similar. Contrary to expected, we find that the Delta has a relatively stable long-term water availability for the time being.

    Läs mer om Drivers and extent of surface water occurrence in the Selenga River Delta, Russia
  • Exploring the influence of reservoir impoundment on surrounding tree growth

    2021. Lian Sun (et al.). Advances in Water Resources 153


    At the local scale, artificial impounded reservoirs in dry regions exert influence on the surrounding local climate. Impounded reservoirs have been found to alter precipitation patterns and increase temperature, specific humidity and surface evaporation. The consequences of impoundment or its related climatic changes on the surrounding vegetation are still not well understood. We here examined the potential effect on surrounding tree growth of the impoundment of the Ertan Reservoir, China, in 1998. We measured Yunnan pine tree rings at three sites on a slope close to the reservoir and two control sites far away from the reservoir. We compared the annual radial growth of tree rings at all sites with air temperature, precipitation and air humidity in the region. We also used cumulative distribution functions to quantify the probability of attributing radial growth changes to background climate variability. We find an enhancement of tree growth from 2000 to 2002, right after the reservoir's impounding in experimental and control sites. Hence, the tree growth can initially be explained by favourable conditions benefiting tree growth. However, we cannot entirely attribute such enhancement to the background climate variability when studying the relationship between tree growth and climatic variables over the 36 years and their probability of occurrence. Tree growth in the three years following impoundment can only be attributed to the simultaneous effect of favourable regional climate conditions and the reservoir's impoundment in itself. These conditions decrease vegetation stress by decreasing air temperature and increasing air relative humidity. Although the findings of this study shed more light on the environmental and climatic changes induced by the impoundment of reservoirs, they also call for the need of monitoring climatic variables in the vicinity of reservoirs.

    Läs mer om Exploring the influence of reservoir impoundment on surrounding tree growth
  • Hydro-climatic changes of wetlandscapes across the world

    2021. Imenne Åhlen (et al.). Scientific Reports 11 (1)


    Assessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976–2015 in 25 wetlandscapes distributed across the world’s tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world’s land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes.

    Läs mer om Hydro-climatic changes of wetlandscapes across the world
  • Multi-Sensor InSAR Assessment of Ground Deformations around Lake Mead and Its Relation to Water Level Changes

    2021. Mehdi Darvishi (et al.). Remote Sensing 13 (3)


    Changes in subsurface water resources might alter the surrounding ground by generating subsidence or uplift, depending on geological and hydrogeological site characteristics. Improved understanding of the relationships between surface water storage and ground deformation is important for design and maintenance of hydraulic facilities and ground stability. Here, we construct one of the longest series of Interferometric Synthetic Aperture Radar (InSAR) to date, over twenty-five years, to study the relationships between water level changes and ground surface deformation in the surroundings of Lake Mead, United States, and at the site of the Hoover Dam. We use the Small Baseline Subset (SBAS) and Permanent scatterer interferometry (PSI) techniques over 177 SAR data, encompassing different SAR sensors including ERS1/2, Envisat, ALOS (PALSAR), and Sentinel-1(S1). We perform a cross-sensor examination of the relationship between water level changes and ground displacement. We found a negative relationship between water level change and ground deformation around the reservoir that was consistent across all sensors. The negative relationship was evident from the long-term changes in water level and deformation occurring from 1995 to 2014, and also from the intra-annual oscillations of the later period, 2014 to 2019, both around the reservoir and at the dam. These results suggest an elastic response of the ground surface to changes in water storage in the reservoir, both at the dam site and around the reservoir. Our study illustrates how InSAR-derived ground deformations can be consistent in time across sensors, showing the potential of detecting longer time-series of ground deformation. 

    Läs mer om Multi-Sensor InSAR Assessment of Ground Deformations around Lake Mead and Its Relation to Water Level Changes
  • Water footprint and consumption of hydropower from basin-constrained water mass balance

