Eva Ehrnsten, foto: Niklas Björling/SU

Eva Ehrnsten


View page in English
Arbetar vid Stockholms universitets Östersjöcentrum
Besöksadress Svante Arrhenius väg 20 F, plan 5
Postadress Stockholms universitets Östersjöcentrum 106 91 Stockholm

Om mig

My main research interests are coastal ecology and management. My research focusses on simulating ecosystem dynamics of the Baltic Sea and the role of benthic fauna in biogeochemical cycling. I also study how the joint effects of climate change and human-induced pressures such as nutrient loads might change the functioning of benthic and pelagic ecosystems.

I did my PhD on past, present and future biomass and carbon processing of benthic fauna jointly in the Benthic Ecology Team at Tvärminne Zoological Station, University of Helsinki and the Baltic Sea Centre, Stockholm University. Previously I have worked with mapping underwater nature and management of coastal habitats (VELMU and NANNUT projects), minimizing the ecological effects of oil spills in coastal areas (OILRISK project) and intedisciplinary approaches to study marine ecosystem services (BALTICAPP project).


I urval från Stockholms universitets publikationsdatabas
  • 2020. Eva Ehrnsten (et al.). Global Change Biology 26 (4), 2235-2250

    Nutrient loading and climate change affect coastal ecosystems worldwide. Unravelling the combined effects of these pressures on benthic macrofauna is essential for understanding the future functioning of coastal ecosystems, as it is an important component linking the benthic and pelagic realms. In this study, we extended an existing model of benthic macrofauna coupled with a physical-biogeochemical model of the Baltic Sea to study the combined effects of changing nutrient loads and climate on biomass and metabolism of benthic macrofauna historically and in scenarios for the future. Based on a statistical comparison with a large validation dataset of measured biomasses, the model showed good or reasonable performance across the different basins and depth strata in the model area. In scenarios with decreasing nutrient loads according to the Baltic Sea Action Plan but also with continued recent loads (mean loads 2012-2014), overall macrofaunal biomass and carbon processing were projected to decrease significantly by the end of the century despite improved oxygen conditions at the seafloor. Climate change led to intensified pelagic recycling of primary production and reduced export of particulate organic carbon to the seafloor with negative effects on macrofaunal biomass. In the high nutrient load scenario, representing the highest recorded historical loads, climate change counteracted the effects of increased productivity leading to a hyperbolic response: biomass and carbon processing increased up to mid-21st century but then decreased, giving almost no net change by the end of the 21st century compared to present. The study shows that benthic responses to environmental change are nonlinear and partly decoupled from pelagic responses and indicates that benthic-pelagic coupling might be weaker in a warmer and less eutrophic sea.

  • 2019. Eva Ehrnsten, Barbara Bauer, Bo G. Gustafsson. Frontiers in Marine Science 6

    The responses of food webs to simultaneous changes in several environmental drivers are still poorly understood. As a contribution to filling this knowledge gap, we investigated the major pathways through which two interlinked environmental drivers, eutrophication and climate, affect the biomass and community composition of fish and benthic macrofauna. For this aim, we conducted a systematic sensitivity analysis using two models simulating the dynamics of benthic and pelagic food webs in the Baltic Sea. We varied environmental forcing representing primary productivity, oxygen conditions and water temperature in all possible combinations, over a range representative of expected changes during the 21st century. Both models indicated that increased primary productivity leads to biomass increase in all parts of the system, however, counteracted by expanding hypoxia. Effects of temperature were complex, but generally small compared to the other drivers. Similarities across models give confidence in the main results, but we also found differences due to different representations of the food web in the two models. While both models predicted a shift in benthic community composition toward an increased abundance of Limecola (Macoma) balthica with increasing productivity, the effects on deposit-feeding and predatory benthic groups depended on the presence of fish predators in the model. The model results indicate that nutrient loads are a stronger driver of change for ecosystem functions in the Baltic Sea than climate change, but it is important to consider the combined effects of these drivers for proper management of the marine environment.

