Profiles

Nina Kirchner

Nina Kirchner

Universitetslektor

View page in English
Arbetar vid Institutionen för naturgeografi
Telefon 08-16 29 88
E-post nina.kirchner@natgeo.su.se
Besöksadress Svante Arrhenius väg 8
Rum T 415
Postadress Inst för naturgeografi 106 91 Stockholm

Om mig

I am associate professor of glaciology at Stockholm University, and director of research of the Bolin Centre for Climate Research. I am also a regular guest lecturer at the Department of Arctic Geology at the University Centre in Svalbard (UNIS). Since January 2015, I am affiliated to the KTH Centre of Naval Architecture.

For a complete list of publications, see the pdf-file on the top right of this page.

 

Publikationer

I urval från Stockholms universitets publikationsdatabas
  • Tommaso Tesi (et al.). Nature Communications 7

    Recent hypotheses, based on atmospheric records and models, suggest that permafrost carbon (PF-C) accumulated during the last glaciation may have been an important source for the atmospheric CO2 rise during post-glacial warming. However, direct physical indications for such PF-C release have so far been absent. Here we use the Laptev Sea (Arctic Ocean) as an archive to investigate PF-C destabilization during the last glacial–interglacial period. Our results show evidence for massive supply of PF-C from Siberian soils as a result of severe active layer deepening in response to the warming. Thawing of PF-C must also have brought about an enhanced organic matter respiration and, thus, these findings suggest that PF-C may indeed have been an important source of CO2 across the extensive permafrost domain. The results challenge current paradigms on the post-glacial CO2 rise and, at the same time, serve as a harbinger for possible consequences of the present-day warming of PF-C soils.

  • Martin Jakobsson (et al.). Nature Communications 7

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions41-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (similar to 140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

  • Nina Kirchner (et al.). Quaternary Science Reviews 147, 136-147

    Full Stokes ice sheet models provide the most accurate description of ice sheet flow, and can therefore be used to reduce existing uncertainties in predicting the contribution of ice sheets to future sea level rise on centennial time-scales. The level of accuracy at which millennial time-scale palaeo-ice sheet simulations resolve ice sheet flow lags the standards set by Full Stokes models, especially, when Shallow Ice Approximation (SIA) models are used. Most models used in paleo-ice sheet modeling were developed at a time when computer power was very limited, and rely on several assumptions. At the time there was no means of verifying the assumptions by other than mathematical arguments. However, with the computer power and refined Full Stokes models available today, it is possible to test these assumptions numerically. In this paper, we review (Ahlkrona et al., 2013a) where such tests were performed and inaccuracies in commonly used arguments were found. We also summarize (Ahlkrona et al., 2013b) where the implications of the inaccurate assumptions are analyzed for two paleo-models - the SIA and the SOSIA. We review these works without resorting to mathematical detail, in order to make them accessible to a wider audience with a general interest in palaeo-ice sheet modelling. Specifically, we discuss two implications of relevance for palaeo-ice sheet modelling. First, classical SIA models are less accurate than assumed in their original derivation. Secondly, and contrary to previous recommendations, the SOSIA model is ruled out as a practicable tool for palaeo-ice sheet simulations. We conclude with an outlook concerning the new Ice Sheet Coupled Approximation Level (ISCAL) method presented in Ahlkrona et al. (2016), that has the potential to match the accuracy standards of full Stokes model on palaeo-timescales of tens of thousands of years, and to become an alternative to hybrid models currently used in palaeo-ice sheet modelling. The method is applied to an ice sheet covering Svalbard.

Visa alla publikationer av Nina Kirchner vid Stockholms universitet

Senast uppdaterad: 16 maj 2017

Bokmärk och dela Tipsa