    2021. Lian Sun (et al.). Advances in Water Resources 153


    Water management by the impoundment of reservoirs has been found to influence evapotranspiration not only locally but also at the basin scale. Highly regulated hydrological basins generally show the effect of a net increase in evapotranspiration accompanying the successive impoundment of reservoirs. However, understanding and isolating the effect from a particular single impounded reservoir remains a challenge due to the lack of long-term observation data required and the existence of many other drivers present at the basin scale. Focusing on the hydrological basin having the largest hydropower potential in China, we isolated in time and space and quantified the effects of a single impounded reservoir on evapotranspiration and the evaporative ratio (i.e., the ratio of actual evapotranspiration to precipitation) before and after the construction of the Ertan Dam in 1998. We find that the dam has increased evapotranspiration in the smallest subbasin by 46±15 mm/yr and the evaporative ratio by 0.05±0.015, from the period before impoundment (1983-1997) to that after impoundment (2000-2012). This increase is found only within the smallest differential subbasin holding the impounded reservoir and cannot be explained by other changes in land use or vegetation. We use this result from our hydrological basin-constrained approach to calculate the water footprint of the hydroelectric project as 16.5 m3/GJ, which accounts for additional hydroclimatic effects of the impoundment of the reservoir beyond the water surface. Hence, this study finds that when runoff data is available, the water consumption and the water footprint of hydropower projects can be calculated by water mass balance at the scale of their hydrological basins.

    Läs mer om Water footprint and consumption of hydropower from basin-constrained water mass balance
  • Data for wetlandscapes and their changes around the world

    2020. Navid Ghajarnia (et al.). Earth System Science Data 12 (2), 1083-1100


    Geography and associated hydrological, hydroclimate and land-use conditions and their changes determine the states and dynamics of wetlands and their ecosystem services. The influences of these controls are not limited to just the local scale of each individual wetland but extend over larger landscape areas that integrate multiple wetlands and their total hydrological catchment - the wetlandscape. However, the data and knowledge of conditions and changes over entire wetlandscapes are still scarce, limiting the capacity to accurately understand and manage critical wetland ecosystems and their services under global change. We present a new Wetlandscape Change Information Database (WetCID), consisting of geographic, hydrological, hydroclimate and land-use information and data for 27 wetlandscapes around the world. This combines survey-based local information with geographic shapefiles and gridded datasets of large-scale hydroclimate and land-use conditions and their changes over whole wetlandscapes. Temporally, WetCID contains 30-year time series of data for mean monthly precipitation and temperature and annual land-use conditions. The survey-based site information includes local knowledge on the wetlands, hydrology, hydroclimate and land uses within each wetlandscape and on the availability and accessibility of associated local data. This novel database (available through PANGAEA; Ghajarnia et al., 2019) can support site assessments; cross-regional comparisons; and scenario analyses of the roles and impacts of land use, hydroclimatic and wetland conditions, and changes in whole-wetlandscape functions and ecosystem services.

    Läs mer om Data for wetlandscapes and their changes around the world
  • Estimating the global potential of water harvesting from successful case studies

    2020. Luigi Piemontese (et al.). Global Environmental Change 63


    Water harvesting has been widely applied in different social-ecological contexts, proving to be a valuable approach to sustainable intensification of agriculture. Global estimates of the potential of water harvesting are generally based on purely biophysical assessments and mostly neglect the socioeconomic dimension of agriculture. This neglect becomes a critical factor for the feasibility and effectiveness of policy and funding efforts to mainstream this practice. This study uses archetype analysis to systematically identify social-ecological regions worldwide based on >160 successful cases of local water harvesting implementation. We delineate six archetypal regions which capture the specific social-ecological conditions of the case studies. The archetypes cover 19% of current global croplands with hotspots in large portions of East Africa and Southeast Asia. We estimate that the adoption of water harvesting in these cropland areas can increase crop production up to 60–100% in Uganda, Burundi, Tanzania and India. The results of this study can complement conventional biophysical analysis on the potential of these practices and guide policy development at global and regional scales. The methodological approach can be also replicated at finer scales to guide the improvement of rainfed agricultural.

    Läs mer om Estimating the global potential of water harvesting from successful case studies
  • Future Climate Change Renders Unsuitable Conditions for Paramo Ecosystems in Colombia

    2020. Matilda Cresso (et al.). Sustainability 12 (20)


    Paramo ecosystems are tropical alpine grasslands, located above 3000 m.a.s.l. in the Andean mountain range. Their unique vegetation and soil characteristics, in combination with low temperature and abundant precipitation, create the most advantageous conditions for regulating and storing surface and groundwater. However, increasing temperatures and changing patterns of precipitation due to greenhouse-gas-emission climate change are threatening these fragile environments. In this study, we used regional observations and downscaled data for precipitation and minimum and maximum temperature during the reference period 1960-1990 and simulations for the future period 2041-2060 to study the present and future extents of paramo ecosystems in the Chingaza National Park (CNP), nearby Colombia's capital city, Bogota. The historical data were used for establishing upper and lower precipitation and temperature boundaries to determine the locations where paramo ecosystems currently thrive. Our results found that increasing mean monthly temperatures and changing precipitation will render 39 to 52% of the current paramo extent in CNP unsuitable for these ecosystems during the dry season, and 13 to 34% during the wet season. The greatest loss of paramo area will occur during the dry season and for the representative concentration pathway (RCP) scenario 8.5, when both temperature and precipitation boundaries are more prone to be exceeded. Although our initial estimates show the future impact on paramos and the water security of Bogota due to climate change, complex internal and external interactions in paramo ecosystems make it essential to study other influencing climatic parameters (e.g., soil, topography, wind, etc.) apart from temperature and precipitation.