  • 2019. Eva Ehrnsten (et al.). Journal of Marine Systems 196, 36-47

    Benthic macrofauna is an important component linking pelagic and benthic ecosystems, especially in productive coastal areas. Through their metabolism and behaviour, benthic animals affect biogeochemical fluxes between the sediment and water column. Mechanistic models that quantify these benthic-pelagic links are imperative to understand the functioning of coastal ecosystems. In this study, we develop a dynamic model of benthic macrofauna to quantify the relationship between organic matter input and benthic macrofaunal biomass in the coastal zone. The model simulates the carbon dynamics of three functional groups of benthic macrofauna and their sediment food sources and is forced by a hydrodynamic-biogeochemical model simulating pelagic physical and biological dynamics. The model reproduces measured time-series of macrofaunal biomass from two coastal sites with contrasting sedimentation in the Baltic Sea in 1993-2005 with comparatively high accuracy, including a major increase at one of the sites dominated by the bivalve Limecola (Macoma) balthica. This shift in community composition suggests altered pathways of organic matter degradation: 39% of simulated sedimentation was mineralised by macrofauna in 2005 compared to 10% in 1995. From the early 2000s onward macrofaunal biomass seems to be food-limited, as ca 80% of organic carbon sedimentation was processed by the deposit-feeding macrofauna at both sites. This model is a first step to help quantify the role of macrofauna in marine coastal ecosystem functioning and biogeochemical cycles and build predictive capacity of the effects of anthropogenic stressors, such as eutrophication and climate change, on coastal ecosystems.

  • 2020. Eva Ehrnsten (et al.). Frontiers in Marine Science 7

    Coastal seas are highly productive systems, providing an array of ecosystem services to humankind, such as processing of nutrient effluents from land and climate regulation. However, coastal ecosystems are threatened by human-induced pressures such as climate change and eutrophication. In the coastal zone, the fluxes and transformations of nutrients and carbon sustaining coastal ecosystem functions and services are strongly regulated by benthic biological and chemical processes. Thus, to understand and quantify how coastal ecosystems respond to environmental change, mechanistic modeling of benthic biogeochemical processes is required. Here, we discuss the present model capabilities to quantitatively describe how benthic fauna drives nutrient and carbon processing in the coastal zone. There are a multitude of modeling approaches of different complexity, but a thorough mechanistic description of benthic-pelagic processes is still hampered by a fundamental lack of scientific understanding of the diverse interactions between the physical, chemical and biological processes that drive biogeochemical fluxes in the coastal zone. Especially shallow systems with long water residence times are sensitive to the activities of benthic organisms. Hence, including and improving the description of benthic biomass and metabolism in sediment diagenetic as well as ecosystem models for such systems is essential to increase our understanding of their response to environmental changes and the role of coastal sediments in nutrient and carbon cycling. Major challenges and research priorities are (1) to couple the dynamics of zoobenthic biomass and metabolism to sediment reactive-transport in models, (2) to test and validate model formulations against real-world data to better incorporate the context-dependency of processes in heterogeneous coastal areas in models and (3) to capture the role of stochastic events.

  • 2020. Aarno Kotilainen, Eva Erhnsten, Petri Vahteri.

    This report is a partial translation of the final report in Finnish on threatened habitat types (Threatened habitat types in Finland 2018, Part II: Descriptions of habitat types, The Finnish Environment 5/2018) that presents a total of 420 habitat types. This report includes all the evaluated habitat types of the Baltic Sea, as well as six new marine habitat types, which were described but not yet evaluated (NE). Also included are habitat types regarded as of least concern (LC) and those with deficient data (DD).

    For each habitat type a description, distribution map, photo, and the reasoning behind the assessment result are presented. The descriptions of the habitat types include their characteristics, geographical variation, connectivity to other habitat types, occurrence in Finland, reasons for being threatened and future threats, trend in the state of the habitat type, correspondence of the habitats type with habitat types covered by statutory protection, and whether the habitat type is one for which Finland has an international responsibility.

    Part I of the final report (in Finnish Suomen luontotyyppien uhanalaisuus 2018, SY 5/2018 and in English Threatened Habitat Types in Finland 2018, FE 2/2019) presents the assessment method for threatened habitat types, results and reasoning of the assessment, and proposals for measures prepared by the experts groups. In the whole country 186 habitats types were assessed as threatened (48% of the number of habitats types). The share of threatened habitat types is much larger in southern Finland (59%) than in northern Finland (32%). The assessment was conducted by broadly-based expert groups in 2016–2018.

    This was the second assessment of threatened habitat types in Finland. This assessment was conducted using the international IUCN Red List of Ecosystems method. Because of the new assessment method, the results of the first and second assessment of threatened habitat types are not directly comparable with each other. The conclusion that can be made, however, is that the decline and degradation of habitats has not diminished.

Visa alla publikationer av Eva Ehrnsten vid Stockholms universitet

Senast uppdaterad: 15 februari 2021

Bokmärk och dela Tipsa