Profiles

Jonas Bengtsson

Forskare

View page in English
Arbetar vid Zoologiska institutionen
E-post jonas.bengtsson@zoologi.su.se
Besöksadress Svante Arrheniusväg 18 B
Rum D419
Postadress Zoologiska institutionen: Funktionell zoomorfologi 106 91 Stockholm

Publikationer

I urval från Stockholms universitets publikationsdatabas
  • 2017. Alberto Maria Cattaneo (et al.). Scientific Reports 7

    Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptors (ORs) CpomOR1, CpomOR3 and CpomOR6a, which belong to the pheromone receptor (PR) lineage, and the co-receptor (CpomOrco). Using heterologous expression, in both Drosophila olfactory sensory neurones and in human embryonic kidney cells, together with electrophysiological recordings and calcium imaging, we characterize the basic physiological and pharmacological properties of these receptors and demonstrate that they form functional ionotropic receptor channels. Both the homomeric CpomOrco and heteromeric CpomOrco + OR complexes can be activated by the common Orco agonists VUAA1 and VUAA3, as well as inhibited by the common Orco antagonists amiloride derivatives. CpomOR3 responds to the plant volatile compound pear ester ethyl-(E, Z)-2,4-decadienoate, while CpomOR6a responds to the strong pheromone antagonist codlemone acetate (E, E)-8,10-dodecadien-1-yl acetate. These findings represent important breakthroughs in the deorphanization of codling moth pheromone receptors, as well as more broadly into insect ecology and evolution and, consequently, for the development of sustainable pest control strategies based on manipulating chemosensory communication.

  • 2016. Merid N. Getahun (et al.). International Journal of Tropical Insect Science 36 (1), 1-9

    Sustainable pest management requires the use of ecosystem-friendly control options (e.g. entomopathogens) coupled with target-specific application methods. Here we investigate the susceptibility of the sorghum chafer (Pachnoda interrupta, Olivier) to Metarhizium sp., isolated from dead P. interrupta under field conditions over several years. Target-specific trapping was achieved using Japanese beetle traps or locally made autoinoculation devices, with methyl salicylate or banana as an attractant. Of the attracted and infected beetles, 49% mortality was achieved during October 2005 and 71% during July 2006, while the corresponding mortality in control treatments was 13 and 5%, respectively. We further confirmed that the mortality of the beetles was due to the fungal treatment as 50 and 80% of the dead beetles showed mycosis, respectively. The performance of the pathogen was also investigated in an autodissemination device in 2008 and 2009, where the beetles that were attracted passed through an inoculation chamber. Of the attracted and infected beetles in the autodissemination device, 58.5% (October) and 90.9% (July) were dead within 15 days after treatment. Control mortality was only 3 and 2%, respectively. The potential for horizontal transmission was investigated, where 47% (October) and 59% (July) of the beetles exposed to the pathogen through horizontal transmission were killed. The pathogen was found to be viable for more than 3 days in the field. Our results show that Metarhizium sp. has potential as a biological control agent, and for achieving autodissemination using the target pest as the vector.

  • 2016. Lucie Kucerova (et al.). BMC Genomics 17

    Background: In models extensively used in studies of aging and extended lifespan, such as C. elegans and Drosophila, adult senescence is regulated by gene networks that are likely to be similar to ones that underlie lifespan extension during dormancy. These include the evolutionarily conserved insulin/IGF, TOR and germ line-signaling pathways. Dormancy, also known as dauer stage in the larval worm or adult diapause in the fly, is triggered by adverse environmental conditions, and results in drastically extended lifespan with negligible senescence. It is furthermore characterized by increased stress resistance and somatic maintenance, developmental arrest and reallocated energy resources. In the fly Drosophila melanogaster adult reproductive diapause is additionally manifested in arrested ovary development, improved immune defense and altered metabolism. However, the molecular mechanisms behind this adaptive lifespan extension are not well understood. Results: A genome wide analysis of transcript changes in diapausing D. melanogaster revealed a differential regulation of more than 4600 genes. Gene ontology (GO) and KEGG pathway analysis reveal that many of these genes are part of signaling pathways that regulate metabolism, stress responses, detoxification, immunity, protein synthesis and processes during aging. More specifically, gene readouts and detailed mapping of the pathways indicate downregulation of insulin-IGF (IIS), target of rapamycin (TOR) and MAP kinase signaling, whereas Toll-dependent immune signaling, Jun-N-terminal kinase (JNK) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways are upregulated during diapause. Furthermore, we detected transcriptional regulation of a large number of genes specifically associated with aging and longevity. Conclusions: We find that many affected genes and signal pathways are shared between dormancy, aging and lifespan extension, including IIS, TOR, JAK/STAT and JNK. A substantial fraction of the genes affected by diapause have also been found to alter their expression in response to starvation and cold exposure in D. melanogaster, and the pathways overlap those reported in GO analysis of other invertebrates in dormancy or even hibernating mammals. Our study, thus, shows that D. melanogaster is a genetically tractable model for dormancy in other organisms and effects of dormancy on aging and lifespan.

Visa alla publikationer av Jonas Bengtsson vid Stockholms universitet

Senast uppdaterad: 20 februari 2018

Bokmärk och dela Tipsa