    Läs mer om Future Climate Change Renders Unsuitable Conditions for Paramo Ecosystems in Colombia
  • Hydro-climatic controls explain variations in catchment-scale nitrogen use efficiency

    2020. Anna Scaini (et al.). Environmental Research Letters 15 (9)


    The efficiency of fertilizer conversion to harvestable products is often low in annual crops such that large amounts of nutrients are lost from fields with negative consequences for the environment. Focusing on nitrogen (N) use efficiency (NUE: the ratio of N in harvested products over the sum of all N inputs), we propose that hydrological controls can explain variations in NUE, because water mediates both the uptake of N by plants and N leaching. We assess these controls at the catchment scale, at which the water balance can be constrained by precipitation and runoff data and NUE can be quantified with census data. With this approach we test the hypotheses that a higher evaporative ratio (ET/P: the ratio of evapotranspiration over precipitation) increases N retention, thereby increasing NUE both across catchments at a given time and through time. With data from 73 catchments in the United States, encompassing a wide range of pedoclimatic conditions for the period 1988-2007, we apply a linear mixed effect model to test the effect of ET/P on NUE. Supporting our hypotheses, ET/P was positively related to NUE, and NUE increased through time. Moreover, we found an interaction between ET/P and time, such that the ET/P effect on NUE decreased in the period 1998-2007. We conclude that climatic changes that increase ET/P without negatively affecting yields, will increase N retention in the examined catchments.

    Läs mer om Hydro-climatic controls explain variations in catchment-scale nitrogen use efficiency
  • Hydroclimatic Effects of a Hydropower Reservoir in a Tropical Hydrological Basin

    2020. David Zamora, Erasmo Rodríguez, Fernando Jaramillo. Sustainability 12 (17)


    The consequent change in land cover from vegetation to water surface after inundation is the most obvious impact attributed to the impoundment of reservoirs and dam construction. However, river regulation also alters the magnitude and variability of water and energy fluxes and local climatic parameters. Studies in Mediterranean, temperate and boreal hydrological basins, and even a global-scale study, have found a simultaneous decrease in the variation of runoff and increase in the mean evaporative ratio after impoundment. The aim here is to study the existence of these effects on a regulated tropical basin in Colombia with long-term data, as such studies in tropical regions are scarce. As expected, we observed a decrease in the long-term coefficient of variation of runoff of 33% that can be attributed to the impoundment of the reservoir. However, we did not find important changes in precipitation or the expected increasing evaporative ratio-effect from the impoundment of the reservoir, founding for the latter rather a decrease. This may be due to the humid conditions of the region where actual evapotranspiration is already close to its potential or to other land cover changes that decrease evapotranspiration during the studied period. Our study shows that the effects from impounded reservoirs in tropical regulated basins may differ from those found in other climatic regions.

    Läs mer om Hydroclimatic Effects of a Hydropower Reservoir in a Tropical Hydrological Basin
  • Illuminating water cycle modifications and Earth system resilience in the Anthropocene

    2020. Tom Gleeson (et al.). Water resources research 56 (4)


    Fresh water—the bloodstream of the biosphere—is at the center of the planetary drama of the Anthropocene. Water fluxes and stores regulate the Earth's climate and are essential for thriving aquatic and terrestrial ecosystems, as well as water, food, and energy security. But the water cycle is also being modified by humans at an unprecedented scale and rate. A holistic understanding of freshwater's role for Earth system resilience and the detection and monitoring of anthropogenic water cycle modifications across scales is urgent, yet existing methods and frameworks are not well suited for this. In this paper we highlight four core Earth system functions of water (hydroclimatic regulation, hydroecological regulation, storage, and transport) and key related processes. Building on systems and resilience theory, we review the evidence of regional‐scale regime shifts and disruptions of the Earth system functions of water. We then propose a framework for detecting, monitoring, and establishing safe limits to water cycle modifications and identify four possible spatially explicit methods for their quantification. In sum, this paper presents an ambitious scientific and policy grand challenge that could substantially improve our understanding of the role of water in the Earth system and cross‐scale management of water cycle modifications that would be a complementary approach to existing water management tools.

