Stockholms universitet

Mariana Pires BragaFD

Om mig

I recently finished my PhD with Niklas Janz, Sören Nylin and Fredrik Ronquist. I am interested in the evolution of insect-plant interactions and diversification of herbivorous insects.

Publikationer

I urval från Stockholms universitets publikationsdatabas

  • Unifying host-associated diversification processes using butterfly-plant networks

    2018. Mariana P. Braga (et al.). Nature Communications 9

    Artikel

    Explaining the exceptional diversity of herbivorous insects is an old problem in evolutionary ecology. Here we focus on the two prominent hypothesised drivers of their diversification, radiations after major host switch or variability in host use due to continuous probing of new hosts. Unfortunately, current methods cannot distinguish between these hypotheses, causing controversy in the literature. Here we present an approach combining network and phylogenetic analyses, which directly quantifies support for these opposing hypotheses. After demonstrating that each hypothesis produces divergent network structures, we then investigate the contribution of each to diversification in two butterfly families: Pieridae and Nymphalidae. Overall, we find that variability in host use is essential for butterfly diversification, while radiations following colonisation of a new host are rare but can produce high diversity. Beyond providing an important reconciliation of alternative hypotheses for butterfly diversification, our approach has potential to test many other hypotheses in evolutionary biology.

    Läs mer om Unifying host-associated diversification processes using butterfly-plant networks
  • Host use dynamics in a heterogeneous fitness landscape generates oscillations in host range and diversification

    2018. Mariana P. Braga (et al.). Evolution 72 (9), 1773-1783

    Artikel

    Colonization of novel hosts is thought to play an important role in parasite diversification, yet little consensus has been achieved about the macroevolutionary consequences of changes in host use. Here, we offer a mechanistic basis for the origins of parasite diversity by simulating lineages evolved in silico. We describe an individual-based model in which (i) parasites undergo sexual reproduction limited by genetic proximity, (ii) hosts are uniformly distributed along a one-dimensional resource gradient, and (iii) host use is determined by the interaction between the phenotype of the parasite and a heterogeneous fitness landscape. We found two main effects of host use on the evolution of a parasite lineage. First, the colonization of a novel host allowed parasites to explore new areas of the resource space, increasing phenotypic and genotypic variation. Second, hosts produced heterogeneity in the parasite fitness landscape, which led to reproductive isolation and therefore, speciation. As a validation of the model, we analyzed empirical data from Nymphalidae butterflies and their host plants. We then assessed the number of hosts used by parasite lineages and the diversity of resources they encompass. In both simulated and empirical systems, host diversity emerged as the main predictor of parasite species richness.

    Läs mer om Host use dynamics in a heterogeneous fitness landscape generates oscillations in host range and diversification
  • Embracing Colonizations

    2018. Sören Nylin (et al.). Trends in Ecology & Evolution 33 (1), 4-14

    Artikel

    Parasitehost and insectplant research have divergent traditions despite the fact that most phytophagous insects live parasitically on their host plants. In parasitology it is a traditional assumption that parasites are typically highly specialized; cospeciation between parasites and hosts is a frequently expressed default expectation. Insectplant theory has been more concerned with host shifts than with cospeciation, and more with hierarchies among hosts than with extreme specialization. We suggest that the divergent assumptions in the respective fields have hidden a fundamental similarity with an important role for potential as well as actual hosts, and hence for host colonizations via ecological fitting. A common research program is proposed which better prepares us for the challenges from introduced species and global change.

    Läs mer om Embracing Colonizations
  • On oscillations and flutterings - A reply to Hamm and Fordyce

    2016. Niklas Janz (et al.). Evolution 70 (5), 1150-1155

    Artikel

    The diversification of plant-feeding insects is seen as a spectacular example of evolutionary radiation. Hence, developing hypotheses to explain this diversification, and methods to test them, is an important undertaking. Some years ago, we presented the oscillation hypothesis as a general process that could drive diversification of this and similar interactions, through repeated expansions and contractions of host ranges. Hamm and Fordyce recently presented a study with the outspoken intention of testing this hypothesis where they concluded that the oscillation hypothesis was not supported. We point out several problems with their study, owing both to a misrepresentation of our hypothesis and to the methods. We provide a clarifying description of the oscillation hypothesis, and detail some predictions that follow from it. A reanalysis of the data demonstrated a troubling sensitivity of the "SSE" class of models to small changes in model specification, and we caution against using them for tests of trait-based diversification. Future tests of the hypothesis also need to better acknowledge the processes behind the host range oscillations. We suspect that doing so will resolve some of the apparent conflicts between our hypothesis and the view presented by Hamm and Fordyce.

    Läs mer om On oscillations and flutterings - A reply to Hamm and Fordyce
  • Understanding host-switching by ecological fitting

    2015. Sabrina B. L. Araujo (et al.). PLoS ONE 10 (10)

    Artikel

    Despite the fact that parasites are highly specialized with respect to their hosts, empirical evidence demonstrates that host switching rather than co-speciation is the dominant factor influencing the diversification of host-parasite associations. Ecological fitting in sloppy fitness space has been proposed as a mechanism allowing ecological specialists to host-switch readily. That proposal is tested herein using an individual-based model of host switching. The model considers a parasite species exposed to multiple host resources. Through time host range expansion can occur readily without the prior evolution of novel genetic capacities. It also produces non-linear variation in the size of the fitness space. The capacity for host colonization is strongly influenced by propagule pressure early in the process and by the size of the fitness space later. The simulations suggest that co-adaptation may be initiated by the temporary loss of less fit phenotypes. Further, parasites can persist for extended periods in sub-optimal hosts, and thus may colonize distantly related hosts by a "stepping-stone" process.

    Läs mer om Understanding host-switching by ecological fitting

Visa alla publikationer av Mariana Pires Braga vid Stockholms universitet