Stockholm university logo, link to start page

Linda Laikre

About me

I am a population geneticist with a research interest in understanding microevolutionary processes that govern rates of loss of genetic diversity, how such processes are affected by human induced activities, and what can be done to assure long term survival and adaptive potential of populations through retention of genetic biodiversity. I use a variety of species to address conservation genetic issues including brown trout (Salmo trutta), wolf (Canis lupus), salmon (Salmo salar), pike (Esox lucius), moose (Alces alces), herring (Clupea harengus), dog (Canis familiaris) and Arctic char (Salvelinus alpinus). Research approaches include empirical data analyses, theoretical modelling, computer simulations, and multidisciplinary efforts.

I am Director of Studies in Population Genetics. I teach a variety of courses from introductory to advanced level.

I take a strong interest in communicating research results and scientific knowledge to the society in general as well as to separte stakeholder groups.

Research in the group has addressed a broad range of population and conservation genetics over several decades. Focus of current research projects include:

  • Conservation genetic monitoring
  • Effective population size of metapopulations
  • Bridging the conservation genetics gap

Research projects


A selection from Stockholm University publication database

  • Metapopulation effective size and conservation genetic goals for the Fennoscandian wolf (Canis lupus) population

    2016. Linda Laikre (et al.). Heredity 117 (4), 279-289


    The Scandinavian wolf population descends from only five individuals, is isolated, highly inbred and exhibits inbreeding depression. To meet international conservation goals, suggestions include managing subdivided wolf populations over Fennoscandia as a metapopulation; a genetically effective population size of N-e >= 500, in line with the widely accepted long-term genetic viability target, might be attainable with gene flow among subpopulations of Scandinavia, Finland and Russian parts of Fennoscandia. Analytical means for modeling N-e of subdivided populations under such non-idealized situations have been missing, but we recently developed new mathematical methods for exploring inbreeding dynamics and effective population size of complex metapopulations. We apply this theory to the Fennoscandian wolves using empirical estimates of demographic parameters. We suggest that the long-term conservation genetic target for metapopulations should imply that inbreeding rates in the total system and in the separate subpopulations should not exceed Delta f = 0.001. This implies a meta-Ne of N-eMeta >= 500 and a realized effective size of each subpopulation of N-eRx >= 500. With current local effective population sizes and one migrant per generation, as recommended by management guidelines, the meta-Ne that can be reached is similar to 250. Unidirectional gene flow from Finland to Scandinavia reduces meta-N-e to similar to 130. Our results indicate that both local subpopulation effective sizes and migration among subpopulations must increase substantially from current levels to meet the conservation target. Alternatively, immigration from a large (N-e >= 500) population in northwestern Russia could support the Fennoscandian metapopulation, but immigration must be substantial (5-10 effective immigrants per generation) and migration among Fennoscandian subpopulations must nevertheless increase.

    Read more about Metapopulation effective size and conservation genetic goals for the Fennoscandian wolf (Canis lupus) population
  • Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved

    2020. Sean Hoban (et al.). Biological Conservation 248


    The 196 parties to the Convention on Biological Diversity (CBD) will soon agree to a post-2020 global framework for conserving the three elements of biodiversity (genetic, species, and ecosystem diversity) while ensuring sustainable development and benefit sharing. As the most significant global conservation policy mechanism, the new CBD framework has far-reaching consequences- it will guide conservation actions and reporting for each member country until 2050. In previous CBD strategies, as well as other major conservation policy mechanisms, targets and indicators for genetic diversity (variation at the DNA level within species, which facilitates species adaptation and ecosystem function) were undeveloped and focused on species of agricultural relevance. We assert that, to meet global conservation goals, genetic diversity within all species, not just domesticated species and their wild relatives, must be conserved and monitored using appropriate metrics. Building on suggestions in a recent Letter in Science (Laikre et al., 2020) we expand argumentation for three new, pragmatic genetic indicators and modifications to two current indicators for maintaining genetic diversity and adaptive capacity of all species, and provide guidance on their practical use. The indicators are: 1) the number of populations with effective population size above versus below 500, 2) the proportion of populations maintained within species, 3) the number of species and populations in which genetic diversity is monitored using DNA-based methods. We also present and discuss Goals and Action Targets for post-2020 biodiversity conservation which are connected to these indicators and underlying data. These pragmatic indicators and goals have utility beyond the CBD; they should benefit conservation and monitoring of genetic diversity via national and global policy for decades to come.

