Profiles

Jöran Petersson

Jöran Petersson

Universitetslektor/Postdoktor

View page in English
Arbetar vid Institutionen för matematikämnets och naturvetenskapsämnenas didaktik
Telefon 08-120 765 02
E-post joran.petersson@mnd.su.se
Besöksadress Svante Arrheniusväg 20 A, E-huset, Arrheniuslab
Rum P 436
Postadress Institutionen för matematikämnets och naturvetenskapsämnenas didaktik 106 91 Stockholm

Om mig

Jöran Petersson är sedan 2019 lektor i matematikämnets didaktik vid Malmö universitet. Han disputerade 2017 i matematikämnets didaktik vid SU med Eva Norén som handledare. Åren 2007-2017 var han lärarutbildare vid Stockholms universitet och 1994-1998 var Jöran högskoleadjunkt i matematik vid Mälardalens högskola. Däremellan var han 1998-2002 matematiker i näringslivet och 2002-2006 gymnasielärare där han har undervisat i flera gymnasieprogram och komvux samt i klassrum och på distans. Jöran har gymnasielärarexamen i matematik och fysik (Linköping, 2004) och licentiatexamen i matematik (KTH, 1999). Han har också författat flera artiklar i matematiklärartidskriften Nämnaren samt i populärvetenskapliga sammanhang om naturvetenskap.

Undervisning

Jöran undervisar matematikdidaktik (ibland med kursansvar) främst för ämneslärarstudenter och i viss mån även för klasslärarstudenter. Han handleder och examinerar självständiga arbeten på grundnivå och avancerad nivå.

Forskning

För närvarande är Jöran projektanställd forskare i FoNS-projektet vid MND tillsammans med professor Paul Andrews och doktor Judy Sayers. I detta projekt undersöker Jöran hur grundläggande begrepp i taluppfattning presenteras (genom läromedel, lärare och föräldrar) för barn i årskurs 1 i grundskolan.

Jörans doktorsavhandling i matematikdidaktik (2017) handlade om hur andraspråkare, med olika lång erfarenhet av svenska språket, använder matematiska begrepp. Jöran hade Eva Norén som huvudhandledare och han samlade in och undersökte elevers svar på skriftliga prov i matematik samt intervjuade några elever. En slutsats i avhandlingen är att nyinvandrade och tidigt invandrade andraspråkare möter olika utmaningar vid undervisning och skriftliga prov. Förnyinvandrade elever är andraspråket en utmaning medan tidigt invandrade andraspråkare möter utmaningar i det matematiska innehållet. En andra slutsats är att det finns behov av forskning som undersöker enskilda begreppsområden för dessa elevkategorier.

Jörans licentiatavhandling i matematik handlade om att formulera en optimeringsalgoritm för att anpassa en summa av upp till tre exponentialtermer  a_{i}*exp(-b_{i}*t) till empiriska data (en tidsserie). Detta problem är svårt av följande två skäl: Dels är exponentialfunktioner ickelinjära och dels är summor av exponentialfunktions starkt linjärt beroende. Detta problem löstes genom att använda algebraiska metoder för att formulera en startlösning nära optimum och sedan använda numeriska metoder för att finjustera denna lösning. En historisk not är att idén bakom startlösningen är densamma som 1700-talets astronomer använde för att lösa överbestämda ekvationssystem. De grupperade data i lika många grupper som det fanns obekanta och genom exempelvis medelvärdesbildning i varje grupp fick de lika många ekvationer som obekanta. Detta forskningsproblem i tillämpad matematik illusterar att problemlösning kräver kunskaper i flera matematiska områden såsom algebra, statistik och numeriska metoder. Att behärska en hel matematisk verktygslåda är ett central mål även när man undervisar problemlösning i skolmatematiken.

