Profiles

Henrik Nordström

Doktorand

View page in English
Arbetar vid Psykologiska institutionen
Telefon 08-16 48 04
E-post henrik.nordstrom@psychology.su.se
Besöksadress Frescati hagväg 9A
Rum 213
Postadress Psykologiska institutionen 106 91 Stockholm

Publikationer

I urval från Stockholms universitets publikationsdatabas
  • 2014. Jesper J. Alvarsson (et al.). Journal of the Acoustical Society of America 135 (6), 3455-3462

    Studies of effects on speech intelligibility from aircraft noise in outdoor places are currently lacking. To explore these effects, first-order ambisonic recordings of aircraft noise were reproduced outdoors in a pergola. The average background level was 47 dB L-Aeq. Lists of phonetically balanced words (L-ASmax,L- word = 54 dB) were reproduced simultaneously with aircraft passage noise (L-ASmax,L- noise = 72-84 dB). Twenty individually tested listeners wrote down each presented word while seated in the pergola. The main results were (i) aircraft noise negatively affects speech intelligibility at sound pressure levels that exceed those of the speech sound (signal-to-noise ratio, S/N < 0), and (ii) the simple A-weighted S/N ratio was nearly as good an indicator of speech intelligibility as were two more advanced models, the Speech Intelligibility Index and Glasberg and Moore's [J. Audio Eng. Soc. 53, 906-918 (2005)] partial loudness model. This suggests that any of these indicators is applicable for predicting effects of aircraft noise on speech intelligibility outdoors.

  • 2013. Petri Laukka (et al.). Frontiers in Psychology 4, 353

    Which emotions are associated with universally recognized non-verbal signals? We address this issue by examining how reliably non-linguistic vocalizations (affect bursts) can convey emotions across cultures. Actors from India, Kenya, Singapore, and USA were instructed to produce vocalizations that would convey nine positive and nine negative emotions to listeners. The vocalizations were judged by Swedish listeners using a within-valence forced-choice procedure, where positive and negative emotions were judged in separate experiments. Results showed that listeners could recognize a wide range of positive and negative emotions with accuracy above chance. For positive emotions, we observed the highest recognition rates for relief, followed by lust, interest, serenity and positive surprise, with affection and pride receiving the lowest recognition rates. Anger, disgust, fear, sadness, and negative surprise received the highest recognition rates for negative emotions, with the lowest rates observed for guilt and shame. By way of summary, results showed that the voice can reveal both basic emotions and several positive emotions other than happiness across cultures, but self-conscious emotions such as guilt, pride, and shame seem not to be well recognized from non-linguistic vocalizations.

  • 2012. Henrik Nordström, Stefan Wiens. BMC neuroscience (Online) 13, 49

    Background: In research on event-related potentials (ERP) to emotional pictures, greater attention to emotional than neutral stimuli (i.e., motivated attention) is commonly indexed by two difference waves between emotional and neutral stimuli: the early posterior negativity (EPN) and the late positive potential (LPP). Evidence suggests that if attention is directed away from the pictures, then the emotional effects on EPN and LPP are eliminated. However, a few studies have found residual, emotional effects on EPN and LPP. In these studies, pictures were shown at fixation, and picture composition was that of simple figures rather than that of complex scenes. Because figures elicit larger LPP than do scenes, figures might capture and hold attention more strongly than do scenes. Here, we showed negative and neutral pictures of figures and scenes and tested first, whether emotional effects are larger to figures than scenes for both EPN and LPP, and second, whether emotional effects on EPN and LPP are reduced less for unattended figures than scenes.

    Results: Emotional effects on EPN and LPP were larger for figures than scenes. When pictures were unattended, emotional effects on EPN increased for scenes but tended to decrease for figures, whereas emotional effects on LPP decreased similarly for figures and scenes.

    Conclusions: Emotional effects on EPN and LPP were larger for figures than scenes, but these effects did not resist manipulations of attention more strongly for figures than scenes. These findings imply that the emotional content captures attention more strongly for figures than scenes, but that the emotional content does not hold attention more strongly for figures than scenes.

Visa alla publikationer av Henrik Nordström vid Stockholms universitet

Senast uppdaterad: 22 februari 2018

Bokmärk och dela Tipsa