Stockholms universitet logo, länk till startsida
Go to this page on our english site

Martim Mas e BragaDoktorand

Om mig

Doktorand i geomorfologi och glaciologi. Se sidan på engelska där jag berättar lite mer om min forskning och andra uppgifter inom institutionen.


I urval från Stockholms universitets publikationsdatabas

  • Sensitivity of the Antarctic ice sheets to the warming of marine isotope substage 11c

    2021. Martim Mas e Braga (et al.). The Cryosphere 15 (1), 459-478


    Studying the response of the Antarctic ice sheets during periods when climate conditions were similar to the present can provide important insights into current observed changes and help identify natural drivers of ice sheet retreat. In this context, the marine isotope substage 11c (MIS11c) interglacial offers a suitable scenario, given that during its later portion orbital parameters were close to our current interglacial. Ice core data indicate that warmer-than-present temperatures lasted for longer than during other interglacials. However, the response of the Antarctic ice sheets and their contribution to sea level rise remain unclear. We explore the dynamics of the Antarctic ice sheets during this period using a numerical ice sheet model forced by MIS11c climate conditions derived from climate model outputs scaled by three glaciological and one sedimentary proxy records of ice volume. Our results indicate that the East and West Antarctic ice sheets contributed 4.0-8.2 m to the MIS11c sea level rise. In the case of a West Antarctic Ice Sheet collapse, which is the most probable scenario according to far-field sea level reconstructions, the range is reduced to 6.7-8.2 m independently of the choices of external sea level forcing and millennialscale climate variability. Within this latter range, the main source of uncertainty arises from the sensitivity of the East Antarctic Ice Sheet to a choice of initial ice sheet configuration. We found that the warmer regional climate signal captured by Antarctic ice cores during peak MIS11c is crucial to reproduce the contribution expected from Antarctica during the recorded global sea level highstand. This climate signal translates to a modest threshold of 0.4 degrees C oceanic warming at intermediate depths, which leads to a collapse of the West Antarctic Ice Sheet if sustained for at least 4000 years.

    Läs mer om Sensitivity of the Antarctic ice sheets to the warming of marine isotope substage 11c
  • Nunataks as barriers to ice flow

    2021. Martim Mas E. Braga (et al.). The Cryosphere 15 (10), 4929-4947


    Numerical models predict that discharge from the polar ice sheets will become the largest contributor to sea-level rise over the coming centuries. However, the predicted amount of ice discharge and associated thinning depends on how well ice sheet models reproduce glaciological processes, such as ice flow in regions of large topographic relief, where ice flows around bedrock summits (i.e. nunataks) and through outlet glaciers. The ability of ice sheet models to capture long-term ice loss is best tested by comparing model simulations against geological data. A benchmark for such models is ice surface elevation change, which has been constrained empirically at nunataks and along margins of outlet glaciers using cosmogenic exposure dating. However, the usefulness of this approach in quantifying ice sheet thinning relies on how well such records represent changes in regional ice surface elevation. Here we examine how ice surface elevations respond to the presence of strong topographic relief that acts as an obstacle by modelling ice flow around and between idealised nunataks during periods of imposed ice sheet thinning. We find that, for realistic Antarctic conditions, a single nunatak can exert an impact on ice thickness over 20 km away from its summit, with its most prominent effect being a local increase (decrease) of the ice surface elevation of hundreds of metres upstream (downstream) of the obstacle. A direct consequence of this differential surface response for cosmogenic exposure dating is a delay in the time of bedrock exposure upstream relative to downstream of a nunatak summit. A nunatak elongated transversely to ice flow is able to increase ice retention and therefore impose steeper ice surface gradients, while efficient ice drainage through outlet glaciers produces gentler gradients. Such differences, however, are not typically captured by continent-wide ice sheet models due to their coarse grid resolutions. Their inability to capture site-specific surface elevation changes appears to be a key reason for the observed mismatches between the timing of ice-free conditions from cosmogenic exposure dating and model simulations. We conclude that a model grid refinement over complex topography and information about sample position relative to ice flow near the nunatak are necessary to improve data-model comparisons of ice surface elevation and therefore the ability of models to simulate ice discharge in regions of large topographic relief.

    Läs mer om Nunataks as barriers to ice flow

Visa alla publikationer av Martim Mas e Braga vid Stockholms universitet