    Read more about Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved
  • Do estimates of contemporary effective population size tell us what we want to know?

    2019. Nils Ryman, Linda Laikre, Ola Hössjer. Molecular Ecology 28 (8), 1904-1918


    Estimation of effective population size (N-e) from genetic marker data is a major focus for biodiversity conservation because it is essential to know at what rates inbreeding is increasing and additive genetic variation is lost. But are these the rates assessed when applying commonly used N-e estimation techniques? Here we use recently developed analytical tools and demonstrate that in the case of substructured populations the answer is no. This is because the following: Genetic change can be quantified in several ways reflecting different types of N-e such as inbreeding (N-eI), variance (N-eV), additive genetic variance (N-eAV), linkage disequilibrium equilibrium (N-eLD), eigenvalue (N-eE) and coalescence (N-eCo) effective size. They are all the same for an isolated population of constant size, but the realized values of these effective sizes can differ dramatically in populations under migration. Commonly applied N-e-estimators target N-eV or N(eLD )of individual subpopulations. While such estimates are safe proxies for the rates of inbreeding and loss of additive genetic variation under isolation, we show that they are poor indicators of these rates in populations affected by migration. In fact, both the local and global inbreeding (N-eI) and additive genetic variance (N-eAV) effective sizes are consistently underestimated in a subdivided population. This is serious because these are the effective sizes that are relevant to the widely accepted 50/500 rule for short and long term genetic conservation. The bias can be infinitely large and is due to inappropriate parameters being estimated when applying theory for isolated populations to subdivided ones.

    Read more about Do estimates of contemporary effective population size tell us what we want to know?
  • Exploring a Pool-seq-only approach for gaining population genomic insights in nonmodel species

    2019. Sara Kurland (et al.). Ecology and Evolution 9, 11448-11463


    Developing genomic insights is challenging in nonmodel species for which resources are often scarce and prohibitively costly. Here, we explore the potential of a recently established approach using Pool-seq data to generate a de novo genome assembly for mining exons, upon which Pool-seq data are used to estimate population divergence and diversity. We do this for two pairs of sympatric populations of brown trout (Salmo trutta): one naturally sympatric set of populations and another pair of populations introduced to a common environment. We validate our approach by comparing the results to those from markers previously used to describe the populations (allozymes and individual-based single nucleotide polymorphisms [SNPs]) and from mapping the Pool-seq data to a reference genome of the closely related Atlantic salmon (Salmo salar). We find that genomic differentiation (F-ST) between the two introduced populations exceeds that of the naturally sympatric populations (F-ST = 0.13 and 0.03 between the introduced and the naturally sympatric populations, respectively), in concordance with estimates from the previously used SNPs. The same level of population divergence is found for the two genome assemblies, but estimates of average nucleotide diversity differ (pi over bar approximate to 0.002 and pi over bar approximate to 0.001 when mapping to S. trutta and S. salar, respectively), although the relationships between population values are largely consistent. This discrepancy might be attributed to biases when mapping to a haploid condensed assembly made of highly fragmented read data compared to using a high-quality reference assembly from a divergent species. We conclude that the Pool-seq-only approach can be suitable for detecting and quantifying genome-wide population differentiation, and for comparing genomic diversity in populations of nonmodel species where reference genomes are lacking.

    Read more about Exploring a Pool-seq-only approach for gaining population genomic insights in nonmodel species

Show all publications by Linda Laikre at Stockholm University