Emily Baird profile picture

Emily Baird

Associate Professor

Visa sidan på svenska
Works at Department of Zoology
Telephone 08-16 47 03
Visiting address Svante Arrheniusväg 18 B
Room D 417
Postal address Zoologiska institutionen: Funktionell zoomorfologi 106 91 Stockholm

About me

My research program is focussed on understanding the link between the visual world of animals and how the brain uses visual information to guide behaviour in different environments. To do this, I take a comparative approach that uses a combination of behavioural experiments and anatomical analyses using X-ray micro computed-tomography using bumblebees and dung beetles as primary model systems.

I currently lead two exciting inter-disciplinary collaborative projects:

Dlife: Miniature creatures performing performing extraordinary feats with limited resources (, a collaboration with Poromate Manoonpong's group at the University of Southern Denmark and Stanislav Gorb's group at the University of Kiel funded by the Human Frontiers Science Project

INVISMO (INsect Vision and Movement): A new frameworkfor predicting insect pollinator habitat requirements, a collaboration with Henrik Smith's group at the Centre for Environmental and Climate Research at Lund University and Niklas Wahlberg's group at the Department of Biology at Lund University funded by the Swedish Research Council

Latest articles showing the micro-CT based method we have recently developed for visualising the visual world of insects:

Imaging ancient fungus gnat eyes from amber: 

Taylor G, Hall S, Gren J, Baird E 2020 Exploring the visual world of fossilized and modern fungus gnat eyes (Diptera: Keroplatidae) with X-ray microtomography J Roy Soc Int  17 doi:10.1098/rrsif.2019.07502.    

Imaging bumblebee and honeybee eyes:

Taylor G, Tichit P, Schmidt M, Bodey A, Rau C, Baird E 2019 Bumblebee visual allometry results in locally improved resolution and globally improved sensitivity eLife 8:e40613

Wilby D, Aarts T, Tichit P, Bodey A, Rau C, Taylor G*, Baird E 2019 Using micro-CT techniques to explore the role of sex and hair in the functional morphology of bumblebee (Bombus terrestris) ocelli Vis Res 158:100-108

Latest opinion piece on how conservation biology can benefit from sensory ecology 

Dominoni DM, Halfwerk W, Baird E, Buxton R, Fernandez-Jurcic E, Fristrup K, McKenna M, Mennitt D, Perkin E, Seymoure BM, Stoner DC, Tennessen J, Toth CA, Tyrell LP, Wilson A, Francis CD, Carter NH, Barber J 2020 What conservation biology can benefit from sensory ecology Nat Ecol Evol doi: 10.1038/s41559-020-1135-4

There are always opportunities for different types of projects in my lab, from Bachelor and Masters to PhD and postdoctoral levels. If you are interested, please contact me. 



A selection from Stockholm University publication database
  • 2019. Basil el Jundi (et al.). Journal of Experimental Biology 222

    For many insects, celestial compass cues play an important role in keeping track of their directional headings. One well-investigated group of celestial orientating insects are the African ball-rolling dung beetles. After finding a dung pile, these insects detach a piece, form it into a ball and roll it away along a straight path while facing backwards. A brain region, termed the central complex, acts as an internal compass that constantly updates the ball-rolling dung beetle about its heading. In this review, we give insights into the compass network behind straight-line orientation in dung beetles and place it in the context of the orientation mechanisms and neural networks of other insects. We find that the neuronal network behind straight-line orientation in dung beetles has strong similarities to the ones described in path-integrating and migrating insects, with the central complex being the key control point for this behavior. We conclude that, despite substantial differences in behavior and navigational challenges, dung beetles encode compass information in a similar way to other insects.

Show all publications by Emily Baird at Stockholm University

Last updated: April 28, 2020

Bookmark and share Tell a friend