Tomas Persson

Tomas Persson


View page in English
Arbetar vid Institutionen för matematikämnets och naturvetenskapsämnenas didaktik
Besöksadress Svante Arrheniusväg 20 A, E-huset, Arrheniuslab
Rum E 462
Postadress Institutionen för matematikämnets och naturvetenskapsämnenas didaktik 106 91 Stockholm

Om mig

Tomas är datasystemansvarig, IT-ansvarig, huvudwebbredaktör och IKT-koordinator vid Institutionen för matematikämnets och naturvetenskapsämnenas didaktik. Han arbetar bland annat med informationssäkerhet och GDPR. Vidare arbetar han med att förbättra undervisningen vid institutionen nyttjande digitala hjälpmedel.

Tomas är även administratör vid PRIM-gruppen och arbetar där med digitalisering, statistiska körningar, kursprov och ämnesprov.


Tomas håller workshops i mjukvara och hårdvara relaterat till undervisning och forskning för fakultet och studenter.


Tomas har disputerat i växtfysiologi och bedriver forskning inom växt-mikrobinteraktioner. Hans forskningsintresse är interaktionen mellan actinorhizaväxter och bakterien Frankia. Utöver detta forskningsfält har Tomas publicerat inom miljövetenskap och naturvetenskapsämnenas didaktik. Idag bidrar Tomas aktivt till forskning inom naturvetenskapämnenas didaktik samt matematikämnets didaktik.


I urval från Stockholms universitets publikationsdatabas
  • 2016. Tomas Persson (et al.). Symbiosis 70 (1), 149-157

    To gain more insight in nitrogen metabolism in actinorhizal nodules, a comparison between the N metabolite profiles in roots vs. nodules was initiated for one host plant from the best-examined order of actinorhizal plants, Fagales, A. glutinosa (Betulaceae), a temperate tree, and one host plant from the Cucurbitales order, Datisca glomerata (Datiscaceae). For both symbioses, the symbiotic transcriptomes have been published and can be used to assess the expression of genes representing specific metabolic pathways in nodules. The amino acid profiles of roots in this study suggest that A. glutinosa transported aspartate, glutamate and citrulline in the xylem, a combination of nitrogenous solutes not published previously for this species. The amino acid profiles of D. glomerata roots depended on whether the plants were nodulated or grown on nitrate; roots of nodulated plants contained increased amounts of arginine. Although bacterial transcriptome data showed no symbiotic auxotrophy for branched chain amino acids (leucine, isoleucine, valine) in either symbiosis, D. glomerata nodules contained comparatively high levels of these amino acids. This might represent a response to osmotic stress.

  • 2015. Tomas Persson (et al.). PLoS ONE 10 (5)

    Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of Datisca glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in Datisca glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both alpha- and beta-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors.

  • 2014. Carl-Johan Rundgren, Tomas Persson, Shu-Nu Chang Rundgren. Science Teachers‘ Continuous Professional Development in Europe, 38-47

    To obtain a consensus of different stakeholders’ view and contribute to the development of scienceeducation, a Delphi study was conducted in Sweden during 2012–2013. The purpose of this chapterwas to compare different stakeholders’ view on science education in the first two rounds of the SwedishDelphi study with the current Swedish curriculum (Lgr 11) for the science subjects in grade 7–9 and to see whataspects might need to be developed further in the science curriculum. A total of 212 stakeholders from groupsof scientists, science teachers, science educators and students were invited to provide their ideas concerningscience education in the first round of the Swedish Delphi study. A total of 100 responses from the first roundand 76 from a second round were analyzed and presented in this article. From the results, 75 categorieswere identified in the first round of the Swedish Delphi study while, in the second round, the categories werenarrowed down to 57 according to a mean score above 4. We found that science-technology-society (STS)was an emerging view from the stakeholders’ responses, not only highlighted in our Delphi study, but alsoaddressed in the Swedish curriculum for science subjects in grade 7–9 (Lgr 11). Some aspects revealed in ourDelphi study, were not addressed in the curriculum. Based on our results, we have argued that the PROFILES3–stage model was a suitable way of teaching sciences for grade 7–9, since the aspects analyzed from theresults of the Swedish Delphi study and the Swedish curriculum could be embedded.

Visa alla publikationer av Tomas Persson vid Stockholms universitet

Senast uppdaterad: 3 oktober 2018

Bokmärk och dela Tipsa