 

Publikationer

I urval från Stockholms universitets publikationsdatabas
  • 2019. Judy Sayers (et al.). International Journal of Mathematical Education in Science and Technology

    In this paper we present statistical analyses of three textbooks used by Swedish teachers to support year one children's learning of mathematics. One, Eldorado, is authored by Swedish teachers, another, Favorit, is a Swedish adaptation of a popular Finnish series and the third, Singma, is a Swedish adaptation of a Singapore series. Data were coded against the eight categories of foundational number sense, which are the number-related competences literature has shown to be essential for the later mathematical success of year one learners. Two analyses were undertaken; the first was a frequency analysis of the tasks coded for a particular category, the second was a time-series analysis highlighting the temporal location of such opportunities. The frequency analyses identified statistically significant differences with respect to children's opportunities to acquire foundational number sense. Additionally, the time series showed substantial differences in the ways in which such tasks were located in the structure of the textbooks. Such differences, we argue, offer substantial didactical challenges to teachers trying to adapt their practices to the expectations of such imports.

  • 2019. Jöran Petersson (et al.). Proceedings of the Seventh Conference on Research in Mathematics Education in Ireland (MEI7), 251-258

    In this paper we compare adaptations of a Singaporean year-one mathematics textbook for use in England and Sweden respectively. The texts were analysed in two different ways against the eight dimensions of Foundational Number Sense (FoNS), a set of core competences that the literature has shown to be necessary for year-one children’s later mathematical learning. The first analysis, based on frequencies, showed that neither adaptation incorporated any opportunities for children to acquire the two FoNS competence relating to estimation and number patterns respectively. They also showed that the English adaptation comprised significantly more tasks than the Swedish, particularly with respect to systematic counting, where the former comprises 26% more tasks than the latter. The second analysis, based on moving averages, showed that across five of the six FoNS categories for which there were data, the temporal location and emphases of FoNS-related learning were comparable, with, in particular, no such opportunities after the mid-point of the school year in either book. However, the English adaptation’s presentation of systematic counting, occurring at various points throughout the school year, was substantially different from the Swedish adaptation, highlighting differences due, we speculate, to interpretations of local didactical traditions.

  • 2018. Jöran Petersson. Nordisk matematikkdidaktikk, NOMAD 23 (3-4), 105-122

    The present study investigated how 259 Swedish, grade 9 students, of whom 90 had an immigrant background, achieved on twelve written test items in the content area of number. Four of the twelve test items required good knowledge of arithmetic syntax, such as when it was appropriate to apply order-of-operation rules and the associative and distributive laws of arithmetic operations. On these four test items, the most-recently arrived students showed on average significantly more knowledge than the students who had immigrated when they were younger and had participated in Swedish schools for longer periods of time. The outcome suggests that these two groups of immigrant students in later school years should be considered as separate sub-categories of second-language students when it comes to teaching, assessment and research.

  • 2017. Jöran Petersson, Eva Norén. Education Inquiry

    The present study investigated test responses from 259 immigrant and non-immigrant school year 9 students in Sweden with the focus on how they solved two problems on fractions, one of them halving a fraction, in a test. The authors report three observations. Newly arrived second language immigrants seemed less likely to have the word ‘half’ in their Swedish mathematical vocabulary. Moreover, second language learners with longer experience of the new language connected the word ‘half’ with a division by two, but showed mathematical difficulties in correctly applying it to a fraction. A third finding was that the longer the experiences with Swedish school mathematics, the more likely both first and second language learners were to erroneously omit the percentage symbol, when choosing to use percentage representation of the fraction given in the test problem. The authors suggest seeing newly and early arrived second language immigrants as meeting different challenges. The newly arrived second language immigrants may know some mathematical concepts better and Swedish language less. In contrast the opposite seems to hold for second language learners with longer experience of the language of instruction.

  • 2017. Jöran Petersson. Nordisk matematikkdidaktikk 22 (2), 33-50

    This study compares Swedish first (N=2 253) and second -language (N=248) students' achievement in mathematical content areas specified by the TIMSS-framework. Data on mathematics achievement from three national tests 2007-2009 in school year 9 are used. The present study found that the achievement difference between the mathematical content areas algebra and number was smaller for second language students than for first language students and this result holds with statistical significance (p=0.016). The same holds for algebra versus data and chance (p=0.00053). A hypothesis for further research is suggested; that students immigrating in late school years have contributed to the observed result by bringing experiences from other curricula into their new schooling.

  • 2013. Jöran Petersson. Tintinism, 113-120
Visa alla publikationer av Jöran Petersson vid Stockholms universitet

Senast uppdaterad: 29 juni 2020

Bokmärk och dela Tipsa