    Läs mer om Illuminating water cycle modifications and Earth system resilience in the Anthropocene
  • Integrating the Water Planetary Boundary With Water Management From Local to Global Scales

    2020. Samuel C. Zipper (et al.). Earth's future 8 (2)


    The planetary boundaries framework defines the safe operating space for humanity represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross-scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.g., watershed or aquifer), political borders (e.g., city, nation, or group of nations), or commercial entities (e.g., corporation, trade group, or financial institution). The application of the water planetary boundary at these subglobal contexts occurs via two approaches: (i) calculating fair shares, in which local water cycle modifications are compared to that context's allocation of the global safe operating space, taking into account biophysical, socioeconomic, and ethical considerations; and (ii) defining a local safe operating space, in which interactions between water stores and Earth System components are used to define local boundaries required for sustaining the local water system in stable conditions, which we demonstrate with a case study of the Cienaga Grande de Santa Marta wetlands in Colombia. By harmonizing these two approaches, the water planetary boundary can ensure that water cycle modifications remain within both local and global boundaries and complement existing water management and governance approaches.

    Läs mer om Integrating the Water Planetary Boundary With Water Management From Local to Global Scales
  • Radial Growth Responses to Climate of Pinus yunnanensis at Low Elevations of the Hengduan Mountains, China

    2020. Lian Sun (et al.). Forests 11 (10)


    The relationship between climate and forest is critical to understanding the influence of future climate change on terrestrial ecosystems. Research on trees at high elevations has uncovered the relationship in the Hengduan Mountains region, a critical biodiversity hotspot area in southwestern China. The relationship for the area at low elevations below 2800 m a.s.l. in the region remains unclear. In this study, we developed tree ring width chronologies of Pinus yunnanensis Franch. at five sites with elevations of 1170–1725 m in this area. Monthly precipitation, relative humidity, maximum/mean/minimum air temperature and the standardized precipitation evapotranspiration index (SPEI), a drought indicator with a multi-timescale, were used to investigate the radial growth-climate relationship. Results show that the growth of P. yunnanensis at different sites has a similar response pattern to climate variation. Relative humidity, precipitation, and air temperature in the dry season, especially in its last month (May), are critical to the radial growth of trees. Supplemental precipitation amounts and reduced mean or maximum air temperature can promote tree growth. The high correlations between chronologies and SPEI indicate that the radial growth of trees at the low elevations of the region is significantly limited by the moisture availability. Precipitation in the last month of the previous wet season determines the drought regime in the following dry seasons. In spite of some differences in the magnitudes of correlations in the low-elevation area of the Hengduan Mountains region, chronologies generally matched well with each other at different elevations, and the differences are not evident with the change in elevation.

    Läs mer om Radial Growth Responses to Climate of Pinus yunnanensis at Low Elevations of the Hengduan Mountains, China
  • Using InSAR to identify hydrological connectivity and barriers in a highly fragmented wetland

    2020. Dan Liu (et al.). Hydrological Processes 34 (23), 4417-4430


    Hydrological connectivity is a critical determinant of wetland functions and health, especially in wetlands that have been heavily fragmented and regulated by human activities. However, investigating hydrological connectivity in these wetlands is challenging due to the costs of high-resolution and large-scale monitoring required in order to identify hydrological barriers within the wetlands. To overcome this challenge, we here propose an interferometric synthetic aperture radar (InSAR)-based methodology to map hydrologic connectivity and identify hydrological barriers in fragmented wetlands. This methodology was applied along 70 transects across the Baiyangdian, the largest freshwater wetland in northern China, using Sentinel 1A and 1B data, covering the period 2016-2019. We generated 58 interferograms providing information on relative water level changes across the transects that showed the high coherence needed for the assessment of hydrological connectivity. We mapped the permanent and conditional (temporary) barriers affecting connectivity. In total, 11% of all transects are permanently disconnected by hydrological barriers across all interferograms and 58% of the transects are conditionally disconnected. Areas covered by reed grasslands show the most undisturbed hydrological connectivity while some of these barriers are the result of ditches and channels within the wetland and low water levels during different periods of the year. This study highlights the potential of the application of Wetland InSAR to determine hydrological connectivity and location of hydrological barriers in highly fragmented wetlands, and facilitates the study of hydrological processes from large spatial scales and long-time scales using remote sensing technique.

    Läs mer om Using InSAR to identify hydrological connectivity and barriers in a highly fragmented wetland

Visa alla publikationer av Fernando Jaramillo vid Stockholms universitet